Ex Vivo Chromosomal Radiosensitivity Testing in Patients with Pathological Germline Variants in Breast Cancer High-Susceptibility Genes BReast CAncer 1 and BReast CAncer 2
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Recruitment
2.2. Chromosome Preparation and the Three-Color Fluorescence In Situ Hybridisation
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Chromosomal Radiosensitivity Testing
3.3. B/M Values in Patient Cohorts
3.4. Radiation Sensitivity among the Non-Oncologic and Oncologic BRCA1/2-Mutated Individuals
3.5. Radiation Sensitivity with Location or Type of BRCA1/2 Mutations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
AWMF | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. |
B/M | Breaks per metaphase |
BRCA1/2 | BReast CAncer 1/2 |
DAPI | 4′,6-diamidin-2-phenylindol |
FiSH | Fluorescence in situ hybridization |
HR | Homologous recombination |
IR | Ionizing radiation; |
NHEJ | Non homologous end joining |
PARP | poly-ADP-ribose polymerase |
RPMI | Roswell Park Memorial Institute Medium |
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Miller, D.; Krapcho, M.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2017; Based on November 2019 SEER Data Submission, Posted to the SEER Web Site; National Cancer Institute: Bethesda, MD, USA, 2020. Available online: https://seer.cancer.gov/csr/1975_2017 (accessed on 11 February 2023).
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef]
- Brewer, H.R.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Res. Treat. 2017, 165, 193–200. [Google Scholar] [CrossRef]
- Dorling, L.; Carvalho, S.; Allen, J.; Gonzalez-Neira, A.; Luccarini, C.; Wahlstrom, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; Wang, Q.; et al. Breast Cancer Risk Genes-Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Parmigiani, G. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 2007, 25, 1329–1333. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef]
- Li, S.; Silvestri, V.; Leslie, G.; Rebbeck, T.R.; Neuhausen, S.L.; Hopper, J.L.; Nielsen, H.R.; Lee, A.; Yang, X.; McGuffog, L.; et al. Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants. J. Clin. Oncol. 2022, 40, 1529–1541. [Google Scholar] [CrossRef]
- El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.; Combemale, P.; et al. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int. J. Mol. Sci. 2021, 22, 7158. [Google Scholar] [CrossRef]
- Yoshida, K.; Miki, Y. Role of BRCA1/2 and BRCA1/2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004, 95, 866–871. [Google Scholar] [CrossRef]
- Gorodetska, I.; Kozeretska, I.; Dubrovska, A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J. Cancer 2019, 10, 2109–2127. [Google Scholar] [CrossRef]
- Wöckel, A.; Festl, J.; Stüber, T.; Brust, K.; Stangl, S.; Heuschmann, P.U.; Albert, U.S.; Budach, W.; Follmann, M.; Janni, W.; et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017)-Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd. 2018, 78, 927–948. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, A.; Koch, T.; Lenhart, M.; Rieckmann, P.; Fietkau, R.; Distel, L.; Schuster, B. Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity: Case report and literature review. Strahlenther. Onkol. 2018, 194, 60–66. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, T.; Zhou, X.; Cao, P.; Luo, C.; Zhou, L.; Xu, Y.; Liu, Y.; Xue, J.; Wang, J.; et al. Acute severe radiation pneumonitis among non-small cell lung cancer (NSCLC) patients with moderate pulmonary dysfunction receiving definitive concurrent chemoradiotherapy: Impact of pre-treatment pulmonary function parameters. Strahlenther. Onkol. 2020, 196, 505–514. [Google Scholar] [CrossRef]
