Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review
Abstract
:1. Introduction
2. Methods
3. Antioxidant Intake and Asthma in Relation to Smoking Status
4. Biomarkers of OS and Inflammation in Relation to Smoking Status
4.1. Biomarkers of OS
Case-Control Studies
4.2. Biomarkers of Inflammation
4.2.1. Case-Control Studies
4.2.2. Cross-Sectional Studies
4.2.3. Cohort Studies
5. Potential Effects of Antioxidant on CS-Induced Asthma Biomarkers
5.1. Antioxidant Vitamins
5.1.1. Vitamin A
5.1.2. Carotenoids
5.1.3. Vitamin C and E
5.1.4. Vitamin D
5.2. Antioxidant Minerals
5.2.1. Iron
5.2.2. Zinc, Selenium, and Copper
6. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHR | Airway hyperresponsiveness |
Akt | Serine-threonine kinase |
AP-1 | Activator protein-1 |
ASM | Airway smooth muscle |
ATRA | All-trans RA |
AZU-1 | Azurocidin 1 |
BALF | Bronchoalveolar Lavavge Fluid |
BaP | Benzo[a]pyrene |
BCX | β-cryptoxanthin |
COPD | Chronic obstructive pulmonary disease |
CS | Cigarette smoke |
CSE | Cigarette smoke extract |
Cu | Copper |
CuONPs | Copper oxide nanoparticles |
CuZnSOD | Zinc-superoxide dismutase |
CXCL | C-X-C motif chemokine ligand |
EBC | Exhaled breathe condensate |
ECP | Eosinophilic cationic protein |
ERK | Extracellular signal-regulated kinases |
ETS | Environmental tobacco smoke |
Fe | Iron |
FeNO | Fractional exhaled nitric oxide |
FEV1 | Forced expiratory volume in 1 s |
FRAP | Ferric reducing ability of plasma |
FVC | Forced vital capacity |
GPx | Glutathione peroxidase |
GSH | Reduced glutathione |
H2O2 | Hydrogen peroxide |
HBECs | Human bronchial epithelial cells |
HDAC | Histone deacetylase |
HGFR | Hepatocyte growth factor receptor |
HIF-1α | Hypoxia-inducible factor 1 alpha |
HMGB1 | Mobility group box 1 protein |
HO-1 | Heme-oxygenase-1 |
hs-CRP | High-sensitivity C-reactive protein |
ICS | Inhalation corticosteroid |
IgE | Immunoglobulin E |
IL | Interleukin |
ILC | Innate lymphoid cell |
IL-18R1 | Interleukin 18 receptor 1 |
IL-1RL1 | Interleukin 1 receptor-like 1 |
8-iso-PGF2α | Isoprostane-8-iso prostaglandin F2α |
JNK | c-Jun N-terminal kinase |
LABA | Long-acting β2 adrenergic |
LC | Lung cancer |
LDH | Lactate dehydrogenase |
LP | Lipid peroxidation |
LPS | Lipopolysaccharide |
MAPKs | Mitogen-activated protein kinases |
MCP-1 | Monocyte chemoattractant protein-1 |
MDA | Malondialdehyde |
MMP | Matrix metallopeptidases |
MPO | Myeloperoxidase |
α7nAChR | α7 nicotinic acetylcholine receptor |
NF-κB | Nuclear transcription factor-kappaB |
NLRP | NLR Family CARD Domain Containing |
NNK | Nitrosamine 4(methylnitrosamino)-1-(3–pyridyl)-1-butanone |
NO2− | Nitrite |
NOS | Nitric oxide synthase |
Notch1 | Neurogenic locus notch homolog protein 1 |
NOX2 | NADPH oxidase 2 |
Nrf2 | Nuclear factor-E2 related factor 2 |
OS | Oxidative stress |
OVA | Ovalbumin |
OXSR1 | Oxidative stress responsive kinase 1 |
P53 | Protein 53 |
PARP-1 | Poly[ADP-ribose] polymerase 1 |
PDGF | Platelet-derived growth factor |
PEFR | Peak expiratory flow rate |
PGF2 | Prostaglandin F2 |
PI3K | Phosphatidylinositol-3 kinase |
PPBP | Pro-platelet basic protein |
QoL | Quality of life |
RA | Retinoic acid |
RARs | Retinoic acid receptors |
RDBPC | Randomized double blind placebo control |
RXRs | Retinoid X receptors |
RCTs | Randomised controlled trials |
ROS | Reactive oxygen species |
Se | Selenium |
SHS | Secondhand smoke |
SIRT1 | Sirtuin1 |
SLC-39 | Solute carrier family 39 |
SOD | Superoxide dismutase |
TBARS | Thiobarbituric acid reactive substances |
TGF-β1 | Transforming growth factor beta 1 |
Th | T-helper |
TLR | Toll-like receptors |
TNF-α | Tumor necrosis factor α |
TNFRSF11A | TNF receptor superfamily member 11a |
VA | Vitamin A |
VC | Vitamin C |
VD | Vitamin D |
VE | Vitamin E |
Zn | Zinc |
References
- Gan, H.; Hou, X.; Zhu, Z.; Xue, M.; Zhang, T.; Huang, Z.; Cheng, Z.J.; Sun, B. Smoking: A leading factor for the death of chronic respiratory diseases derived from Global Burden of Disease Study 2019. BMC Pulm. Med. 2022, 22, 149. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation. Global Burden of Disease 2017. 2017. Available online: http://vizhub.healthdata.org/gbd-compare/# (accessed on 6 March 2023).
