Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Cell Separation
2.3. RNA Extraction
2.4. Real-Time PCR-Based Array Analysis
2.5. Non-Supervised Clustering Analysis
2.6. Quantitative Real-Time PCR (qRT-PCR)
2.7. Western Blotting
2.8. Data Accessibility
2.9. Statistical Analysis
3. Results
3.1. Identification of Different Expression Pattern of Autophagy and Apoptosis Associated Genes in Patients with MDSs
3.1.1. Downregulation of Genes Related to Autophagy and Apoptosis in Patients with MDSs
3.1.2. Higher-Risk MDS Has a Distinct Autophagic Gene Expression Signature Compared to Lower-Risk MDS and Control Samples
3.2. Downregulation of Genes Related to Autophagy and Apoptosis in MDS Is Corroborated by qRT-PCR
3.3. mRNA Expression Levels Correlated Well with the Corresponding Protein Levels in the Cases of LC3-II, TGM2, and BCL2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sekeres, M.A.; Taylor, J. Diagnosis and Treatment of Myelodysplastic Syndromes. JAMA 2022, 328, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Cogle, C.R. Incidence and Burden of the Myelodysplastic Syndromes. Curr. Hematol. Malig. Rep. 2015, 10, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Adès, L.; Itzykson, R.; Fenaux, P. Myelodysplastic syndromes. Lancet 2014, 383, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Garcia-Manero, G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2018, 93, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Mufti, G.J.; Bennett, J.M.; Goasguen, J.; Bain, B.J.; Baumann, I.; Brunning, R.; Cazzola, M.; Fenaux, P.; Germing, U.; Hellström-Lindberg, E.; et al. Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica 2008, 93, 1712–1717. [Google Scholar] [CrossRef]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Ossa, J.E.A.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022, 1, EVIDoa2200008. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Qin, T.; Xu, Z.; Qu, S.; Pan, L.; Li, B.; Jia, Y.; Li, C.; Wang, H.; et al. IPSS-M has greater survival predictive accuracy compared with IPSS-R in persons ≥ 60 years with myelodysplastic syndromes. Exp. Hematol. Oncol. 2022, 11, 73. [Google Scholar] [CrossRef]
- Hospital, M.A.; Vey, N. Myelodysplastic Syndromes: How to Recognize Risk and Avoid Acute Myeloid Leukemia Transformation. Curr. Oncol. Rep. 2020, 22, 4. [Google Scholar] [CrossRef]
- Awada, H.; Thapa, B.; Visconte, V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells 2020, 9, 2512. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S. Genetics of MDS. Blood 2019, 133, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Kontandreopoulou, C.-N.; Kalopisis, K.; Viniou, N.-A.; Diamantopoulos, P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front. Oncol. 2022, 12, 989483. [Google Scholar] [CrossRef]
- Fontenay, M.; Gyan, E. Apoptotic pathways to death in myelodysplastic syndromes. Haematologica 2008, 93, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Mc Langemeijer, S.; Mariani, N.; Knops, R.; Gilissen, C.; Woestenenk, R.; De Witte, T.; Huls, G.; Van Der Reijden, B.A.; Jansen, J.H. Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients. PLoS ONE 2016, 11, e0165582. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.S.; Mortensen, M.; Simon, A.K. Autophagy in the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia. Cell Cycle 2011, 10, 1719–1725. [Google Scholar] [CrossRef]
- Thorburn, A. Crosstalk between autophagy and apoptosis: Mechanisms and therapeutic implications. Prog. Mol. Biol. Transl. Sci. 2020, 172, 55–65. [Google Scholar] [CrossRef]
