The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review
Abstract
:1. Introduction
2. Artemisia sp.: Source of a Powerful “Prodrug”
3. Chemical Nature, Phytochemistry and Extraction of Artemisinin
Large-Scale Extraction of Artemisinin
4. Artemisinin: Its Antiviral Prospective
5. Artemisinin: Its Antimalarial Prospective
6. The Rise of Specific Artemisinin Resistance in Malaria, Particularly in Southeast Asia
7. Mode of Action of Artemisinin
8. Novel Perspectives of Artemisinin Hybrid Compounds and Their Biological Activity
9. Clinical Trials and Patents
10. Conclusions and Future Prospectives
Author Contributions
Funding
Conflicts of Interest
References
- Karamoddini, M.K.; Emami, S.A.; Ghannad, M.S.; Sani, E.A.; Sahebkar, A. Antiviral activities of aerial subsets of Artemisia species against Herpes Simplex virus type 1 (HSV1) in vitro. Asian Biomed. 2011, 5, 63–68. [Google Scholar] [CrossRef]
- Kshirsagar, S.G.; Rao, R.V. Antiviral and immunomodulation effects of Artemisia. Medicina 2021, 57, 217. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.V.; Descamps, O.; John, V.; Bredesen, D.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res. Ther. 2012, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Barkat, M.A.; Goyal, A.; Barkat, H.A.; Salauddin, M.; Pottoo, F.H.; Anwer, E.T. Herbal medicine: Clinical perspective and regulatory status. Comb. Chem. High Throughput Screen. 2021, 24, 1573–1582. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef]
- Du Toit, A.; Van der Kooy, F. Artemisia afra, a controversial herbal remedy or a treasure trove of new drugs? J. Ethnopharmacol. 2019, 244, 112127. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, K.; Tajeri, S.; Arnold, C.-S.; Amanzougaghene, N.; Franetich, J.-F.; Vantaux, A.; Soulard, V.; Bordessoulles, M.; Cazals, G.; Bousema, T. Artemisinin-independent inhibitory activity of Artemisia sp. infusions against different Plasmodium stages including relapse-causing hypnozoites. Life Sci. Alliance 2022, 5, e202101237. [Google Scholar] [CrossRef]
- World Health Organization. WHO Technical Document of the Use of Non-Pharmaceutical Forms of Artemisia; WHO: Geneva, Switzerland, 2019; p. 23.
- Anibogwu, R.; Jesus, K.D.; Pradhan, S.; Pashikanti, S.; Mateen, S.; Sharma, K. Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: A review. Molecules 2021, 26, 6995. [Google Scholar] [CrossRef]
- Farmanpour-Kalalagh, K.; Beyraghdar Kashkooli, A.; Babaei, A.; Rezaei, A.; Van Der Krol, A.R. Artemisinins in combating viral infections like SARS-CoV-2, inflammation and cancers and options to meet increased global demand. Front. Plant Sci. 2022, 13, 780257. [Google Scholar] [CrossRef]
- Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; et al. COVID-19: A promising cure for the global panic. Sci. Total Environ. 2020, 725, 138277. [Google Scholar] [CrossRef]
- Mishra, K.; Sharma, N.; Diwaker, D.; Ganju, L.; Singh, S. Plant derived antivirals: A potential source of drug development. J. Virol. Antivir. Res. 2013, 2, 2. [Google Scholar]
- Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci. 2008, 29, 520–527. [Google Scholar] [CrossRef]
- Tu, Y. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2016, 55, 10210–10226. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Wang, H.; Xu, X.; Fan, H. Therapeutical Utilization and Repurposing of Artemisinin and Its Derivatives: A Narrative Review. Adv. Biol. 2023, 7, 2300086. [Google Scholar] [CrossRef]
- Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y.; Zhao, L.; Li, W.; et al. Anti-SARS-CoV-2 Potential of Artemisinins In Vitro. ACS Infect. Dis. 2020, 6, 2524–2531. [Google Scholar] [CrossRef]
- Thevarajan, I.; Buising, K.L.; Cowie, B.C. Clinical presentation and management of COVID-19. Med. J. Aust. 2020, 213, 134–139. [Google Scholar] [CrossRef]
- Lipman, M.; Chambers, R.C.; Singer, M.; Brown, J.S. SARS-CoV-2 Pandemic: Clinical Picture of COVID-19 and Implications for Research. Thorax 2020, 75, 614–616. [Google Scholar] [CrossRef]
- Ritchie, K.; Chan, D.; Watermeyer, T. The cognitive consequences of the COVID-19 epidemic: Collateral damage? Brain Commun. 2020, 2, fcaa069. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. A potential treatment of COVID-19 with TGF-β blockade. Int. J. Biol. Sci. 2020, 16, 1954. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Wong, Y.K.; Li, Y.; Liao, F.; Jiang, T.; Tu, Y. Artemisinin, the Magic Drug Discovered from Traditional Chinese Medicine. Engineering 2019, 5, 32–39. [Google Scholar] [CrossRef]