- Aoshiba, K.; Nagai, A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin. Rev. Allergy Immunol. 2004, 27, 35–43. [Google Scholar] [CrossRef]
- Doeing, D.C.; Solway, J. Airway smooth muscle in the pathophysiology and treatment of asthma. J. Appl. Physiol. 2013, 114, 834–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kume, H. Role of airway smooth muscle in inflammation related to asthma and COPD. Adv. Exp. Med. Biol. 2021, 1303, 139–172. [Google Scholar] [PubMed]
- Shimoda, T.; Obase, Y.; Kishikawa, R.; Iwanaga, T. Influence of cigarette smoking on airway inflammation and inhaled corticosteroid treatment in patients with asthma. Allergy Asthma Proc. 2016, 37, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Tommola, M.; Ilmarinen, P.; Tuomisto, L.E.; Haanpää, J.; Kankaanranta, T.; Niemelä, O.; Kankaanranta, H. The effect of smoking on lung function: A clinical study of adult-onset asthma. Eur. Respir. J. 2016, 48, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Korsbæk, N.; Landt, E.M.; Dahl, M. Second-hand smoke exposure associated with risk of respiratory symptoms, asthma, and COPD in 20,421 adults from the General Population. J. Asthma Allergy 2021, 14, 1277–1284. [Google Scholar] [CrossRef]
- Keogan, S.; Alonso, T.; Sunday, S.; Tigova, O.; Fernández, E.; López, M.J.; Gallus, S.; Semple, S.; Tzortzi, A.; Boffi, R.; et al. Lung function changes in patients with chronic obstructive pulmonary disease (COPD) and asthma exposed to secondhand smoke in outdoor areas. J. Asthma 2021, 58, 1169–1175. [Google Scholar] [CrossRef]
- Coogan, P.F.; Castro-Webb, N.; Yu, J.; O’Connor, G.T.; Palmer, J.R.; Rosenberg, L. Active and passive smoking and the incidence of asthma in the Black Women’s Health Study. Am. J. Respir. Crit. Care Med. 2015, 191, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Van der Toorn, M.; Rezayat, D.; Kauffman, H.F.; Bakker, S.J.L.; Gans, R.O.B.; Koëter, G.H.; Choi, A.M.K.; Van Oosterhout, A.J.M.; Slebos, D.-J. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am. J. Physiol. Lung. Cell Mol. Physiol. 2009, 297, L109–L114. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Xiao, W.; Xu, C.; Hu, Y.; Wu, X.; Huang, F.; Lu, X.; Shi, C.; Wu, X. Chemical constituents of tobacco smoke induce the production of interleukin-8 in human bronchial epithelium, 16HBE cells. Tob. Induc. Dis. 2016, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.; van den Berg, A.; Faiz, A.; Boudewijn, I.M.; Timens, W.; Vermeulen, C.J.; Oliver, B.G.; Kok, K.; Terpstra, M.M.; van den Berge, M.; et al. Current smoking is associated with decreased expression of miR-335–5p in parenchymal lung fibroblasts. Int. J. Mol. Sci. 2019, 20, 5176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirra, D.; Cione, E.; Spaziano, G.; Esposito, R.; Sorgenti, M.; Granato, E.; Cerqua, I.; Muraca, L.; Iovino, P.; Gallelli, L.; et al. Circulating microRNAs expression profile in lung inflammation: A preliminary study. J. Clin. Med. 2022, 11, 5446. [Google Scholar] [CrossRef] [PubMed]
- Cipollina, C.; Bruno, A.; Fasola, S.; Cristaldi, M.; Patella, B.; Inguanta, R.; Vilasi, A.; Aiello, G.; La Grutta, S.; Torino, C.; et al. Cellular and molecular signatures of oxidative stress in bronchial epithelial cell models injured by cigarette smoke extract. Int. J. Mol. Sci. 2022, 23, 1770. [Google Scholar] [CrossRef] [PubMed]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsharairi, N.A. Scutellaria baicalensis and their natural flavone compounds as potential medicinal drugs for the treatment of nicotine-induced non-small-cell lung cancer and asthma. Int. J. Environ. Res. Public Health 2021, 18, 5243. [Google Scholar] [CrossRef] [PubMed]
- Vonk, J.M.; Scholtens, S.; Postma, D.S.; Moffatt, M.F.; Jarvis, D.; Ramasamy, A.; Wjst, M.; Omenaas, E.R.; Bouzigon, E.; Demenais, F.; et al. Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium. PLoS ONE 2017, 12, e0172716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uh, S.-T.; Park, J.-S.; Koo, S.-M.; Kim, Y.-K.; Kim, K.U.; Kim, M.-A.; Shin, S.-W.; Son, J.-H.; Park, H.-W.; Shin, H.D.; et al. Association of genetic variants of NLRP4 with exacerbation of asthma: The effect of smoking. DNA Cell. Biol 2019, 38, 76–84. [Google Scholar] [CrossRef]
- Losol, P.; Kim, S.H.; Ahn, S.; Lee, S.; Choi, J.-P.; Kim, Y.-H.; Hong, S.-J.; Kim, B.-S.; Chang, Y.-S. Genetic variants in the TLR-related pathway and smoking exposure alter the upper airway microbiota in adult asthmatic patients. Allergy 2021, 76, 3217–3220. [Google Scholar] [CrossRef]
- Kim, M.-H.; Chang, H.S.; Lee, J.-U.; Shim, J.-S.; Park, J.-S.; Cho, Y.-J.; Park, C.-S. Association of genetic variants of oxidative stress responsive kinase 1 (OXSR1) with asthma exacerbations in non-smoking asthmatics. BMC Pulm. Med. 2022, 22, 3. [Google Scholar] [CrossRef]
- Belcaro, G.; Luzzi, R.; Cesinaro Di Rocco, P.; Cesarone, M.R.; Dugall, M.; Feragalli, B.; Errichi, B.M.; Ippolito, E.; Grossi, M.G.; Hosoi, M.; et al. Pycnogenol® improvements in asthma management. Panminerva. Med. 2011, 53, 57–64. [Google Scholar] [PubMed]
- Thomson, N.C.; Spears, M. The influence of smoking on the treatment response in patients with asthma. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Thomson, N.C.; Shepherd, M.; Spears, M.; Chaudhuri, R. Corticosteroid insensitivity in smokers with asthma: Clinicalevidence, mechanisms, and management. Treat Respir. Med. 2006, 5, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Chatkin, J.M.; Dullius, C.R. The management of asthmatic smokers. Asthma Res. Pract. 2016, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duman, B.; Borekci, S.; Akdeniz, N.; Gazioglu, S.B.; Deniz, G.; Gemicioglu, B. Inhaled corticosteroids’ effects on biomarkers in exhaled breath condensate and blood in patients newly diagnosed with asthma who smoke. J. Asthma 2022, 59, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. The effects of dietary supplements on asthma and lung cancer risk in smokers and non-smokers: A review of the literature. Nutrients 2019, 11, 725. [Google Scholar] [CrossRef] [Green Version]