- Decuypere, J.-P.; Parys, J.B.; Bultynck, G. Regulation of the Autophagic Bcl-2/Beclin 1 Interaction. Cells 2012, 1, 284–312. [Google Scholar] [CrossRef]
- Wirawan, E.; Vande Walle, L.; Kersse, K.; Cornelis, S.; Claerhout, S.; Vanoverberghe, I.; Roelandt, R.; De Rycke, R.; Verspurten, J.; Declercq, W.; et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010, 1, e18. [Google Scholar] [CrossRef]
- Yin, X.; Cao, L.; Peng, Y.; Tan, Y.; Xie, M.; Kang, R.; Livesey, K.M.; Tang, D. A critical role for UVRAG in apoptosis. Autophagy 2011, 7, 1242–1244. [Google Scholar] [CrossRef]
- Kerbauy, D.B.; Deeg, H.J. Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome. Exp. Hematol. 2007, 35, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.E.; Mufti, G.J.; Rasool, F.; Mijovic, A.; Devereux, S.; Pagliuca, A. The role of apoptosis, proliferation, and the Bcl-2–related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000, 96, 3932–3938. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yang, L.; Guo, L.; Cui, N.; Zhang, G.; Liu, C.; Xing, L.; Shao, Z.; Wang, H. Impaired Mitophagy of Nucleated Erythroid Cells Leads to Anemia in Patients with Myelodysplastic Syndromes. Oxid. Med. Cell. Longev. 2018, 2018, 6328051. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, C.; Evangelisti, C.; Chiarini, F.; Lonetti, A.; Buontempo, F.; Neri, L.M.; McCubrey, J.A.; Martelli, A.M. Autophagy in acute leukemias: A double-edged sword with important therapeutic implications. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.; Ferguson, D.; Edelmann, M.; Kessler, B.; Morten, K.; Komatsu, M.; Simon, A. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA 2009, 107, 832–837. [Google Scholar] [CrossRef]
- Mohamedali, A.M.; Alkhatabi, H.; Kulasekararaj, A.; Shinde, S.; Mian, S.A.; Malik, F.; Smith, A.E.; Gäken, J.; Mufti, G.J. Utility of peripheral blood for cytogenetic and mutation analysis in myelodysplastic syndrome. Blood 2013, 122, 567–570. [Google Scholar] [CrossRef]
- Mohamedali, A.M.; Gäken, J.; Ahmed, M.; Malik, F.; Smith, A.E.; Best, S.; Mian, S.; Gaymes, T.; Ireland, R.; Kulasekararaj, A.G.; et al. High concordance of genomic and cytogenetic aberrations between peripheral blood and bone marrow in myelodysplastic syndrome (MDS). Leukemia 2015, 29, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Mizutani, C.; Nannya, Y.; Kurokawa, M.; Kobayashi, S.; Takeuchi, J.; Tamura, H.; Ogata, K.; Dan, K.; Shibayama, H.; et al. Clinical evaluation of WT1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Leuk. Lymphoma 2013, 54, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Ali, A.M.; Raza, A. Two different “tales” of ATG7: Clinical relevance to myelodysplastic syndromes. Mol. Cell. Oncol. 2016, 3, e1212686. [Google Scholar] [CrossRef]
- Robert, G.; Auberger, P. Azacitidine resistance caused by LAMP2 deficiency: A therapeutic window for the use of autophagy inhibitors in MDS/AML patients? Autophagy 2019, 15, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Shi, Q.; Chen, H.; Juskevicius, R.; Zinkel, S.S. Programmed necroptosis is upregulated in low-grade myelodysplastic syndromes and may play a role in the pathogenesis. Exp. Hematol. 2021, 103, 60–72.e5. [Google Scholar] [CrossRef] [PubMed]
- Ploumi, C.; Papandreou, M.-E.; Tavernarakis, N. The complex interplay between autophagy and cell death pathways. Biochem. J. 2022, 479, 75–90. [Google Scholar] [CrossRef]