- Mannan, A.; Ahmed, I.; Arshad, W.; Asim, M.F.; Qureshi, R.A.; Hussain, I.; Mirza, B. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malar. J. 2010, 9, 310. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Liu, G.; Xu, M. New clinical application prospects of artemisinin and its derivatives: A scoping review. Infect. Dis. Poverty 2023, 12, 115. [Google Scholar] [CrossRef]
- O’Neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin—The debate continues. Molecules 2010, 15, 1705–1721. [Google Scholar] [CrossRef]
- Mallhi, T.H.; Butt, M.H.; Ahmad, A.; Misbah, S.; Salman, M.; Khan, A.; Raja, A.A.; Khan, Y.H. Chapter 5—Drug-metabolizing enzymes and fate of prodrugs: From function to regulation. In Biochemistry of Drug Metabolizing Enzymes; Hamid Akash, M.S., Rehman, K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 125–139. [Google Scholar] [CrossRef]
- Laleve, A.; Panozzo, C.; Kühl, I.; Bourand-Plantefol, A.; Ostojic, J.; Sissoko, A.; Tribouillard-Tanvier, D.; Cornu, D.; Burg, A.; Meunier, B. Artemisinin and its derivatives target mitochondrial c-type cytochromes in yeast and human cells. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118661. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.J.; Laing, L.; Gibhard, L.; Wong, H.N.; Haynes, R.K.; Wiesner, L. Toward new transmission-blocking combination therapies: Pharmacokinetics of 10-amino-artemisinins and 11-aza-artemisinin and comparison with dihydroartemisinin and artemether. Antimicrob. Agents Chemother. 2021, 65, e0099021. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, Z.; Liu, H.; Wang, X.; Qu, S.; Yang, Y.; Deng, S.; Zhang, Y.; Tuo, L.; Zhao, Y. Combined transcriptome and proteome profiling for role of pfEMP1 in antimalarial mechanism of action of dihydroartemisinin. Microbiol. Spectr. 2021, 9, e01278–e01321. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, C.; Zhang, Y.; Xiong, W.; Wang, F.; Wang, J.; Zhang, Y.; Deng, L.; Li, X.; Chen, W. In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy. Research 2022, 2022, 0003. [Google Scholar] [CrossRef]
- Albert, A. Chemical aspects of selective toxicity. Nature 1958, 182, 421–423. [Google Scholar] [CrossRef]
- Law, S.K.; Wang, Y.; Lu, X.; Au, D.C.T.; Chow, W.Y.L.; Leung, A.W.N.; Xu, C. Chinese medicinal herbs as potential prodrugs for obesity. Front. Pharmacol. 2022, 13, 1016004. [Google Scholar] [CrossRef]
- Abet, V.; Filace, F.; Recio, J.; Alvarez-Builla, J.; Burgos, C. Prodrug approach: An overview of recent cases. Eur. J. Med. Chem. 2017, 127, 810–827. [Google Scholar] [CrossRef]
- Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018, 17, 559–587. [Google Scholar] [CrossRef]
- Cho, S.; Yoon, Y.-R. Understanding the pharmacokinetics of prodrug and metabolite. Transl. Clin. Pharmacol. 2018, 26, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wermuth, C.G. The Practice of Medicinal Chemistry; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Shah, K.; Gupta, J.K.; Chauhan, N.S.; Upmanyu, N.; Shrivastava, S.K.; Mishra, P. Prodrugs of NSAIDs: A review. Open Med. Chem. J. 2017, 11, 146. [Google Scholar] [CrossRef]
- Gandhi, P.M.; Chabukswar, A.R.; Jagdale, S.C. Carriers for prodrug synthesis: A review. Indian. J. Pharm. Sci. 2019, 81, 406–414. [Google Scholar]
- Nabi, N.; Singh, S.; Saffeullah, P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. Phytochemistry 2023, 214, 113798. [Google Scholar] [CrossRef]
- Fuzimoto, A.D. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. J. Integr. Med. 2021, 19, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Baggieri, M.; Gioacchini, S.; Borgonovo, G.; Catinella, G.; Marchi, A.; Picone, P.; Vasto, S.; Fioravanti, R.; Bucci, P.; Kojouri, M. Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2. Biomed. Pharmacother. 2023, 168, 115682. [Google Scholar] [CrossRef] [PubMed]
- Czechowski, T.; Larson, T.R.; Catania, T.M.; Harvey, D.; Brown, G.D.; Graham, I.A. Detailed phytochemical analysis of high-and low artemisinin-producing chemotypes of Artemisia annua. Front. Plant Sci. 2018, 9, 360089. [Google Scholar] [CrossRef]
- Suresh, J.; Singh, A.; Vasavi, A.; Ihsanullah, M.; Mary, S. Phytochemical and pharmacological properties of Artemisia pallens. Int. J. Pharm. Sci. Res. 2011, 2, 3081. [Google Scholar]
- Ermayanti, T.; Bintang, M.; Mariska, I. Production of antileukemic agent in untrasformed and transformed root culture of Artemisia cina. In Annales Bogorienses; LIPI Press: Jakarta, Indonesia, 2001; Volume 8. [Google Scholar]
- Arab, H.; Rahbari, S.; Rassouli, A.; Moslemi, M.; Khosravirad, F. Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Trop. Anim. Health Prod. 2006, 38, 497–503. [Google Scholar] [CrossRef]
- Ranjbar, M.; Naghavi, M.R.; Alizadeh, H.; Soltanloo, H. Expression of artemisinin biosynthesis genes in eight Artemisia species at three developmental stages. Ind. Crop. Prod. 2015, 76, 836–843. [Google Scholar] [CrossRef]