- Alsharairi, N.A. Supplements for smoking-related lung diseases. Encyclopedia 2021, 1, 76–86. [Google Scholar] [CrossRef]
- Alsharairi, N.A. Dietary antioxidants and lung cancer risk in smokers and non-smokers. Healthcare 2022, 10, 2501. [Google Scholar] [CrossRef]
- Santillan, A.A.; Camargo, C.A., Jr.; Colditz, G.A. A meta-analysis of asthma and risk of lung cancer (United States). Cancer Causes Control. 2003, 14, 327–334. [Google Scholar] [CrossRef]
- Rosenberger, A.; Bickeböller, H.; McCormack, V.; Brenner, D.R.; Duell, E.J.; Tjønneland, A.; Friis, S.; Muscat, J.E.; Yang, P.; Wichmann, H.E.; et al. Asthma and lung cancer risk: A systematic investigation by the International Lung Cancer Consortium. Carcinogenesis 2012, 33, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.S.; Dockery, D.W.; Neas, L.M.; Schwartz, J.; Coull, B.A.; Raizenne, M.; Speizer, F.E. Low dietary nutrient intakes and respiratory health in adolescents. Chest 2007, 132, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, W.; Du, J. Association between dietary carotenoid intakes and the risk of asthma in adults: A cross-sectional study of NHANES, 2007–2012. BMJ Open 2022, 12, e052320. [Google Scholar] [CrossRef] [PubMed]
- Pearson, P.J.K.; Lewis, S.A.; Britton, J.; Fogarty, A. Vitamin E supplements in asthma: A parallel group randomised placebo controlled trial. Thorax 2004, 59, 652–656. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.O.; Newson, R.B.; Rayman, M.P.; Wong, A.P.-L.; Tumilty, M.K.; Phillips, J.M.; Potts, J.F.; Kelly, F.J.; White, P.T.; Burney, P.G.J. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax 2007, 62, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Vaart, H.; Postma, D.S.; Timens, W.; Ten Hacken, N.H.T. Acute effects of cigarette smoke on inflammation and oxidative stress: A review. Thorax 2004, 59, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.S.; Saini, M. Evaluation of systemic antioxidant level and oxidative stress in relation to lifestyle and disease progression in asthmatic patients. J. Med. Biochem. 2016, 35, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrinò, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef] [PubMed]
- Anes, A.B.; Nasr, H.B.; Fetoui, H.; Bchir, S.; Chahdoura, H.; Yacoub, S.; Garrouch, A.; Benzarti, M.; Tabka, Z.; Chahed, K. Alteration in systemic markers of oxidative and antioxidative status in Tunisian patients with asthma: Relationships with clinical severity and airflow limitation. J. Asthma 2016, 53, 227–237. [Google Scholar] [CrossRef]
- Mak, J.C.W.; Leung, H.C.M.; Ho, S.P.; Law, B.K.W.; Lam, W.K.; Tsang, K.W.T.; Ip, M.C.M.; Chan-Yeung, M. Systemic oxidative and antioxidative status in Chinese patients with asthma. J. Allergy Clin. Immunol. 2004, 114, 260–264. [Google Scholar] [CrossRef]
- Nadeem, A.; Chhabra, S.K.; Masood, A.; Raj, H.G. Increased oxidative stress and altered levels of antioxidants in asthma. J. Allergy Clin. Immunol. 2003, 111, 72–78. [Google Scholar] [CrossRef]
- Deveci, F.; Ilhan, N.; Turgut, T.; Akpolat, N.; Kirkil, G.; Muz, M.H. Glutathione and nitrite in induced sputum from patients with stable and acute asthma compared with controls. Ann. Allergy Asthma Immunol. 2004, 93, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Hillas, G.; Kostikas, K.; Mantzouranis, K.; Bessa, V.; Kontogianni, K.; Papadaki, G.; Papiris, S.; Alchanatis, M.; Loukides, S.; Bakakos, P. Exhaled nitric oxide and exhaled breath condensate pH as predictors of sputum cell counts in optimally treated asthmatic smokers. Respirology 2011, 16, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Michils, A.; Louis, R.; Peché, R.; Baldassarre, S.; Van Muylem, A. Exhaled nitric oxide as a marker of asthma control in smoking patients. Eur. Respir. J. 2009, 33, 1295–1301. [Google Scholar] [CrossRef]
- Pavlidis, S.; Takahashi, K.; Kwong, F.N.K.; Xie, J.; Hoda, U.; Sun, K.; Elyasigomari, V.; Agapow, P.; Loza, M.; Baribaud, F.; et al. “T2-high” in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur. Respir. J. 2019, 53, 1800938. [Google Scholar] [CrossRef]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Pasini, A.M.F.; et al. Biomarkers of oxidative stress and inflammation in chronic airway diseases. Int. J. Mol. Sci. 2020, 21, 4339. [Google Scholar] [CrossRef] [PubMed]
- Malinovschi, A.; Backer, V.; Harving, H.; Porsbjerg, C. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms. Respir. Med. 2012, 106, 794–801. [Google Scholar] [CrossRef] [Green Version]
- Zietkowski, Z.; Tomasiak-Lozowska, M.M.; Skiepko, R.; Zietkowska, E.; Bodzenta-Lukaszyk, A. Eotaxin-1 in exhaled breath condensate of stable and unstable asthma patients. Respir. Res. 2010, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Krisiukeniene, A.; Babusyte, A.; Stravinskaite, K.; Lotvall, J.; Sakalauskas, R.; Sitkauskiene, B. Smoking affects eotaxin levels in asthma patients. J. Asthma 2009, 46, 470–476. [Google Scholar] [CrossRef]
- Rossios, C.; Pavlidis, S.; Hoda, U.; Kuo, C.-H.; Wiegman, C.; Russell, K.; Sun, K.; Loza, M.J.; Baribaud, F.; Durham, A.L.; et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J. Allergy Clin. Immunol. 2018, 141, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, G.W.; MacLeod, K.J.; Thomson, L.; Little, S.A.; McSharry, C.; Thomson, N.C. Smoking and airway inflammation in patients with mild asthma. Chest 2001, 120, 1917–1922. [Google Scholar] [CrossRef]
- Thomson, N.C.; Chaudhuri, R.; Spears, M.; Haughney, J.; McSharry, C. Serum periostin in smokers and never smokers with asthma. Respir. Med. 2015, 109, 708–7015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, H.; Alp, H.H.; Sünnetçioğlu, A.; Ekin, S.; Çilingir, B.M. Evaluation serum levels of YKL-40, Periostin, and some inflammatory cytokines together with IL-37, a new anti-inflammatory cytokine, in patients with stable and exacerbated asthma. Heart Lung 2021, 50, 177–183. [Google Scholar] [CrossRef]