- Romano, A.; Giallongo, C.; La Cava, P.; Parrinello, N.L.; Chiechi, A.; Vetro, C.; Tibullo, D.; Di Raimondo, F.; Liotta, L.A.; Espina, V.; et al. Proteomic Analysis Reveals Autophagy as Pro-Survival Pathway Elicited by Long-Term Exposure with 5-Azacitidine in High-Risk Myelodysplasia. Front. Pharmacol. 2017, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Wesselborg, S.; Stork, B. Autophagy signal transduction by ATG proteins: From hierarchies to networks. Cell. Mol. Life Sci. 2015, 72, 4721–4757. [Google Scholar] [CrossRef]
- Mortensen, M.; Soilleux, E.J.; Djordjevic, G.; Tripp, R.; Lutteropp, M.; Sadighi-Akha, E.; Stranks, A.J.; Glanville, J.; Knight, S.; Jacobsen, S.-E.W.; et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011, 208, 455–467. [Google Scholar] [CrossRef]
- Dolatshad, H.; Pellagatti, A.; Fernandez-Mercado, M.; Yip, B.H.; Malcovati, L.; Attwood, M.; Przychodzen, B.; Sahgal, N.; Kanapin, A.; Lockstone, H.E.; et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015, 29, 1092–1103. [Google Scholar] [CrossRef]
- Park, S.M.; Ou, J.; Chamberlain, L.; Simone, T.M.; Yang, H.; Virbasius, C.-M.; Ali, A.M.; Zhu, L.J.; Mukherjee, S.; Raza, A.; et al. U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3′ End Formation. Mol. Cell 2016, 62, 479–490. [Google Scholar] [CrossRef]
- Spinelli, E.; Caporale, R.; Buchi, F.; Masala, E.; Gozzini, A.; Sanna, A.; Sassolini, F.; Valencia, A.; Bosi, A.; Santini, V. Distinct Signal Transduction Abnormalities and Erythropoietin Response in Bone Marrow Hematopoietic Cell Subpopulations of Myelodysplastic Syndrome Patients. Clin. Cancer Res. 2012, 18, 3079–3089. [Google Scholar] [CrossRef]
- Di Malta, C.; Cinque, L.; Settembre, C. Transcriptional Regulation of Autophagy: Mechanisms and Diseases. Front. Cell Dev. Biol. 2019, 7, 114. [Google Scholar] [CrossRef]
- Cheng, Z. The FoxO–Autophagy Axis in Health and Disease. Trends Endocrinol. Metab. 2019, 30, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Panda, P.K.; Sinha, N.; Das, D.N.; Bhutia, S.K. Autophagy and apoptosis: Where do they meet? Apoptosis 2014, 19, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Reidel, V.; Kauschinger, J.; Hauch, R.T.; Müller-Thomas, C.; Nadarajah, N.; Burgkart, R.; Schmidt, B.; Hempel, D.; Jacob, A.; Slotta-Huspenina, J.; et al. Selective inhibition of BCL-2 is a promising target in patients with high-risk myelodysplastic syndromes and adverse mutational profile. Oncotarget 2018, 9, 17270–17281. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Tee, A.E.L.; Porro, A.; Smith, S.A.; Dwarte, T.; Liu, P.Y.; Iraci, N.; Sekyere, E.; Haber, M.; Norris, M.D.; et al. Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 18682–18687. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Kotsakis, P.; Johnson, T.S.; Chau, D.Y.S.; Ali, S.; Melino, G.; Griffin, M. Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ. 2006, 13, 1442–1453. [Google Scholar] [CrossRef]
- Tatsukawa, H.; Hitomi, K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021, 10, 1842. [Google Scholar] [CrossRef]
- Rossin, F.; D’eletto, M.; Macdonald, U.; Farrace, M.G.; Piacentini, M. TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy. Amino Acids 2012, 42, 1793–1802. [Google Scholar] [CrossRef]
- Gillson, J.; El-Aziz, Y.S.A.; Leck, L.Y.W.; Jansson, P.J.; Pavlakis, N.; Samra, J.S.; Mittal, A.; Sahni, S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers 2022, 14, 3528. [Google Scholar] [CrossRef]
- Chhabra, A.; Verma, A.; Mehta, K. Tissue transglutaminase promotes or suppresses tumors depending on cell context. Anticancer. Res. 2009, 29, 1909–1919. [Google Scholar]