- Mannan, A.; Ahmed, I.; Arshad, W.; Hussain, I.; Mirza, B. Effects of vegetative and flowering stages on the biosynthesis of artemisinin in Artemisia species. Arch. Pharmacal Res. 2011, 34, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Ahmed-Laloui, H.; Zaak, H.; Rahmani, A.; Kashi, I.; Chemat, S.; Miara, M.D.; Cherb, N.; Derdour, M. Assessment of artemisinin and antioxidant activities of three wild Artemisia species of Algeria. Nat. Product. Res. 2022, 36, 6344–6352. [Google Scholar] [CrossRef]
- Numonov, S.; Sharopov, F.; Salimov, A.; Sukhrobov, P.; Atolikshoeva, S.; Safarzoda, R.; Habasi, M.; Aisa, H.A. Assessment of artemisinin contents in selected Artemisia species from Tajikistan (Central Asia). Medicines 2019, 6, 23. [Google Scholar] [CrossRef]
- Nganthoi, M.; Sanatombi, K. Artemisinin content and DNA profiling of Artemisia species of Manipur. S. Afr. J. Bot. 2019, 125, 9–15. [Google Scholar] [CrossRef]
- Shukla, V.; Pala, Z.; Alok, A.; Desai, N. Screening of different Artemisia spp. from Western Ghats of Maharashtra for an Anti-Malarial compound—Artemisinin. Am. J. Plant Sci. 2015, 6, 1619–1632. [Google Scholar] [CrossRef]
- Singh, P.; Bajpai, V.; Khandelwal, N.; Varshney, S.; Gaikwad, A.N.; Srivastava, M.; Singh, B.; Kumar, B. Determination of bioactive compounds of Artemisia Spp. plant extracts by LC–MS/MS technique and their in-vitro anti-adipogenic activity screening. J. Pharm. Biomed. Anal. 2021, 193, 113707. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, B. Biological actions of artemisinin: Insights from medicinal chemistry studies. Molecules 2010, 15, 1378–1397. [Google Scholar] [CrossRef]
- Karunajeewa, H.A. Artemisinins: Artemisinin, dihydroartemisinin, artemether and artesunate. In Treatment and Prevention of Malaria Antimalarial Drug Chemistry, Action and Use; Springer: Berlin/Heidelberg, Germany, 2012; pp. 157–190. [Google Scholar]
- Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev. 2010, 39, 435–454. [Google Scholar] [CrossRef]
- Jansen, F.H.; Soomro, S.A. Chemical instability determines the biological action of the artemisinins. Curr. Med. Chem. 2007, 14, 3243–3259. [Google Scholar] [CrossRef]
- Chang, Z. The discovery of Qinghaosu (artemisinin) as an effective anti-malaria drug: A unique China story. Sci. China Life Sci. 2016, 59, 81. [Google Scholar] [CrossRef]
- Lin, A.J.; Klayman, D.L.; Hoch, J.M.; Silverton, J.V.; George, C.F. Thermal rearrangement and decomposition products of artemisinin (qinghaosu). J. Org. Chem. 1985, 50, 4504–4508. [Google Scholar] [CrossRef]
- Liu, J.-M.; Ni, M.-Y.; Fan, J.-F.; TU, Y.-Y.; Wu, Z.-H.; Wu, Y.-L.; Zhou, W.-S. Structure and reaction of arteannuin. Acta Chim. Sin. 1979, 37, 129. [Google Scholar]
- ZHOU, W.; WEN, Y. Studies on structure and synthesis of arteannuin and its related compounds. VI. The structures of arteannuin degradation products. Acta Chim. Sin. 1984, 42, 455–459. [Google Scholar]
- Shinyuy, L.M.; Loe, G.E.; Jansen, O.; Mamede, L.; Ledoux, A.; Noukimi, S.F.; Abenwie, S.N.; Ghogomu, S.M.; Souopgui, J.; Robert, A. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review. Metabolites 2023, 13, 613. [Google Scholar] [CrossRef]
- Anshul, N.; Bhakuni, R.S.; Gaur, R.; Singh, D. Isomeric flavonoids of Artemisia annua (Asterales: Asteraceae) as insect growth inhibitors against Helicoverpa armigera (Lepidoptera: Noctuidae). Fla. Entomol. 2013, 96, 897–903. [Google Scholar] [CrossRef]
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary metabolites from Artemisia genus as biopesticides and innovative nano-based application strategies. Molecules 2021, 26, 3061. [Google Scholar] [CrossRef]
- Briars, R.; Paniwnyk, L. Effect of ultrasound on the extraction of artemisinin from Artemisia annua. Ind. Crop. Prod. 2013, 42, 595–600. [Google Scholar] [CrossRef]
- Banožić, M.; Wronska, A.W.; Jakovljević Kovač, M.; Aladić, K.; Jerković, I.; Jokić, S. Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.). Horticulturae 2023, 9, 629. [Google Scholar] [CrossRef]
- Hao, J.-y.; Han, W.; Xue, B.-y.; Deng, X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep. Purif. Technol. 2002, 28, 191–196. [Google Scholar] [CrossRef]
- ElSohly, H.N.; Croom, E.M., Jr.; El-Feraly, F.S.; El-Sherei, M.M. A large-scale extraction technique of artemisinin from Artemisia annua. J. Nat. Prod. 1990, 53, 1560–1564. [Google Scholar] [CrossRef]
- Zhang, Y.; Prawang, P.; Li, C.; Meng, X.; Zhao, Y.; Wang, H.; Zhang, S. Ultrasonic assisted extraction of artemisinin from Artemisia annua, L. using monoether-based solvents. Green Chem. 2018, 20, 713–723. [Google Scholar] [CrossRef]