- Rovina, N.; Dima, E.; Gerassimou, C.; Kollintza, A.; Gratziou, C.; Roussos, C. IL-18 in induced sputum and airway hyperresponsiveness in mild asthmatics: Effect of smoking. Respir. Med. 2009, 103, 1919–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, J.; Kim, J.; Sohn, K.-H.; Park, I.-W.; Choi, B.-W.; Chung, D.H.; Cho, S.-H.; Kang, H.R.; Jung, J.-W.; Kim, H.Y. Cigarette smoke aggravates asthma by inducing memory-like type 3 innate lymphoid cells. Nat. Commun. 2022, 13, 3852. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, J.; Zhao, J.; Wang, J.; Zhang, Y.; Liu, L.; Cao, L.; Liu, Y.; Dong, L. Type 2 innate lymphoid cells: A novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 2015, 109, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, T.; Obase, Y.; Kishikawa, R.; Iwanaga, T. Serum high-sensitivity C-reactive protein can be an airway inflammation predictor in bronchial asthma. Allergy Asthma Proc. 2015, 36, e23–e28. [Google Scholar] [CrossRef]
- Halvani, A.; Tahghighi, F.; Nadooshan, H.H. Evaluation of correlation between airway and serum inflammatory markers in asthmatic patients. Lung. India 2012, 29, 143–146. [Google Scholar] [CrossRef]
- Mikus, M.S.; Kolmert, J.; Andersson, L.I.; Östling, J.; Knowles, R.G.; Gómez, C.; Ericsson, M.; Thörngren, J.-O.; Khoonsari, P.E.; Dahlén, B.; et al. Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. Eur. Respir. J. 2022, 59, 2100142. [Google Scholar] [CrossRef]
- Takahashi, K.; Pavlidis, S.; Kwong, F.N.K.; Hoda, U.; Rossios, C.; Sun, K.; Loza, M.; Baribaud, F.; Chanez, P.; Fowler, S.J.; et al. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: An exploratory analysis. Eur. Respir. J. 2018, 51, 1702173. [Google Scholar] [CrossRef]
- Emma, R.; Bansal, A.T.; Kolmert, J.; Wheelock, C.E.; Dahlen, S.-E.; Loza, M.J.; De Meulder, B.; Lefaudeux, D.; Auffray, C.; Dahlen, B.; et al. Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort. PLoS ONE 2018, 13, e0203874. [Google Scholar] [CrossRef] [Green Version]
- Thomson, N.C.; Chaudhuri, R.; Heaney, L.G.; Bucknall, C.; Niven, R.M.; Brightling, C.E.; Menzies-Gow, A.N.; Mansur, A.H.; McSharry, C. Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. J. Allergy Clin. Immunol. 2013, 131, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, J.; Chérot-Kornobis, N.; Hulo, S.; Ciuchete, A.; Clément, G.; Amouyel, P.; Matran, R.; Dauchet, L. Both exhaled nitric oxide and blood eosinophil count were associated with mild allergic asthma only in non-smokers. Clin. Exp. Allergy 2016, 46, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Kostikas, K.; Papaioannou, A.I.; Tanou, K.; Giouleka, P.; Koutsokera, A.; Minas, M.; Papiris, S.; Gourgoulianis, K.I.; Taylor, D.R.; Loukides, S. Exhaled NO and exhaled breath condensate pH in the evaluation of asthma control. Respir. Med. 2011, 105, e526–e532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.; Ma, L.; Wei, J.; Wang, J.; Xu, Q.; Chen, M.; Jiang, M.; Luo, M.; Wu, J.; Mai, L.; et al. Smoking status modifies the relationship between Th2 biomarkers and small airway obstruction in asthma. Can. Respir. J. 2021, 2021, 1918518. [Google Scholar] [CrossRef]
- Nerpin, E.; Ferreira, D.S.; Weyler, J.; Schlunnsen, V.; Jogi, R.; Semjen, C.R.; Gislasson, T.; Demoly, P.; Heinrich, J.; Nowak, D.; et al. Bronchodilator response and lung function decline: Associations with exhaled nitric oxide with regard to sex and smoking status. World Allergy Organ. J. 2021, 14, 100544. [Google Scholar] [CrossRef]
- Cianchetti, S.; Cardini, C.; Puxeddu, I.; Latorre, M.; Bartoli, M.L.; Bradicich, M.; Dente, F.; Bacci, E.; Celi, A.; Paggiaro, P. Distinct profile of inflammatory and remodelling biomarkers in sputum of severe asthmatic patients with or without persistent airway obstruction. World Allergy Organ. J. 2019, 12, 100078. [Google Scholar] [CrossRef]
- Timoneda, J.; Rodríguez-Fernández, L.; Zaragozá, R.; Marín, M.P.; Cabezuelo, M.T.; Torres, L.; Viña, J.R.; Barber, T. Vitamin A deficiency and the lung. Nutrients 2018, 10, 1132. [Google Scholar] [CrossRef] [Green Version]
- Defnet, A.E.; Shah, S.D.; Huang, W.; Shapiro, P.; Deshpande, D.A.; Kane, M.A. Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J. 2021, 35, e22016. [Google Scholar] [CrossRef]
- Druilhe, A.; Zahm, J.-M.; Benayoun, L.; El Mehdi, D.; Grandsaigne, M.; Dombret, M.-C.; Mosnier, I.; Feger, B.; Depondt, J.; Aubier, M.; et al. Epithelium expression and function of retinoid receptors in asthma. Am. J. Respir. Cell. Mol. Biol. 2008, 38, 276–282. [Google Scholar] [CrossRef]
- Day, R.M.; Lee, Y.H.; Park, A.-M.; Suzuki, Y.J. Retinoic acid inhibits airway smooth muscle cell migration. Am. J. Respir. Cell. Mol. Biol. 2006, 34, 695–703. [Google Scholar] [CrossRef]
- Callaghan, P.J.; Rybakovsky, E.; Ferrick, B.; Thomas, S.; Mullin, J.M. Retinoic acid improves baseline barrier function and attenuates TNF-α-induced barrier leak in human bronchial epithelial cell culture model, 16HBE 14o. PLoS ONE 2020, 15, e0242536. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Liu, Q.; Zhong, W.; Xia, Z. All-trans retinoic acid attenuates airway inflammation by inhibiting Th2 and Th17 response in experimental allergic asthma. BMC Immunol. 2013, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamura, K.; Nasuhara, Y.; Kobayashi, M.; Betsuyaku, T.; Tanino, Y.; Kinoshita, I.; Yamaguchi, E.; Matsukura, S.; Schleimer, R.P.; Nishimura, M. Retinoic acid inhibits interleukin-4-induced eotaxin production in a human bronchial epithelial cell line. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2004, 286, L777–L785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurie, J.M.; Lotan, R.; Lee, J.J.; Lee, J.S.; Morice, R.C.; Liu, D.D.; Xu, X.-C.; Khuri, F.R.; Ro, J.Y.; Hittelman, W.N.; et al. Treatment of former smokers with 9-cis-retinoic acid reverses loss of retinoic acid receptorbeta expression in the bronchial epithelium: Results from a randomized placebo-controlled trial. J. Natl. Cancer. Inst. 2003, 95, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenberger, M.; Heimbeck, I.; Möller, W.; Mamidi, S.; Kaßner, G.; Pukelsheim, K.; Wjst, M.; Neiswirth, M.; Kroneberg, P.; Lomas, D.; et al. Inhaled all-trans retinoic acid in an individual with severe emphysema. Eur. Respir. J. 2009, 34, 1487–1489. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits-A review of recent advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.R.; Kim, J.O.; Lee, Y.C. The roles of phytochemicals in bronchial asthma. Molecules 2010, 15, 6810–6834. [Google Scholar] [CrossRef]