- Klement, R.J.; Schäfer, G.; Sweeney, R.A. A fatal case of Fournier’s gangrene during neoadjuvant radiotherapy for rectal cancer. Strahlenther. Onkol. 2019, 195, 441–446. [Google Scholar] [CrossRef]
- Scheckenbach, K.; Wagenmann, M.; Freund, M.; Schipper, J.; Hanenberg, H. Squamous cell carcinomas of the head and neck in Fanconi anemia: Risk, prevention, therapy, and the need for guidelines. Klin. Padiatr. 2012, 224, 132–138. [Google Scholar] [CrossRef]
- Taylor, A.M.; Harnden, D.G.; Arlett, C.F.; Harcourt, S.A.; Lehmann, A.R.; Stevens, S.; Bridges, B.A. Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity. Nature 1975, 258, 427–429. [Google Scholar] [CrossRef]
- Hoeller, U.; Borgmann, K.; Bonacker, M.; Kuhlmey, A.; Bajrovic, A.; Jung, H.; Alberti, W.; Dikomey, E. Individual radiosensitivity measured with lymphocytes may be used to predict the risk of fibrosis after radiotherapy for breast cancer. Radiother. Oncol. 2003, 69, 137–144. [Google Scholar] [CrossRef]
- Auer, J.; Keller, U.; Schmidt, M.; Ott, O.; Fietkau, R.; Distel, L.V. Individual radiosensitivity in a breast cancer collective is changed with the patients’ age. Radiol. Oncol. 2014, 48, 80–86. [Google Scholar] [CrossRef]
- Schuster, B.; Ellmann, A.; Mayo, T.; Auer, J.; Haas, M.; Hecht, M.; Fietkau, R.; Distel, L.V. Rate of individuals with clearly increased radiosensitivity rise with age both in healthy individuals and in cancer patients. BMC Geriatr. 2018, 18, 105. [Google Scholar] [CrossRef]
- Schuster, B.; Hecht, M.; Schmidt, M.; Haderlein, M.; Jost, T.; Buttner-Herold, M.; Weber, K.; Denz, A.; Grutzmann, R.; Hartmann, A.; et al. Influence of Gender on Radiosensitivity during Radiochemotherapy of Advanced Rectal Cancer. Cancers 2021, 14, 148. [Google Scholar] [CrossRef]
- Stritzelberger, J.; Lainer, J.; Gollwitzer, S.; Graf, W.; Jost, T.; Lang, J.D.; Mueller, T.M.; Schwab, S.; Fietkau, R.; Hamer, H.M.; et al. Ex vivo radiosensitivity is increased in non-cancer patients taking valproate. BMC Neurol. 2020, 20, 390. [Google Scholar] [CrossRef]
- Dunst, J.; Gebhart, E.; Neubauer, S. Can an extremely elevated radiosensitivity in patients be recognized by the in-vitro testing of lymphocytes? Strahlenther. Onkol. 1995, 171, 581–586. [Google Scholar]
- Neubauer, S.; Dunst, J.; Gebhart, E. The impact of complex chromosomal rearrangements on the detection of radiosensitivity in cancer patients. Radiother. Oncol. 1997, 43, 189–195. [Google Scholar]
- Keller, U.; Kuechler, A.; Liehr, T.; Muller, E.; Grabenbauer, G.; Sauer, R.; Distel, L. Impact of Various Parameters in Detecting Chromosomal Aberrations by FISH to Describe Radiosensitivity. Strahlenther. Onkol. 2004, 180, 289–296. [Google Scholar]
- Stritzelberger, J.; Distel, L.; Buslei, R.; Fietkau, R.; Putz, F. Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine. Clin. Transl. Oncol. 2018, 20, 508–516. [Google Scholar] [CrossRef]