- Rodrigues, M.F.F.; Sousa, I.M.O.; Vardanega, R.; Nogueira, G.C.; Meireles, M.A.A.; Foglio, M.A.; Marchese, J.A. Techno-economic evaluation of artemisinin extraction from Artemisia annua L. using supercritical carbon dioxide. Ind. Crop. Prod. 2019, 132, 336–343. [Google Scholar] [CrossRef]
- Babacan, Ü.; Cengiz, M.F.; Bouali, M.; Tongur, T.; Mutlu, S.S.; Gülmez, E. Determination, solvent extraction, and purification of artemisinin from Artemisia annua L. J. Appl. Res. Med. Aromat. Plants 2022, 28, 100363. [Google Scholar] [CrossRef]
- Qamar, F.; Ashrafi, K.; Singh, A.; Dash, P.K.; Abdin, M.Z. Artemisinin production strategies for industrial scale: Current progress and future directions. Ind. Crop. Prod. 2024, 218, 118937. [Google Scholar] [CrossRef]
- Hussain, A. A phylogenetic perspective of antiviral species of the genus Artemisia (Asteraceae-Anthemideae): A proposal of anti SARS-CoV-2 (COVID-19) candidate taxa. J. Herb. Med. 2022, 36, 100601. [Google Scholar] [CrossRef]
- Gruessner, B.; Cornet-Vernet, L.; Desrosiers, M.; Lutgen, P.; Towler, M.; Weathers, P. It is not just artemisinin: Artemisia sp. for treating diseases including malaria and schistosomiasis. Phytochem. Rev. 2019, 18, 1509–1527. [Google Scholar] [CrossRef]
- Nair, M.; Huang, Y.; Wang, M.; Weathers, P. SARS-CoV-2 omicron variants are susceptible in vitro to Artemisia annua hot water extracts. J. Ethnopharmacol. 2023, 308, 116291. [Google Scholar] [CrossRef]
- Qian, R.S.; Li, Z.L.; Yu, J.L.; Ma, D.J. The immunologic and antiviral effect of qinghaosu. J. Tradit. Chin. Med. 1982, 2, 271–276. [Google Scholar]
- Efferth, T.; Marschall, M.; Wang, X.; Huong, S.M.; Hauber, I.; Olbrich, A.; Kronschnabl, M.; Stamminger, T.; Huang, E.S. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J. Mol. Med. 2002, 80, 233–242. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Agrawal, C.; Blunden, G. Artemisia extracts and artemisinin-based antimalarials for COVID-19 management: Could these be effective antivirals for COVID-19 treatment? Molecules 2022, 27, 3828. [Google Scholar] [CrossRef]
- Badraoui, R.; Saoudi, M.; Hamadou, W.S.; Elkahoui, S.; Siddiqui, A.J.; Alam, J.M.; Jamal, A.; Adnan, M.; Suliemen, A.M.; Alreshidi, M.M. Antiviral effects of artemisinin and its derivatives against SARS-CoV-2 main protease: Computational evidences and interactions with ACE2 allelic variants. Pharmaceuticals 2022, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, S.; Scaccabarozzi, D.; Signorini, L.; Perego, F.; Ilboudo, D.P.; Ferrante, P.; Delbue, S. The use of antimalarial drugs against viral infection. Microorganisms 2020, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Ben-Nasr, H.; Badraoui, R. Approach of utilizing Artemisia herbs to treat COVID-19. Braz. J. Pharm. Sci. 2022, 58, e20345. [Google Scholar] [CrossRef]
- Yoon, W.-J.; Moon, J.; Song, G.; Lee, Y.; Han, M.; Lee, J.; Ihm, B.; Lee, W.; Lee, N.; Hyun, C. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Food Chem. Toxicol. 2010, 48, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Messaoudene, D.; Belguendouz, H.; Ahmedi, M.L.; Benabdekader, T.; Otmani, F.; Terahi, M.; Youinou, P.; Touil-Boukoffa, C. Ex vivo effects of flavonoïds extracted from Artemisia herba alba on cytokines and nitric oxide production in Algerian patients with Adamantiades-Behçet’s disease. J. Inflamm. 2011, 8, 35. [Google Scholar] [CrossRef]
- Wang, B.; Sui, J.; Yu, Z.; Zhu, L. Screening the hemostatic active fraction of Artemisia annua L. in-vitro. Iran. J. Pharm. Res. 2011, 10, 57. [Google Scholar]
- Ryu, R.; Jung, U.J.; Kim, H.-j.; Lee, W.; Bae, J.-S.; Park, Y.B.; Choi, M.-S. Anticoagulant and antiplatelet activities of artemisia princeps Pampanini and its bioactive components. Prev. Nutr. Food Sci. 2013, 18, 181. [Google Scholar] [CrossRef]
- Shin, N.-R.; Park, S.-H.; Ko, J.-W.; Ryu, H.-W.; Jeong, S.-H.; Kim, J.-C.; Shin, D.-H.; Lee, H.-S.; Shin, I.-S. Artemisia argyi attenuates airway inflammation in lipopolysaccharide induced acute lung injury model. Lab. Anim. Res. 2017, 33, 209–215. [Google Scholar] [CrossRef]
- Romero, M.R.; Serrano, M.A.; Vallejo, M.; Efferth, T.; Alvarez, M.; Marin, J.J. Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Medica 2006, 72, 1169–1174. [Google Scholar] [CrossRef]
- Hudaib, M.; Sammani, N.; Essam, R.; Salam, A. Artemisia species and artemisinin derivatives as antiviral agents against COVID-19. Current knowledge: Chemistry, pharmacology and clinical evidence. Farmacia 2022, 70, 391–401. [Google Scholar] [CrossRef]
- World Health Organization. WHO Monograph on Good Agricultural and Collection Practices (GACP) for Artemisia annua L.; World Health Organization: Geneva, Switzerland, 2006.