- Arora, A.; Willhite, C.A.; Liebler, D.C. Interactions of beta-carotene and cigarette smoke in human bronchial epithelial cells. Carcinogenesis 2001, 22, 1173–1178. [Google Scholar] [CrossRef] [Green Version]
- Prakash, P.; Liu, C.; Hu, K.-Q.; Krinsky, N.I.; Russell, R.M.; Wang, X.-D. Beta-carotene and beta-apo-14′-carotenoic acid prevent the reduction of retinoic acid receptor beta in benzo[a]pyrene-treated normal human bronchial epithelial cells. J. Nutr. 2004, 134, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Hazlewood, L.C.; Wood, L.G.; Hansbro, P.M.; Foster, P.S. Dietary lycopene supplementation suppresses Th2 responses and lung eosinophilia in a mouse model of allergic asthma. J. Nutr. Biochem. 2011, 22, 95–100. [Google Scholar] [CrossRef]
- Lian, F.; Wang, X.-D. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int. J. Cancer 2008, 123, 1262–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiaverelli, R.A.; Hu, K.-Q.; Liu, C.; Lim, J.Y.; Daniels, M.S.; Xia, H.; Mein, J.; von Lintig, J.; Wang, X.-D. β-Cryptoxanthin attenuates cigarette-smoke-induced lung lesions in the absence of carotenoid cleavage enzymes (BCO1/BCO2) in mice. Molecules 2023, 28, 1383. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bronson, R.T.; Russell, R.M.; Wang, X.-D. β-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets. Cancer Prev. Res. 2011, 4, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.; Britton, J.R.; Leonardi-Bee, J.A. Association between antioxidant vitamins and asthma outcome measures: Systematic review and meta-analysis. Thorax 2009, 64, 610–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tecklenburg, S.L.; Mickleborough, T.D.; Fly, A.D.; Bai, Y.; Stager, J.M. Ascorbic acid supplementation attenuates exercise-induced bronchoconstriction in patients with asthma. Respir. Med. 2007, 101, 1770–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. High dose vitamin C supplementation increases the Th1/Th2 cytokine secretion ratio, but decreases eosinophilic infiltration in bronchoalveolar lavage fluid of ovalbumin-sensitized and challenged mice. J. Agric. Food Chem. 2009, 57, 10471–10476. [Google Scholar] [CrossRef]
- Zhu, W.; Cromie, M.M.; Cai, Q.; Lv, T.; Singh, K.; Gao, W. Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS ONE 2014, 9, e92992. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, A.; Roberts, J.L.; Milne, G.; Choi, L.; Dworski, R. Natural-source d-α-tocopheryl acetate inhibits oxidant stress and modulates atopic asthma in humans In Vivo. Allergy 2012, 67, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Wiser, J.; Alexis, N.E.; Jiang, Q.; Wu, W.; Robinette, C.; Roubey, R.; Peden, D.B. In vivo gamma-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects. Free Radic. Biol. Med. 2008, 45, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, M.L.; Wagner, J.G.; Kala, A.; Mills, K.; Wells, H.B.; Alexis, N.E.; Lay, J.C.; Jiang, Q.; Zhang, H.; Zhou, H.; et al. Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic. Biol. Med. 2013, 60, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Burbank, A.J.; Duran, C.G.; Pan, Y.; Burns, P.; Jones, S.; Jiang, Q.; Yang, C.; Jenkins, S.; Wells, H.; Alexis, N.; et al. Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma. J. Allergy Clin. Immunol. 2018, 141, 1231–1238.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talati, M.; Meyrick, B.; Peebles Jr, R.S.; Davies, S.S.; Dworski, R.; Mernaugh, R.; Mitchell, D.; Boothby, M.; Roberts, L.J.; Sheller, J.R. Oxidant stress modulates murine allergic airway responses. Free Radic. Biol. Med. 2006, 40, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Quoc, Q.L.; Bich, T.C.T.; Kim, S.-H.; Park, H.-S.; Shin, Y.S. Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma. J. Cell Mol. Med. 2021, 25, 6721–6732. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Chen, H.; Chang, Q.; Liu, X.; Wu, Y.; Wei, C.; Li, R.; Kwan, J.K.C.; Yeung, K.L.; et al. Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma. Sci. Rep. 2014, 4, 4275. [Google Scholar] [CrossRef] [Green Version]
- Mabalirajan, U.; Aich, J.; Leishangthem, G.D.; Sharma, S.K.; Dinda, A.K.; Ghosh, B. Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model. J. Appl. Physiol. 2009, 107, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- McCary, C.A.; Abdala-Valencia, H.; Berdnikovs, S.; Cook-Mills, J.M. Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: Reversibility of α-tocopherol and γ-tocopherol’s effects. J. Immunol. 2011, 186, 3674–3685. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.C.; Agrawal, D.K. Vitamin D and bronchial asthma: An overview of data from the past 5 years. Clin. Ther. 2017, 39, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, P.E.; Lu, H.; Mann, E.H.; Chen, Y.-H.; Ho, T.-R.; Cousins, D.J.; Corrigan, C.; Kelly, F.J.; Mudway, I.S.; Hawrylowicz, C.M. Effects of vitamin D on inflammatory and oxidative stress responses of human bronchial epithelial cells exposed to particulate matter. PLoS ONE 2018, 13, e0200040. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Martínez, E.; López-Vancell, M.R.; Fernández de Córdova-Aguirre, J.C.; Rojas-Serrano, J.; Chavarría, A.; Velasco-Medina, A.; Velázquez-Sámano, G. Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. Cytokine 2018, 108, 239–246. [Google Scholar] [CrossRef]