- Savage, J.R.; Simpson, P. On the scoring of FISH-"painted" chromosome-type exchange aberrations. Mutat. Res. 1994, 307, 345–353. [Google Scholar] [CrossRef]
- Hecht, M.; Zimmer, L.; Loquai, C.; Weishaupt, C.; Gutzmer, R.; Schuster, B.; Gleisner, S.; Schulze, B.; Goldinger, S.M.; Berking, C.; et al. Radiosensitization by BRAF inhibitor therapy-mechanism and frequency of toxicity in melanoma patients. Ann. Oncol. 2015, 26, 1238–1244. [Google Scholar] [CrossRef]
- Weigert, V.; Jost, T.; Hecht, M.; Knippertz, I.; Heinzerling, L.; Fietkau, R.; Distel, L.V. PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts. BMC Cancer 2020, 20, 775. [Google Scholar] [CrossRef]
- Dobler, C.; Jost, T.; Hecht, M.; Fietkau, R.; Distel, L. Senescence Induction by Combined Ionizing Radiation and DNA Damage Response Inhibitors in Head and Neck Squamous Cell Carcinoma Cells. Cells 2020, 9, 2012. [Google Scholar] [CrossRef]
- Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer 2000, 83, 1301–1308. [Google Scholar] [CrossRef]
- Whittemore, A.S.; Gong, G.; John, E.M.; McGuire, V.; Li, F.P.; Ostrow, K.L.; Dicioccio, R.; Felberg, A.; West, D.W. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol. Biomark. Prev. 2004, 13, 2078–2083. [Google Scholar] [CrossRef]
- Armstrong, N.; Ryder, S.; Forbes, C.; Ross, J.; Quek, R.G. A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin. Epidemiol. 2019, 11, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Rebuzzi, F.; Ulivi, P.; Tedaldi, G. Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int. J. Mol. Sci. 2023, 24, 2137. [Google Scholar] [CrossRef]
- Sadeghi, F.; Asgari, M.; Matloubi, M.; Ranjbar, M.; Karkhaneh Yousefi, N.; Azari, T.; Zaki-Dizaji, M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: Review of radiosensitivity assays. Biol. Proced. Online 2020, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Baert, A.; Depuydt, J.; Van Maerken, T.; Poppe, B.; Malfait, F.; Storm, K.; van den Ende, J.; Van Damme, T.; De Nobele, S.; Perletti, G.; et al. Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation. Breast Cancer Res. 2016, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Ernestos, B.; Nikolaos, P.; Koulis, G.; Eleni, R.; Konstantinos, B.; Alexandra, G.; Michael, K. Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1199–1205. [Google Scholar] [CrossRef]
- Baeyens, A.; Thierens, H.; Claes, K.; Poppe, B.; Messiaen, L.; De Ridder, L.; Vral, A. Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition. Br. J. Cancer 2002, 87, 1379–1385. [Google Scholar]
- Kim, K.H.; Kim, H.S.; Kim, S.S.; Shim, H.S.; Yang, A.J.; Lee, J.J.B.; Yoon, H.I.; Ahn, J.B.; Chang, J.S. Increased Radiosensitivity of Solid Tumors Harboring ATM and BRCA1/2 Mutations. Cancer Res. Treat. 2022, 54, 54–64. [Google Scholar] [CrossRef]
- Barnett, G.C.; Coles, C.E.; Elliott, R.M.; Baynes, C.; Luccarini, C.; Conroy, D.; Wilkinson, J.S.; Tyrer, J.; Misra, V.; Platte, R.; et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: A prospective analysis study. Lancet Oncol. 2012, 13, 65–77. [Google Scholar] [CrossRef]
- Barnett, G.C.; Thompson, D.; Fachal, L.; Kerns, S.; Talbot, C.; Elliott, R.M.; Dorling, L.; Coles, C.E.; Dearnaley, D.P.; Rosenstein, B.S.; et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother. Oncol. 2014, 111, 178–185. [Google Scholar] [CrossRef]