- Zhou, Y.; Gilmore, K.; Ramirez, S.; Settels, E.; Gammeltoft, K.A.; Pham, L.V.; Fahnøe, U.; Feng, S.; Offersgaard, A.; Trimpert, J. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci. Rep. 2021, 11, 14571. [Google Scholar] [CrossRef] [PubMed]
- Mateon Therapeutics. Mateon Expands Its COVID-19 Therapeutic Program to Include Artemisinin; Mateon Therapeutics, Inc.: South San Francisco, CA, USA, 2020. [Google Scholar]
- Liu, K.; Zuo, H.; Li, G.; Yu, H.; Hu, Y. Global research on artemisinin and its derivatives: Perspectives from patents. Pharmacol. Res. 2020, 159, 105048. [Google Scholar] [CrossRef] [PubMed]
- Enserink, M. Lower malaria numbers reflect better estimates and a glimmer of hope. Science 2008, 321, 1620. [Google Scholar] [CrossRef] [PubMed]
- Graham, I.A.; Besser, K.; Blumer, S.; Branigan, C.A.; Czechowski, T.; Elias, L.; Guterman, I.; Harvey, D.; Isaac, P.G.; Khan, A.M. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 2010, 327, 328–331. [Google Scholar] [CrossRef]
- Venkatesan, P. The 2023 WHO World malaria report. Lancet Microbe 2024, 5, e214. [Google Scholar] [CrossRef]
- Tu, Y.-Y. New antimalarial drug—Qinghaosu and Dihydro-Qinghaosu. Chin. J. Integr. Tradit. West. Med. 1997, 3, 312. [Google Scholar] [CrossRef]
- Njuguna, N.M.; Ongarora, D.S.; Chibale, K. Artemisinin derivatives: A patent review (2006–present). Expert Opin. Ther. Pat. 2012, 22, 1179–1203. [Google Scholar] [CrossRef]
- Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.; Marschall, M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 2008, 47, 804–811. [Google Scholar] [CrossRef]
- Gendrot, M.; Duflot, I.; Boxberger, M.; Delandre, O.; Jardot, P.; Le Bideau, M.; Andreani, J.; Fonta, I.; Mosnier, J.; Rolland, C. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int. J. Infect. Dis. 2020, 99, 437–440. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Treatment of Malaria; World Health Organization: Geneva, Switzerland, 2015.
- Group, I.A.S. Artesunate combinations for treatment of malaria: Meta-analysis. Lancet 2004, 363, 9–17. [Google Scholar]
- Lis, A.; Kowal, M. Constituents of the essential oils from different organs of Artemisia campestris L. subsp. campestris. J. Essent. Oil Res. 2015, 27, 545–550. [Google Scholar] [CrossRef]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun. 2019, 14, 1934578X19850354. [Google Scholar] [CrossRef]
- Barradell, L.B.; Fitton, A. Artesunate: A review of its pharmacology and therapeutic efficacy in the treatment of malaria. Drugs 1995, 50, 714–741. [Google Scholar] [CrossRef]
- Ribeiro, I.; Olliaro, P. Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials. Med. Trop. 1998, 58, 50–53. [Google Scholar]
- Tripathi, J.; Stoklasa, M.; Nayak, S.; En Low, K.; Qian Hui Lee, E.; Duong Tien, Q.H.; Rénia, L.; Malleret, B.; Bozdech, Z. The artemisinin-induced dormant stages of Plasmodium falciparum exhibit hallmarks of cellular quiescence/senescence and drug resilience. Nat. Commun. 2024, 15, 7485. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, J.-J.; Du, S.-Y.; Mu, L.-S.; Fan, J.-J.; Hu, J.-C.; Ye, Y.; Ding, M.; Zhou, W.-Y.; Yu, Q.-H.; et al. Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction. Science 2024, 384, eadk5382. [Google Scholar] [CrossRef] [PubMed]
- Balmer, A.J.; White, N.F.; Ünlü, E.S.; Lee, C.; Pearson, R.D.; Almagro-Garcia, J.; Ariani, C. Understanding the Global Spread of Artemisinin Resistance: Insights from over 100K Plasmodium falciparum Samples. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zupko, R.J.; Nguyen, T.D.; Ngabonziza, J.C.S.; Kabera, M.; Li, H.; Tran, T.N.-A.; Tran, K.T.; Uwimana, A.; Boni, M.F. Modeling policy interventions for slowing the spread of artemisinin-resistant pfkelch R561H mutations in Rwanda. Nat. Med. 2023, 29, 2775–2784. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Gao, B.; Amaratunga, C.; Dhorda, M.; Tran, T.N.-A.; White, N.J.; Dondorp, A.M.; Boni, M.F.; Aguas, R. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat. Commun. 2023, 14, 4568. [Google Scholar] [CrossRef]
- Pandit, K.; Surolia, N.; Bhattacharjee, S.; Karmodiya, K. The many paths to artemisinin resistance in Plasmodium falciparum. Trends Parasitol. 2023, 39, 1060–1073. [Google Scholar] [CrossRef]