- Adam-Bonci, T.-I.; Bonci, E.-A.; Pârvu, A.-E.; Herdean, A.-I.; Moț, A.; Taulescu, M.; Ungur, A.; Pop, R.-M.; Bocșan, C.; Irimie, A. Vitamin D supplementation: Oxidative stress modulation in a mouse model of ovalbumin-induced acute asthmatic airway inflammation. Int. J. Mol. Sci. 2021, 22, 7089. [Google Scholar] [CrossRef]
- Huang, C.; Peng, M.; Tong, J.; Zhong, X.; Xian, J.; Zhong, L.; Deng, J.; Huang, Y. Vitamin D ameliorates asthma-induced lung injury by regulating HIF-1α/Notch1 signaling during autophagy. Food Sci. Nutr. 2022, 10, 2773–2785. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.D.; Hall, S.C.; Agrawal, D.K. Vitamin D supplementation reduces induction of epithelial-mesenchymal transition in allergen sensitized and challenged mice. PLoS ONE 2016, 11, e0149180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, S.; Weeden, C.E.; Tan, D.H.W.; Scott, N.M.; Hart, J.; Foong, R.E.; Mok, D.; Stephens, N.; Zosky, G.; Hart, P.H. Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: An ovalbumin-induced model of allergic airway disease. PLoS ONE 2013, 8, e67823. [Google Scholar] [CrossRef]
- Taher, Y.A.; van Esch, B.C.A.M.; Hofman, G.A.; Henricks, P.A.J.; van Oosterhout, A.J.M. 1alpha,25-dihydroxyvitamin D3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma: Role for IL-10 and TGF-beta. J. Immunol. 2008, 180, 5211–5221. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, T.; Gupta, G.K.; Agrawal, D.K. Vitamin D supplementation reduces airway hyperresponsiveness and allergic airway inflammation in a murine model. Clin. Exp. Allergy 2013, 43, 672–683. [Google Scholar] [PubMed]
- Zhang, H.; Yang, N.; Wang, T.; Dai, B.; Shang, Y. Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-κB signaling pathway. Mol. Med. Rep. 2018, 17, 2915–2920. [Google Scholar]
- Ekmekci, O.P.; Donma, O.; Sardoğan, E.; Yildirim, N.; Uysal, O.; Demirel, H.; Demir, T. Iron, nitric oxide, and myeloperoxidase in asthmatic patients. Biochemistry 2004, 69, 462–467. [Google Scholar] [CrossRef]
- Narula, M.K.; Ahuja, G.K.; Whig, J.; Narang, A.P.S.; Soni, R.K. Status of lipid peroxidation and plasma iron level in bronchial asthmatic patients. Indian J. Physiol. Pharmacol. 2007, 51, 289–292. [Google Scholar]
- Han, F.; Li, S.; Yang, Y.; Bai, Z. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis. Bioengineered 2021, 12, 5279–5288. [Google Scholar] [CrossRef]
- Kuribayashi, K.; Iida, S.-I.; Nakajima, Y.; Funaguchi, N.; Tabata, C.; Fukuoka, K.; Fujimori, Y.; Ihaku, D.; Nakano, T. Suppression of heme oxygenase-1 activity reduces airway hyperresponsiveness and inflammation in a mouse model of asthma. J. Asthma 2015, 52, 662–668. [Google Scholar] [CrossRef]
- Ghio, A.J.; Hilborn, E.D. Indices of iron homeostasis correlate with airway obstruction in an NHANES III cohort. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2075–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghio, A.J.; Hilborn, E.D.; Stonehuerner, J.G.; Dailey, L.A.; Carter, J.D.; Richards, J.H.; Crissman, K.M.; Foronjy, R.F.; Uyeminami, D.L.; Pinkerton, K.E. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am. J. Respir. Crit. Care. Med. 2008, 178, 1130–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajac, D. Mineral micronutrients in asthma. Nutrients 2021, 13, 4001. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, B.; Cormier, S.A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. Vitr. 2009, 23, 1365–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-W.; Lee, I.-C.; Shin, N.-R.; Jeon, C.-M.; Kwon, O.-K.; Ko, J.-W.; Kim, J.-C.; Oh, S.-R.; Shin, I.-S.; Ahn, K.-S. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 2016, 10, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, A.; Sener, O.; Bulucu, F.; Karadurmus, N.; Özel, H.E.; Yamanel, L.; Tasci, C.; Naharci, I.; Ocal, R. Aydin Oxidative stress status and plasma trace elements in patients with asthma or allergic rhinitis. Allergol. Immunopathol. 2011, 39, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.-H.; Liu, P.-J.; Hsia, S.; Chuang, C.-J.; Chen, P.-C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef]
- Mao, S.; Wu, L.; Shi, W. Association between trace elements levels and asthma susceptibility. Respir. Med. 2018, 145, 110–119. [Google Scholar] [CrossRef]
- Richter, M.; Cantin, A.M.; Beaulieu, C.; Cloutier, A.; Larivée, P. Zinc chelators inhibit eotaxin, RANTES, and MCP-1 production in stimulated human airway epithelium and fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 285, L719–L729. [Google Scholar] [CrossRef]
- Lang, C.; Murgia, C.; Leong, M.; Tan, L.-W.; Perozzi, G.; Knight, D.; Ruffin, R.; Zalewski, P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2007, 292, L577–L584. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xin, Y.; Tang, Y.; Shao, G. Zinc suppressed the airway inflammation in asthmatic rats: Effects of zinc on generation of eotaxin, MCP-1, IL-8, IL-4, and IFN-γ. Biol. Trace. Elem. Res. 2012, 150, 314–321. [Google Scholar] [CrossRef] [PubMed]
Design | Study Population | Antioxidants | Main Findings | Ref. |
---|---|---|---|---|
Cross-sectional | Total subjects = 2112 12th grade US students | VC, VE (diet) | Low dietary VC intake (<110 mg/day) was associated with FEV1 decline and respiratory symptoms in smokers with asthma | [32] |
Smokers = 515 | VE intake was not associated with asthma | |||
Cross-sectional | Total subjects = 13,039 US adults (20–80 yrs) | Total carotenoids (diet and supplement) | High intake of carotenoids (≥165.59 μg/kg/day) was associated with reduced asthma risk in nonsmokers (OR = 0.63, 95% CI = 0.42 to 0.93), current smokers (OR = 0.54, 95% CI = 0.36 to 0.83), and ex-smokers (OR = 0.64, 95% CI = 0.42 to 0.97) | [33] |
Current asthma = 1784; non-current asthma = 11,255 | ||||
Nonsmokers= 7106; current smokers= 3304; ex-smokers= 2624 | ||||