- Beaton, L.A.; Marro, L.; Samiee, S.; Malone, S.; Grimes, S.; Malone, K.; Wilkins, R.C. Investigating chromosome damage using fluorescent in situ hybridization to identify biomarkers of radiosensitivity in prostate cancer patients. Int. J. Radiat. Biol. 2013, 89, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Dunst, J.; Neubauer, S.; Becker, A.; Gebhart, E. Chromosomal in-vitro radiosensitivity of lymphocytes in radiotherapy patients and AT-homozygotes. Strahlenther. Onkol. 1998, 174, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Mayo, T.; Haderlein, M.; Schuster, B.; Wiesmüller, A.; Hummel, C.; Bachl, M.; Schmidt, M.; Fietkau, R.; Distel, L. Is in vivo and ex vivo irradiation equally reliable for individual Radiosensitivity testing by three colour fluorescence in situ hybridization? Radiat. Oncol. 2019, 15, 2. [Google Scholar] [CrossRef]
- Borgmann, K.; Hoeller, U.; Nowack, S.; Bernhard, M.; Roper, B.; Brackrock, S.; Petersen, C.; Szymczak, S.; Ziegler, A.; Feyer, P.; et al. Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 256–264. [Google Scholar]
- Liu, L.; Yang, Y.; Guo, Q.; Ren, B.; Peng, Q.; Zou, L.; Zhu, Y.; Tian, Y. Comparing hypofractionated to conventional fractionated radiotherapy in postmastectomy breast cancer: A meta-analysis and systematic review. Radiat. Oncol. 2020, 15, 17. [Google Scholar] [CrossRef]
- Hauth, F.; De-Colle, C.; Weidner, N.; Heinrich, V.; Zips, D.; Gani, C. Quality of life and fatigue before and after radiotherapy in breast cancer patients. Strahlenther. Onkol. 2021, 197, 281–287. [Google Scholar] [CrossRef]
- Bolognesi, C.; Abbondandolo, A.; Barale, R.; Casalone, R.; Dalpra, L.; De Ferrari, M.; Degrassi, F.; Forni, A.; Lamberti, L.; Lando, C.; et al. Age-related increase of baseline frequencies of sister chromatid exchanges, chromosome aberrations, and micronuclei in human lymphocytes. Cancer Epidemiol. Biomark. Prev. 1997, 6, 249–256. [Google Scholar]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Gora, A.; Rudzki, S. Title: Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control. J. Moffitt Cancer Cent. 2022, 29, 10732748211056692. [Google Scholar] [CrossRef]
- Keller, U.; Grabenbauer, G.; Kuechler, A.; Sprung, C.; Müller, E.; Sauer, R.; Distel, L. Cytogenetic instability in young patients with multiple primary cancers. Cancer Genet. Cytogenet. 2005, 157, 25–32. [Google Scholar] [CrossRef]
- Lazzari, G.; Buono, G.; Zannino, B.; Silvano, G. Breast Cancer Adjuvant Radiotherapy in BRCA1/2, TP53, ATM Genes Mutations: Are There Solved Issues? Breast Cancer (Dove Med. Press) 2021, 13, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Huszno, J.; Budryk, M.; Kolosza, Z.; Nowara, E. The risk factors of toxicity during chemotherapy and radiotherapy in breast cancer patients according to the presence of BRCA gene mutation. Contemp. Oncol. (Pozn.) 2015, 19, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Choi, D.H.; Noh, J.M.; Huh, S.J.; Park, W.; Nam, S.J.; Lee, J.E. Acute skin toxicity in Korean breast cancer patients carrying BRCA mutations. Int. J. Radiat. Biol. 2014, 90, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Pierce, L.J.; Levin, A.M.; Rebbeck, T.R.; Ben-David, M.A.; Friedman, E.; Solin, L.J.; Harris, E.E.; Gaffney, D.K.; Haffty, B.G.; Dawson, L.A.; et al. Ten-year multi-institutional results of breast-conserving surgery and radiotherapy in BRCA1/2-associated stage I/II breast cancer. J. Clin. Oncol. 2006, 24, 2437–2443. [Google Scholar] [CrossRef]