- Zhang, H.; Chen, Z.; Miranda, R.N.; Medeiros, L.J.; McCarty, N. TG2 and NF-κB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res 2016, 76, 6410–6423. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Han, X.-Z.; Meng, F.-B.; Wang, Z.-X.; Zhai, Y.-Q.; Zhou, D.-S. Transglutaminase-2 is Involved in Cell Apoptosis of Osteosarcoma Cell Line U2OS Under Hypoxia Condition. Cell Biochem. Biophys. 2015, 72, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yu, D.; Zhou, J.; Zhuang, S.; Jiang, T. TGM2 interference regulates the angiogenesis and apoptosis of colorectal cancer via Wnt/β-catenin pathway. Cell Cycle 2019, 18, 1122–1134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Antonyak, M.A.; Singh, G.; Cerione, R.A. A Mechanism for the Upregulation of EGF Receptor Levels in Glioblastomas. Cell Rep. 2013, 3, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patient Cohort |
---|---|
Median age at diagnosis, years (range) | 75 (59–90) |
Gender (male: female) | 25:9 (2.77) |
IPSS-R category, (n%) | |
Very low | 5.9 |
Low | 32.4 |
Intermediate | 0 |
High | 44.1 |
Very high | 17.6 |
All MDS | Lower-Risk MDS | Higher-Risk MDS | ||||
---|---|---|---|---|---|---|
Gene Symbol | Fold Change | p-Value | Fold Change | p-Value | Fold Change | p-Value |
AMBRA1 | −3.01 | 0.791 | −1.92 | 0.460 | −4.26 | 0.168 |
PI3KC3 | −4.97 | 0.001 | −3.25 | 0.003 | −6.91 | 0.001 |
UVRAG | −3.68 | 0.001 | −3.11 | 0.012 | −4.19 | 0.003 |
ATG5 | −4.72 | 0.001 | −4.46 | 0.002 | −4.94 | 0.001 |
ATG12 | −2.06 | 0.855 | −1.41 | 0.508 | −2.75 | 0.027 |
ATG16L1 | −6.08 | 0.008 | −4.90 | 0.005 | −7.18 | 0.059 |
DRAM1 | −5.64 | 0.001 | −5.21 | 0.001 | −6.00 | 0.016 |
DRAM2 | −2.49 | 0.284 | −2.12 | 0.845 | −2.81 | 0.003 |
MAP1LC3B | −4.62 | 0.025 | −3.99 | 0.0430 | −5.16 | 0.054 |
TGM2 | 1.81 | 0.369 | 1.52 | 0.274 | 2.12 | 0.286251 |
BCL2 | 8.21 | 0.224 | 21.83 | 0.096 | 3.87 | 0.248 |
CASP3 | −11.91 | 0.015 | −6.92 | 0.053 | −18.07 | 0.064 |
CASP8 | −18.10 | 0.027 | −3.77 | 0.166 | −60.51 | 0.088 |
CTSB | −10.42 | 0.004 | −4.91 | 0.068 | −18.59 | 0.022 |
CASP7 | −4.89 | 0.002 | −1.98 | 0.090321 | −9.78 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsekoura, G.; Agathangelidis, A.; Kontandreopoulou, C.-N.; Taliouraki, A.; Mporonikola, G.; Stavropoulou, M.; Diamantopoulos, P.T.; Viniou, N.-A.; Aleporou, V.; Papassideri, I.; et al. Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression. Curr. Issues Mol. Biol. 2023, 45, 4135-4150. https://doi.org/10.3390/cimb45050263
Tsekoura G, Agathangelidis A, Kontandreopoulou C-N, Taliouraki A, Mporonikola G, Stavropoulou M, Diamantopoulos PT, Viniou N-A, Aleporou V, Papassideri I, et al. Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression. Current Issues in Molecular Biology. 2023; 45(5):4135-4150. https://doi.org/10.3390/cimb45050263
Chicago/Turabian StyleTsekoura, Georgia, Andreas Agathangelidis, Christina-Nefeli Kontandreopoulou, Angeliki Taliouraki, Georgia Mporonikola, Maria Stavropoulou, Panagiotis T. Diamantopoulos, Nora-Athina Viniou, Vassiliki Aleporou, Issidora Papassideri, and et al. 2023. "Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression" Current Issues in Molecular Biology 45, no. 5: 4135-4150. https://doi.org/10.3390/cimb45050263
APA StyleTsekoura, G., Agathangelidis, A., Kontandreopoulou, C. -N., Taliouraki, A., Mporonikola, G., Stavropoulou, M., Diamantopoulos, P. T., Viniou, N. -A., Aleporou, V., Papassideri, I., & Kollia, P. (2023). Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression. Current Issues in Molecular Biology, 45(5), 4135-4150. https://doi.org/10.3390/cimb45050263