RDBPC | Total subjects = 72 UK nonsmoking asthmatics (18–60 yrs) | VE (supplement) | VE had no beneficial effects on asthma | [34] |
500 mg VE capsules (D-α-tocopherol) in soya bean oil or matched placebo (capsules, gelatine base) for 6 weeks | ||||
RDBPC | Total subjects = 197 UK smoking and nonsmoking asthmatics (18–54 yrs) | Se (supplement) | Plasma Se was increased by 48% in the Se group. However, no significant improvement in QoL score was observed in the Se group compared with placebo | [35] |
100 μg/day high-Se yeast preparation or matched placebo (yeast only) for 24 weeks |
Design | Study Population | OS Biomarkers | Ref. |
---|---|---|---|
Case-control study | Total subjects = 210 Indian (13–80 yrs) Smokers/nonsmokers (asthmatics = 19/101; healthy controls = 29/61) | Asthmatic smokers = MDA ↑, FRAP ↓ | [37] |
Case-control study | Total subjects = 194 Italian patients with different pulmonary diseases (average 45.8 yrs) | Asthmatic current smokers = MDA ↑ | [38] |
Asthmatics (current and ex-smokers) = 64; healthy controls (nonsmokers) = 14 | |||
Case-control study | Total subjects = 329 Tunisian adults (average 43.6 yrs) | Asthmatic current smokers = Protein carbonyls, peroxynitrite ↑ | [39] |
Asthmatic current smokers/healthy controls = 14/73; Asthmatic ex- smokers/healthy controls = 17/13 | |||
Asthmatic nonsmokers/healthy controls = 120/92 | |||
Case-control study | Total subjects = 266 Chinese adults (39–47 yrs) | Asthmatic smokers and nonsmokers = SOD, GSH ↑ | [40] |
Asthmatic smokers/nonsmokers = 25/106; healthy controls (nonsmokers) = 135 | |||
Case-control study | Total subjects = 61 Indian (15–40 yrs) Asthmatic nonsmokers/healthy controls= 38/23 | Asthmatic nonsmokers = SOD, NO2−, protein carbonyls, lipid peroxide ↑ | [41] |
GPx, protein sulfhydrils ↓ | |||
Case-control study | Total subjects = 32 Turkish adults (average 41 yrs) | Asthmatic nonsmokers = GSH, NO2− ↑ | [42] |
Stable asthmatic nonsmokers = 11; Severe asthmatic nonsmokers = 10; Healthy nonsmokers = 11 |
Design | Study Population | Inflammation Biomarkers | Ref. |
---|---|---|---|
Case-control study | Total subjects = 143 Greek adults (average 48.7 yrs) | Asthmatic smokers = FeNo ↓, eosinophils ↑ | [43] |
Asthmatic smokers/nonsmokers = 40/43 | |||
Healthy smokers/nonsmokers = 30/30 | |||
Case-control study | Total subjects = 470 Belgium adults (average 41 yrs) | Asthmatic smokers = FeNo ↓ | [44] |
Asthmatic smokers/nonsmokers = 59/411 | |||
Case-control study | Total subjects = 147 European adults (average 46.8 yrs) | Asthmatic smokers = FeNo ↓ | [45] |
Asthmatic smokers = 18; Severe Asthmatic nonsmokers = 49; Mild-moderate asthmatic nonsmokers = 36; healthy nonsmoker = 44 | Asthmatic nonsmokers = FeNo, eosinophil ↑ | ||
Case-control study | Total subjects = 1230 Italian adults (20–65 yrs) | Asthmatic nonsmokers = FeNo, eosinophils, neutrophils ↑ | [46] |
Current/past asthmatic nonsmokers = 404/185; Current and past chronic bronchitis smokers = 92; healthy controls = 549 | |||
Case-control study | Total subjects = 282 Danish (14–44 yrs) | Asthmatic nonsmokers = FeNo, ↑ | [47] |
Asthmatic current/ex-smokers = 112/62; Asthmatic nonsmokers = 108 | |||
Case-control study | Total subjects = 58 Polish adults (25–45 yrs) | Asthmatic nonsmokers = FeNo, eotaxin, eosinophil ↑ | [48] |
Asthmatic nonsmokers/Healthy controls = 46/12 | |||
Case-control study | Total subjects = 68 Lithuanian adults (average 55.2 yrs) | Asthmatic smokers = Eotaxin, neutrophils, eosinophils ↑ | [49] |
Asthmatic smokers/nonsmokers = 19/26; Healthy smokers and non-smokers = 23 | Asthmatic nonsmokers = Eotaxin, neutrophils, eosinophils, IL-5 ↑ | ||
Case-control study | Total subjects = 86 UK adults (average 50 yrs) | Asthmatic smokers = IL-1β, IL-5, IL-18R1 ↑ | [50] |
Severe asthmatic smokers/nonsmokers = 21/37; mild-moderate asthmatics = 15; healthy controls = 13 | Asthmatic nonsmokers = Eotaxin, IL-4, IL-5, IL-1β, IL-1RL1, IL-1R1, NLRP3 ↑ | ||
Case-control study | Total subjects = 97 UK adults (average 37 yrs) | Asthmatic smokers = eosinophils, ECP, neutrophils, IL-8 ↑ | [51] |
Asthmatic smokers/nonsmokers = 31/36; Nonasthmatic smokers/nonsmokers = 15/15 | Asthmatic nonsmokers = eosinophils, ECP ↑ | ||
Case-control study | Total subjects = 152 UK adults (18–75 yrs) | Asthmatic smokers = Periostin ↓ | [52] |
Asthmatic smokers/nonsmokers = 56/51; Healthy smokers/nonsmokers = 20/25 | Asthmatic nonsmokers = Periostin ↑ | ||
Case-control study | Total subjects = 89 Turkish adults (25–65 yrs) | Asthmatic nonsmokers = Periostin, TNFα, IL-4, IL-5, YKL-40 ↑, IL-37 ↓ | [53] |
Asthmatic nonsmokers/healthy controls = 59/30 | |||
Case-control study | Total subjects = 79 Greek adults (average 46 yrs) | Asthmatic smokers = eosinophils, neutrophils ↑, IL-18 ↓ | [54] |
Asthmatic smokers/nonsmokers = 24/22; Healthy smokers/nonsmokers = 16/17 | Asthmatic nonsmokers = eosinophils, neutrophils, IL-18 ↑ | ||
Case-control study | Total subjects = 115 Korean adults (average 55 yrs) | Asthmatic smokers = ILC3, eosinophils, neutrophils ↑ | [55] |
Asthmatic smokers/nonsmokers = 58/33; Healthy smokers/nonsmokers = 11/13 | |||
Case-control study | Total subjects = 168 Chinese adults (average 36 yrs) | Eosinophilic asthmatic nonsmokers = ILC2, IgE, eosinophils, FeNO ↑ | [56] |
Eosinophilic asthmatic/non asthmatic nonsmokers = 62/64; Healthy controls = 42 | |||
Case-control study | Total subjects = 85 Japanese adults (20–60 yrs) | Asthmatic nonsmokers = hs-CRP, eosinophils, neutrophils ↑ | [57] |
Asthmatic nonsmokers/healthy controls = 45/40 | |||
Case-control study | Total subjects = 98 Iranian adults (average 35 yrs) | Asthmatic nonsmokers = hs-CRP, eosinophils ↑ | [58] |
Asthmatic nonsmokers receiving/not receiving inhaled fluticasone (500 µg/day) = 31/30; Healthy controls = 37 | |||
Case-control study | Total subjects = 525 European adults (36–55 yrs) | Asthmatic smokers and nonsmokers = hs-CRP, eosinophils, neutrophils, IgE ↑ | [59] |