- Shanley, S.; McReynolds, K.; Ardern-Jones, A.; Ahern, R.; Fernando, I.; Yarnold, J.; Evans, G.; Eccles, D.; Hodgson, S.; Ashley, S.; et al. Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin. Cancer Res. 2006, 12, 7025–7032. [Google Scholar] [CrossRef]
- Elalaoui, S.C.; Laarabi, F.Z.; Afif, L.; Lyahyai, J.; Ratbi, I.; Jaouad, I.C.; Doubaj, Y.; Sahli, M.; Ouhenach, M.; Sefiani, A. Mutational spectrum of BRCA1/2 genes in Moroccan patients with hereditary breast and/or ovarian cancer, and review of BRCA mutations in the MENA region. Breast Cancer Res. Treat. 2022, 194, 187–198. [Google Scholar] [CrossRef]
- Febrer, E.; Mestres, M.; Caballín, M.R.; Barrios, L.; Ribas, M.; Gutiérrez-Enríquez, S.; Alonso, C.; Ramón y Cajal, T.; Francesc Barquinero, J. Mitotic delay in lymphocytes from BRCA1 heterozygotes unable to reduce the radiation-induced chromosomal damage. DNA Repair. (Amst.) 2008, 7, 1907–1911. [Google Scholar] [CrossRef]
- Wang, K.; Tepper, J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin. 2021, 71, 437–454. [Google Scholar] [CrossRef]
- Ott, O.J.; Stillkrieg, W.; Lambrecht, U.; Sauer, T.O.; Schweizer, C.; Lamrani, A.; Strnad, V.; Hack, C.C.; Beckmann, M.W.; Uder, M.; et al. External Beam Accelerated Partial Breast Irradiation in Early Breast Cancer and the Risk for Radiogenic Pneumonitis. Cancers 2022, 14, 3520. [Google Scholar] [CrossRef]
- De Rubeis, S.; Siper, P.M.; Durkin, A.; Weissman, J.; Muratet, F.; Halpern, D.; Trelles, M.D.P.; Frank, Y.; Lozano, R.; Wang, A.T.; et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol. Autism 2018, 9, 31. [Google Scholar] [CrossRef]
- Byers, H.M.; Adam, M.P.; LaCroix, A.; Leary, S.E.; Cole, B.; Dobyns, W.B.; Mefford, H.C. Description of a new oncogenic mechanism for atypical teratoid rhabdoid tumors in patients with ring chromosome 22. Am. J. Med. Genet. A 2017, 173, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Ebadi, M.; Vo, K.; Novak, J.; Govindarajan, A.; Amini, A. An Updated Review on Head and Neck Cancer Treatment with Radiation Therapy. Cancers 2021, 13, 4912. [Google Scholar] [CrossRef] [PubMed]
- Mangesius, J.; Minasch, D.; Fink, K.; Nevinny-Stickel, M.; Lukas, P.; Ganswindt, U.; Seppi, T. Systematic risk analysis of radiation pneumonitis in breast cancer: Role of cotreatment with chemo-, endocrine, and targeted therapy. Strahlenther. Onkol. 2022, 199, 67–77. [Google Scholar] [CrossRef] [PubMed]
BRCA1/2 n = 64 (%) | BRCA1 n = 37 (%) | BRCA2 n = 27 (%) | |||
---|---|---|---|---|---|
Mean age (range, years) | 45.7 (25–70) | 45.1 (26–68) | 46.6 (25–70) | ||
Mean height (m) | 1.65 | 1.66 | 1.65 | ||
Mean weight (kg) | 70.7 | 71.9 | 69.3 | ||
Mean BMI (kg/m2) | 25.7 | 26.0 | 25.3 | ||
Premenopausal | 32 (50.0) | 19 (51.4) | 13 (48.1) | ||
Postmenopausal | 30 (46.9) | 16 (43.2) | 14 (40.7) | ||
Not known | 2 (3.1) | 2 (5.4) | 0 | ||
No breast cancer | 21 (32.8) | 9 (24.3) | 12 (44.4) | ||
Breast cancer | 38 (59.4) | 26 (70.3) | 12 (44.4) | ||
Breast cancer status not known | 5 (7.8) | 2 (5.4) | 3 (11.1) | ||
Tumor stage | Tis | 2 (3.1) | 2 (7.7) | 0 | |
T1 | 19 (29.7) | 9 (34.6) | 10 (83.3) | ||
T2 | 12 (18.8) | 10 (38.5) | 2 (16.7) | ||