- Kaptein, S.J.; Efferth, T.; Leis, M.; Rechter, S.; Auerochs, S.; Kalmer, M.; Bruggeman, C.A.; Vink, C.; Stamminger, T.; Marschall, M. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antivir. Res. 2006, 69, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Fillebeen, C.; Rivas-Estilla, A.M.; Bisaillon, M.; Ponka, P.; Muckenthaler, M.; Hentze, M.W.; Koromilas, A.E.; Pantopoulos, K. Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C Virus. J. Biol. Chem. 2005, 280, 9049–9057. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv. 2018, 36, 1730–1737. [Google Scholar] [CrossRef]
- Nair, M.S.; Huang, Y.; Fidock, D.A.; Towler, M.J.; Weathers, P.J. Artemisia annua L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta. J. Ethnopharmacol. 2022, 284, 114797. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ali, R.; dos Santos Lopes, M.J.; Steinmetz, C.H.D.; Haq, F.U. Artemisia annua L. and Its Derivatives: Their Antiviral Effects on COVID-19 and Possible Mechanisms. J. Explor. Res. Pharmacol. 2022, 7, 54–58. [Google Scholar] [CrossRef]
- Luo, X.-D.; Shen, C.-C. The chemistry, pharmacology, and clinical applications of qinghaosu (Artemisinin) and its derivatives. Med. Res. Rev. 1987, 7, 29–52. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 41–43. [Google Scholar] [CrossRef]
- Aweeka, F.T.; German, P.I. Clinical pharmacology of artemisinin-based combination therapies. Clin. Pharmacokinet. 2008, 47, 91–102. [Google Scholar] [CrossRef]
- Meshnick, S.R. Artemisinin: Mechanisms of action, resistance and toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef]
- O’Neill, P.M.; Posner, G.H. A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem. 2004, 47, 2945–2964. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Li, J.; Fan, Q.; Long, Y.; Li, Y.; Zhou, B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS ONE 2010, 5, e9582. [Google Scholar] [CrossRef] [PubMed]
- Antoine, T.; Fisher, N.; Amewu, R.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J. Antimicrob. Chemother. 2014, 69, 1005–1016. [Google Scholar] [CrossRef]
- Gao, F.; Sun, Z.; Kong, F.; Xiao, J. Artemisinin-derived hybrids and their anticancer activity. Eur. J. Med. Chem. 2020, 188, 112044. [Google Scholar] [CrossRef] [PubMed]
- Meunier, B. Hybrid Molecules with a Dual Mode of Action: Dream or Reality? Acc. Chem. Res. 2008, 41, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 2017, 139, 22–47. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem. 2010, 45, 3245–3264. [Google Scholar] [CrossRef]
- Marchesi, E.; Perrone, D.; Navacchia, M.L. Molecular hybridization as a strategy for developing artemisinin-derived anticancer candidates. Pharmaceutics 2023, 15, 2185. [Google Scholar] [CrossRef]
- Botta, L.; Filippi, S.; Bizzarri, B.M.; Zippilli, C.; Meschini, R.; Pogni, R.; Baratto, M.C.; Villanova, L.; Saladino, R. Synthesis and evaluation of artemisinin-based hybrid and dimer derivatives as antimelanoma agents. ACS Omega 2019, 5, 243–251. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, Z.; Yang, X.; Hu, P.; He, Y. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities. Eur. J. Med. Chem. 2018, 150, 829–840. [Google Scholar] [CrossRef]
- Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Peter, S.; Jama, S.; Alven, S.; Aderibigbe, B.A. Artemisinin and derivatives-based hybrid compounds: Promising therapeutics for the treatment of cancer and malaria. Molecules 2021, 26, 7521. [Google Scholar] [CrossRef] [PubMed]
- Bray, P.; Ward, S.; O’neill, P. Quinolines and artemisinin: Chemistry, biology and history. In Malaria: Drugs, Disease and Post-Genomic Biology; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 295, pp. 3–38. [Google Scholar] [CrossRef]
- Haynes, R.K. From artemisinin to new artemisinin antimalarials: Biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr. Top. Med. Chem. 2006, 6, 509–537. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Coughlan, D.; Heneghan, N.; Gaynor, C.; Bell, A. A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorganic Med. Chem. Lett. 2007, 17, 3599–3602. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, T.; Reiter, C.; Saeed, M.E.; Hutterer, C.; Hahn, F.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Marschall, M.; Efferth, T. Synthesis of thymoquinone–artemisinin hybrids: New potent antileukemia, antiviral, and antimalarial agents. ACS Med. Chem. Lett. 2017, 9, 534–539. [Google Scholar] [CrossRef]
- World Intellectual Property Organization. Artemisinin Derivatives for the Treatment of Melanoma. WO/2009/043538, 9 April 2009. [Google Scholar]
- Rowan, S.J.; Sanders, J.K. Macrocycles derived from cinchona alkaloids: A thermodynamic vs kinetic study. J. Org. Chem. 1998, 63, 1536–1546. [Google Scholar] [CrossRef]
- Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C.A. Artemisinin–quinoline hybrid-dimers: Synthesis and in vitro antiplasmodial activity. Bioorganic Med. Chem. Lett. 2010, 20, 6975–6977. [Google Scholar] [CrossRef]
- Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Kolesnikova, N.I.; Van Ba, C.T.; Wein, S.; Norman, J.; Denti, P.; Vial, H.; Wiesner, L. Antimalarial and anticancer activities of artemisinin–quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur. J. Pharm. Sci. 2012, 47, 834–841. [Google Scholar] [CrossRef]
- Joubert, J.P.; Smit, F.J.; du Plessis, L.; Smith, P.J.; N’Da, D.D. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids. Eur. J. Pharm. Sci. 2014, 56, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Tien, D.D.; Giang, L.N.T.; Anh, D.T.T.; Dung, N.T.; Ha, T.N.; Ha, N.T.T.; Phuong, H.T.; Chinh, P.T.; Van Kiem, P.; Van Tuyen, N. Synthesis and cytotoxic evaluation of artemisinin–triazole hybrids. Nat. Prod. Commun. 2016, 11, 1934578X1601101204. [Google Scholar] [CrossRef]
- Fröhlich, T.; Kiss, A.; Wölfling, J.; Mernyák, E.; Kulmány, Á.E.; Minorics, R.; Zupkó, I.; Leidenberger, M.; Friedrich, O.; Kappes, B.; et al. Synthesis of Artemisinin–Estrogen Hybrids Highly Active against HCMV, P. falciparum, and Cervical and Breast Cancer. ACS Med. Chem. Lett. 2018, 9, 1128–1133. [Google Scholar] [CrossRef]
- Fröhlich, T.; Reiter, C.; Ibrahim, M.M.; Beutel, J.; Hutterer, C.; Zeitträger, I.; Bahsi, H.; Leidenberger, M.; Friedrich, O.; Kappes, B.; et al. Synthesis of Novel Hybrids of Quinazoline and Artemisinin with High Activities against Plasmodium falciparum, Human Cytomegalovirus, and Leukemia Cells. ACS Omega 2017, 2, 2422–2431. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, N.; Zhang, J.; Wang, Y.; Chen, L.; Sun, J. Artemisinin-indole and artemisinin-imidazole hybrids: Synthesis, cytotoxic evaluation and reversal effects on multidrug resistance in MCF-7/ADR cells. Bioorganic Med. Chem. Lett. 2019, 29, 1138–1142. [Google Scholar] [CrossRef]
- Vamvoukaki, G.; Antoniou, A.I.; Baltas, M.; Mouray, E.; Charneau, S.; Grellier, P.; Athanassopoulos, C.M. Synthesis of Novel Artemisinin, Ciprofloxacin, and Norfloxacin Hybrids with Potent Antiplasmodial Activity. Antibiotics 2024, 13, 142. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, H.; Mu, L.; Yang, X. Artemisinins as anticancer drugs: Novel therapeutic approaches, molecular mechanisms, and clinical trials. Front. Pharmacol. 2020, 11, 529881. [Google Scholar] [CrossRef]
- Li, G.-Q.; Guo, X.-B.; Fu, L.-C.; Jian, H.-X.; Wang, X.-H. Clinical trials of artemisinin and its derivatives in the treatment of malaria in China. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Shapira, M.Y.; Resnick, I.B.; Chou, S.; Neumann, A.U.; Lurain, N.S.; Stamminger, T.; Caplan, O.; Saleh, N.; Efferth, T.; Marschall, M. Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin. Infect. Dis. 2008, 46, 1455–1457. [Google Scholar] [CrossRef]
- Mueller, M.S.; Karhagomba, I.B.; Hirt, H.M.; Wemakor, E. The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: Agricultural, chemical and clinical aspects. J. Ethnopharmacol. 2000, 73, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Weathers, P.J.; Towler, M.J. The flavonoids casticin and artemetin are poorly extracted and are unstable in an Artemisia annua tea infusion. Planta Medica 2012, 78, 1024–1026. [Google Scholar] [CrossRef]
- Huang, L.; Xie, C.; Duan, B.; Chen, S. Mapping the potential distribution of high artemisinin-yielding Artemisia annua L. (Qinghao) in China with a geographic information system. Chin. Med. 2010, 5, 18. [Google Scholar] [CrossRef]
- Soleimani, T.; Keyhanfar, M.; Piri, K.; Hasanloo, T. Morphological evaluation of hairy roots induced in Artemisia annua L. and investigating elicitation effects on the hairy roots biomass production. Int. J. Agric. Res. Rev. 2012, 2, 1005–1013. [Google Scholar]
- Nair, M.S.; Huang, Y.; Fidock, D.A.; Polyak, S.J.; Wagoner, J.; Towler, M.; Weathers, P. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol. 2021, 274, 114016. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yuan, M.; Li, H.; Deng, C.; Wang, Q.; Tang, Y.; Zhang, H.; Yu, W.; Xu, Q.; Zou, Y. Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: An open-label, non-randomised and controlled trial. Int. J. Antimicrob. Agents 2021, 57, 106216. [Google Scholar] [CrossRef] [PubMed]