Smokers or ex-smokers with severe asthma = 95; Nonsmokers with severe asthma = 263; Nonsmokers with mild-moderate asthma = 76; healthy nonsmoker = 91 | |||
Case-control study | Total subjects = 88 European adults (39–50 yrs) | Asthmatic ex-smokers = MMP-12, CXCL8, neutrophil elastase, AZU-1, PPBP ↑ | [60] |
Asthmatic current smokers = 11; Asthmatic ex-smokers = 22; Asthmatic nonsmoker s = 37; Healthy nonsmoker = 18 | Asthmatic nonsmokers = eosinophil ↑ | ||
Cross-sectional study | Total subjects = 324 European adults with severe asthma (average 52.5 yrs) | Asthmatic current smokers = FeNo ↓, NOS2, NOx2 ↑ | [61] |
Current smokers = 42; Ex-smokers = 112; Nonsmokers = 260 | Asthmatic ex-smokers = FeNo, NOX2 ↑ | ||
Asthmatic nonsmokers = FeNo ↑ | |||
Cross-sectional study | Total subjects = 740 UK patients with severe asthma (6–43 yrs) | Asthmatic current smokers = FeNO, blood eosinophils, sputum eosinophils | [62] |
Current smokers = 69; Ex-smokers = 210; Nonsmokers = 461 | sputum neutrophils, IgE ↓ | ||
Asthmatic ex-smokers = FeNO, sputum neutrophils, blood eosinophils ↑, IgE ↓ | |||
Asthmatic nonsmokers = FeNO, IgE, sputum neutrophils, sputum eosinophils, blood eosinophils ↑ | |||
Cross-sectional study | Total subjects = 1578 French patients with asthma (40–64 yrs) | Asthmatic current and ex- smokers = FeNO ↓, blood eosinophils ↑ | [63] |
Current smokers = 294; Ex-smokers = 473; Nonsmokers = 812 | Asthmatic nonsmokers = FeNO ↑, blood eosinophils ↓ | ||
Cross-sectional study | Total subjects = 274 Greek patients with asthma (average 50 yrs) | Asthmatic smokers and nonsmokers = FeNO ↑ | [64] |
Inhaled corticosteroid (ICS)-treated smokers = 50; ICS-untreated smokers = 32; ICS-treated nonsmokers = 144; ICS-untreated nonsmokers = 48 | |||
Cross-sectional study | Total subjects = 478 Chinese patients with asthma (average 45 yrs) | Asthmatic nonsmokers = IgE ↑ | [65] |
Obstructive group (current smokers = 70; ex-smokers = 44; nonsmokers = 271), Normal group (current smokers = 9; ex-smokers = 6; nonsmokers = 78) | |||
Prospective cohort study | Total subjects = 4257 European and Australian adults (average 54 yrs) | Asthmatic nonsmokers = FeNO ↑ | [66] |
Current asthma (smokers = 97; nonsmokers = 554) | |||
Non-asthma (smokers = 651; nonsmokers = 2955) | |||
Prospective cohort study | Total subjects = 45 Italian adults with severe asthma (average 60 yrs) | Asthmatic nonsmokers = FeNO, periostin, eosinophil, TGF-β1 ↑ | [67] |
Nonsmokers = 42; ex-smokers = 3 |
Study Design | Antioxidant Vitamins/Minerals | Concentration/Supplement Intake | OS Biomarkers | Inflammation Biomarkers | Ref. |
---|---|---|---|---|---|
In vitro | VA (RARγ, ATRA) | 1–1000 μM | - | MMPs (MMP8, MMP9) ↓ | [69] |
In vitro | VA (ATRA, 9-cis RA) | 1 mM in the presence of 0.2 mg/mL neutralizing anti-TGF-β1 | - | MMP9 ↓ | [70] |
In vitro | VA (RA) | 5, 15, 50 μM | - | TNFα, IL-6 ↓ | [72] |
In vivo | VA (ATRA) | 400 μg/mL | - | IL-4, IL-5, IL-17A, neutrophils, eosinophils ↓ | [73] |
In vitro | VA (ATRA, 9-cis RA) | 10−6–10−10 M | - | IL-4, eotaxin ↓ | [74] |
In vivo | Lycopene | 0.16 mg (equivalent to 8 mg/kg per day) plus 0.05 mg VE and 0.006 mg β-carotene | - | IL-4, IL-5, eosinophils ↓ | [81] |
In vitro | Lycopene | 3, 5 10 μM | GSH ↑, ROS, H2O2 ↓ | - | [82] |
In vivo/vivo | BCX | 1–4 μM (in vitro) 30−43 nmol BCX/g liver (in vivo) | - | Neutrophils, TNFα, IL-6, MMPs (MMP2, MMP9) ↓ | [83] |
RCT | VC | 1500 mg/day for 2 weeks, or a placebo | - | FeNO ↓ | [86] |
In vivo | VC | 130 mg VC/kg bw/day | - | Eosinophils ↓ | [87] |
Non-randomized trial in vivo | VE | 1500 IU/day for 16 weeks | - | IL-3, IL-4 ↓ | [89] |
ex-vivo | VE | 1200 mg/day for 8 days | - | TNFα, IL-1β, IL-6 ↓ | [90] |
RDBPC | VE | 1200 mg/day for 14 days, or a placebo | - | Eosinophils, neutrophils ↓ | [92] |
In vivo | VE | 50 mg VE/kg bw/day | H2O2, ROS ↓, GSH, SOD ↑ | IL-5, IL-13, eosinophils, neutrophils ↓, | [94] |
In vivo | VE | 0.2 and 2.0 mg VE/kg bw/day | ROS ↓, GSH ↑ | IL-4, IgE ↓ | [95] |
In vivo | VE | 5, 10, 15, and 20 IU VE/kg bw/day | NO2−, peroxynitrite ↓ | IL-4, IL-5, IL-13, eotaxin, IgE, TGF-β1 ↓ | [96] |
In vivo | VE | 0.2 or 2 mg VE/kg bw/day | - | IL-5, IL-12, IL-13 ↓ | [97] |
In vitro | VD | 100 μM | - | IL-6, CXCL8 ↓ | [99] |
RCT | VD | 0.25 μg/day calcitriol for 6 months, or a placebo | - | IL-5, IL-9, IL-13, IgE, eosinophils ↓, IL-10 ↑ | [100] |
In vivo | VD | 50 μg/kg VD/kg bw/day | NO2− ↓ | IL-4 ↓ | [101] |
In vivo | VD | 100, 500, or 1000 IU VD/kg bw/day | - | IL-6, IL-17 ↓ | [102] |
In vivo | VD | 10,000 IU VD/kg bw/day | - | IgE ↓ | [103] |
In vivo | VD | 2280 IU VD/kg bw/day | - | IL-5, IL-13, eosinophils, neutrophils ↓ | [104] |
In vivo | VD | 1 mg VD/kg bw/day | - | IgE ↓, IL-10 ↑ | [105] |
In vivo | VD | 10,000 IU VD/kg bw/day | - | IL-6, IL-17, TNFα, eosinophils ↓, IL-10 ↑ | [106] |
In vivo | VD | 1 μg/mL/20 g VD/kg bw/day | - | IL-6, IL-1β, TNFα, ↓, IL-10 ↑ | [107] |
In vitro | Fe | 3.3 M plus ferroptosis inhibitor Fer-1 (0.1 μM) | MDA, ROS ↑, GSH ↓ | IL-6 ↑ | [110] |
In vitro | Zn | 2 μM | - | TNFα, eotaxin ↓ | [120] |
In vivo | Zn | 0, 54, or 100 μg Zn/kg bw/day | - | Eosinophils ↓ | [121] |
In vivo | Zn | 95 mg Zn/kg bw/day | - | Eosinophils, neutrophils, eotaxin ↓ | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharairi, N.A. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review. Curr. Issues Mol. Biol. 2023, 45, 5099-5117. https://doi.org/10.3390/cimb45060324
Alsharairi NA. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review. Current Issues in Molecular Biology. 2023; 45(6):5099-5117. https://doi.org/10.3390/cimb45060324
Chicago/Turabian StyleAlsharairi, Naser A. 2023. "Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review" Current Issues in Molecular Biology 45, no. 6: 5099-5117. https://doi.org/10.3390/cimb45060324
APA StyleAlsharairi, N. A. (2023). Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review. Current Issues in Molecular Biology, 45(6), 5099-5117. https://doi.org/10.3390/cimb45060324