T3 | 2 (3.1) | 2 (7.7) | 0 | ||
T4 | 0 | 0 | 0 | ||
Not known | 3 (4.7) | 3 (11.5) | 0 | ||
Regional lymph nodes | N0 | 26 (40.6) | 16 (61.5) | 10 (83.3) | |
N+ | 9 (14.1) | 7 (27) | 2 (16.7) | ||
Not known | 3 (4.7) | 3 (11.5) | 0 | ||
Distant metastasis | M0 | 33 (51.6) | 21 (80.8) | 12 (100) | |
M1 | 0 | 0 | 0 | ||
Mx | 5 (7.8) | 5 (19.2) | 0 | ||
Receptors | ER or PR positive | 10 (15.6) | 8 (30.8) | 2 (16.7) | |
Triple negative | 19 (29.7) | 11 (42.3) | 8 (66.7) | ||
HER2/neu positive | 7 (10.9) | 5 (19.2) | 2 (16.7) | ||
Not known | 2 (3.1) | 2 (7.7) | 0 | ||
Grading | G1 | 1 (1.6) | 1 (3.8) | 0 | |
G2 | 6 (9.4) | 4 (15.4) | 2 (16.7) | ||
G3 | 27 (42.2) | 17 (65.4) | 10 (83.3) | ||
Not known | 4 (6.3) | 4 (15.4) | 0 | ||
Mean B/M values | 0.47 | 0.46 | 0.48 |
Healthy | Rectal Cancer | Breast | ||||||
---|---|---|---|---|---|---|---|---|
Threshold | BRCA1 | BRCA2 | Male | Female | Male | Female | Cancer | |
Background (%) | ≥0.05 | 27.8 | 8.7 | 6.7 | 9.9 | 36.7 | 25.2 | 30.6 |
Radiation sensitives (%) | ≥0.5 | 30.6 | 30.4 | 18.9 | 14.9 | 23.9 | 27.3 | 29.9 |
≥0.55 | 19.4 | 30.4 | 8.9 | 5.8 | 17.6 | 15.2 | 12.9 | |
≥0.6 | 2.8 | 8.7 | 3.3 | 1.7 | 11.9 | 10.6. | 11.6 |
Mean B/M Value (2 Gy) | p-Value | 95% Confidence Interval | |
---|---|---|---|
Patients with a BRCA1/2 mutation (n = 64) | 0.468 | --- | 0.445 to 0.491 |
Healthy individuals (n = 215) | 0.411 | <0.001 | 0.399 to 0.423 |
Patients with rectal cancer (n = 385) | 0.439 | 0.039 | 0.420 to 0.459 |
Patients with breast cancer (n = 147) | 0.447 | 0.235 | 0.426 to 0.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuhair Kassem, T.; Wunderle, M.; Kuhlmann, L.; Ruebner, M.; Huebner, H.; Hoyer, J.; Reis, A.; Fasching, P.A.; Beckmann, M.W.; Hack, C.C.; et al. Ex Vivo Chromosomal Radiosensitivity Testing in Patients with Pathological Germline Variants in Breast Cancer High-Susceptibility Genes BReast CAncer 1 and BReast CAncer 2. Curr. Issues Mol. Biol. 2023, 45, 6618-6633. https://doi.org/10.3390/cimb45080418
Zuhair Kassem T, Wunderle M, Kuhlmann L, Ruebner M, Huebner H, Hoyer J, Reis A, Fasching PA, Beckmann MW, Hack CC, et al. Ex Vivo Chromosomal Radiosensitivity Testing in Patients with Pathological Germline Variants in Breast Cancer High-Susceptibility Genes BReast CAncer 1 and BReast CAncer 2. Current Issues in Molecular Biology. 2023; 45(8):6618-6633. https://doi.org/10.3390/cimb45080418
Chicago/Turabian StyleZuhair Kassem, Tara, Marius Wunderle, Lukas Kuhlmann, Matthias Ruebner, Hanna Huebner, Juliane Hoyer, André Reis, Peter A. Fasching, Matthias W. Beckmann, Carolin C. Hack, and et al. 2023. "Ex Vivo Chromosomal Radiosensitivity Testing in Patients with Pathological Germline Variants in Breast Cancer High-Susceptibility Genes BReast CAncer 1 and BReast CAncer 2" Current Issues in Molecular Biology 45, no. 8: 6618-6633. https://doi.org/10.3390/cimb45080418
APA StyleZuhair Kassem, T., Wunderle, M., Kuhlmann, L., Ruebner, M., Huebner, H., Hoyer, J., Reis, A., Fasching, P. A., Beckmann, M. W., Hack, C. C., Fietkau, R., & Distel, L. (2023). Ex Vivo Chromosomal Radiosensitivity Testing in Patients with Pathological Germline Variants in Breast Cancer High-Susceptibility Genes BReast CAncer 1 and BReast CAncer 2. Current Issues in Molecular Biology, 45(8), 6618-6633. https://doi.org/10.3390/cimb45080418