- Lopes, E.A.; Santos, M.M.; Mori, M. Antimalarial drugs: What’s new in the patents? Expert Opin. Ther. Pat. 2023, 33, 151–168. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Plant Part Involved | Content | Solvent Used | Technique Used | References |
---|---|---|---|---|---|
A. annua | Trichomes of leaves, stem, inflorescence. | 0.01–1.4% | Toluene | GC/MS | [41] |
A. pallens | Leaves and flowers | 0.1031% | Ethanol | LC/MS | [42] |
A. cina | Shoots | 0.0006% | n-hexane | HPLC | [43] |
A. sieberi | Aerial part | 0.2–0.14% | Ethanol | [44] | |
A. absinthium | Whole plant | 0.02–0.35% | Petroleum ether | [45] | |
A. dubia | Roots | 0.01–0.07% | Toluene | [22] | |
A. indica | Roots | 0.01–0.10% | Toluene | ||
A. dracunculus var. dracunculus L. | Stem | 0.12 ± 0.01% | Toluene | ||
A. roxburghiana | Flower | 0.23 ± 0.01% | Toluene | ||
A. bushriences | Flower | 0.34 ± 0.02% | Toluene | ||
A. moorcroftiana | Stem | 0.8 ± 0.01% | Toluene | [22,46] | |
A. vestita | Roots | (0.04 ± 0.02% | Toluene | [22] | |
A. sieversiana | Stem | 0.8 ± 0.03% | Toluene | [46] | |
A. campestris subsp. glutinosa | Aerial parts | 0.64% | n-hexane | [47] | |
A. herba-alba | 0.34% | n-hexane | |||
A. vachanica | 0.34% | n-hexane | [48] | ||
A. makrocephala | 0.20 ± 0.01% | Hexane | |||
A. parviflora | Leaves | 0.87 ± 00.2% | Toluene | RP-HPLC RP-HPLC | [49] |
A. myriantha | Leaves | 0.039% | Toluene | ||
A. japonica | Leaves and florets | 0.4–1.3 mg−1 dry wt. | Ethyl acetate and methanol | HPTLC | [50] |
A. absinthium | Whole plant | 2.32 ± 0.02% | Ethanol | LCMS | [51] |
A. maritima | 1.26 ± 0.03% | ||||
A. dracunculus | 0.78 ± 0.02% | ||||
A. verlotiorum | 1.11 ± 0.03% | ||||
A. vestita | 1.06 ± 0.03% | ||||
A. vulgaris | 2.18 ± 0.03% |
Plant Name | Plant Part | Bioactive Compound | References |
---|---|---|---|
Artemisia annua | - | Artemanin A | [60] |
- | Artemanin B | ||
- | Eriodictyol-7-O-hexoside | ||
- | Caffeoylcoumaroyltartaric acid | ||
- | Artemin | ||
Flowers, Leaves, stems | Artemisinin | [61,62] | |
A. dracunculus var. dracunculus L. | Leaves, Stems | [9,22] | |
A. moorcroftiana | Stems | ||
A. parviflora | Stems | ||
A. sieversiana | Stems |
Rank | No. Patent Documents | Patent Families | Average No. of Patents per Family | Assignees | Assignee Type |
---|---|---|---|---|---|
1 | 56 | 55 | 1.02 | Yuzhou City Tianyuan Biological Technology (China) | company |
2 | 78 | 49 | 1.59 | Shanghai Jiao Tong University (China) | university and research institute |
3 | 164 | 42 | 3.9 | Council of Scientific and Industrial Research (India) | university and research institute |
4 | 47 | 17 | 2.76 | Kunming pharmaceutical corporation (China) | company |
5 | 81 | 16 | 5.06 | Johns Hopkins University (U.S.) | university and research institute |
6 | 81 | 15 | 5.4 | University of Washington (U.S.) | university and research institute |
7 | 14 | 11 | 1.27 | Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences (China) | university and research institute |
8 | 14 | 11 | 1.27 | Guilin Nanyao Pharmaceutical (China) | company |
9 | 140 | 10 | 14 | Centre national de la recherche scientifique (France) | university and research institute |
10 | 48 | 10 | 4.8 | Dafra Pharma International (Belgium) | company |
11 | 228 | 9 | 25.33 | Sanofi S.A. (France) | company |
12 | 92 | 9 | 10.22 | Medicines for Malaria Venture (Switzerland) | university and research institute |
13 | 63 | 9 | 7 | University of California (U.S.) | university and research institute |
14 | 19 | 9 | 2.11 | Shenyang Pharmaceutical University (China) | university and research institute |
15 | 8 | 8 | 1 | Ocean University of China (China) | university and research institute |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, G.; Shin, H.-S.; Patra, J.K. The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Curr. Issues Mol. Biol. 2024, 46, 12099-12118. https://doi.org/10.3390/cimb46110718
Das G, Shin H-S, Patra JK. The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Current Issues in Molecular Biology. 2024; 46(11):12099-12118. https://doi.org/10.3390/cimb46110718
Chicago/Turabian StyleDas, Gitishree, Han-Seung Shin, and Jayanta Kumar Patra. 2024. "The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review" Current Issues in Molecular Biology 46, no. 11: 12099-12118. https://doi.org/10.3390/cimb46110718
APA StyleDas, G., Shin, H. -S., & Patra, J. K. (2024). The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Current Issues in Molecular Biology, 46(11), 12099-12118. https://doi.org/10.3390/cimb46110718