A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Origin and Extraction Process
2.2. Bioactive Compound Measurements
2.3. Analysis of Phenolic Compounds (HPLC-DAD)
2.4. Antioxidant Activity
2.4.1. DPPH Assay
2.4.2. β-Carotene Bleaching Assay
2.4.3. ABTS Scavenging Activity Assay
2.4.4. Total Antioxidant Capacity
2.5. Antibacterial Activity
2.5.1. Bacterial Strains and Growth Conditions
2.5.2. Disc Diffusion Method
2.5.3. Determination of the MIC and the MBC
2.6. Cytotoxicity Against Breast Cancer Cell Lines
2.6.1. Cell Culture
2.6.2. Cell Viability by MTT Assay
2.7. Molecular Docking Study
2.7.1. Protein Preparation
2.7.2. Ligand Preparation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Spectrophotometric Analysis of Bioactive Components in AAE
3.2. Antioxidant Activity of AAE
3.3. HPLC-DAD Phytochemical Analysis of AAE
3.4. Antibacterial Activity
3.5. Anticancer Activity Against Breast Cancer Cell Lines
3.6. In Silico Analysis of the Antioxidant, Antibacterial, and Anticancer Activity of the Components Found in AAE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senhaji, S.; Lamchouri, F.; Toufik, H. Phytochemical content, antibacterial and antioxidant potential of endemic plant anabasis aretioïdes coss. & moq.(Chenopodiaceae). BioMed Res. Int. 2020, 2020, 6152932. [Google Scholar]
- Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Bnouham, M.; Legssyer, A.; Mekhfi, H.; Ziyyat, A. Medicinal plants used in the treatment of diabetes in Morocco. Int. J. Diabetes Metab. 2002, 10, 33–50. [Google Scholar] [CrossRef]
- El Mansouri, L.; Ennabili, A.; Bousta, D. Socioeconomic interest and valorization of medicinal plants from the Rissani oasis (SE of Morocco). Bol. Latinoam. Y Del Caribe De Plantas Med. Y Aromáticas 2011, 10, 30–45. [Google Scholar]
- Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Percival, M. Phytonutrients and detoxification. Clin. Nutr. Insights 1997, 5, 1–4. [Google Scholar]
- Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef]
- Karin, M.; Lawrence, T.; Nizet, V. Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell 2006, 124, 823–835. [Google Scholar] [CrossRef]
- Berrino, F.; Verdecchia, A.; Lutz, J.M.; Lombardo, C.; Micheli, A.; Capocaccia, R.; EUROCARE Working Group. Comparative cancer survival information in Europe. Eur. J. Cancer 2009, 45, 901–908. [Google Scholar] [CrossRef]
- El-Haci, I.A.; Bekkara, F.A.; Mazari, W.; Gherib, M. Phenolics content and antioxidant activity of some organic extracts of endemic medicinal plant Anabasis aretioides Coss. & Moq. from Algerian Sahara. Pharmacogn. J. 2013, 5, 108–112. [Google Scholar]
- Berrani, A.; Marmouzi, I.; Kharbach, M.; Bouyahya, A.; El Hamdani, M.; El Jemli, M.; Lrhorfi, A.; Benassaoui, H.; Zouarhi, M.; Larbi, O.M. Anabasis aretioides Coss. & Moq. phenolic compounds exhibit in vitro hypoglycemic, antioxidant and antipathogenic properties. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 251–257. [Google Scholar]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Nijveldt, R.J.; Van Nood, E.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef]
- Abdel-Aziz, S.M.; Aeron, A.; Kahil, T.A. Health benefits and possible risks of herbal medicine. In Microbes Food Health; Springer: Cham, Switzerland, 2016; pp. 97–116. [Google Scholar]
- Hussain, A.; Kausar, T.; Rehman, A.; Batool, A.; Saleem, M.; Musharraf, T.M.; An, Q.U.; Fatima, H.; Yaqub, S.; Gorsi, F.I. Evaluation of the phytochemical and medicinal value of lemongrass (Cymbopogon citratus), by conversion into powders and extracts to develop a nutritional bakery product. Future Integr. Med. 2023, 2, 129–140. [Google Scholar] [CrossRef]
- Hussain, A.; Laaraj, S.; Kausar, T.; Tikent, A.; Azzouzi, H.; Kauser, S.; An, Q.U.; Iqbal, A.; Akram, S.; Nisar, R. Food application of orange seed powder through incorporation in wheat flour to boost vitamin and mineral profiles of formulated biscuits. Int. J. Food Sci. 2023, 2023, 6654250. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, M.R.; Ahmed, A.; Fiaz, I.; Zulfiqar, N.; Ali, M.Q.; Firdous, N.; Fatima, H.; Shehzad, A.; Elkhedir, A.E. Evaluation of Leaves, Flowers, and Seeds of Coriander (Coriandrum sativum L.) through Microwave Drying and Ultrasonic-Assisted Extraction, for Biologically Active Components. J. Food Process. Preserv. 2024, 2024, 2378604. [Google Scholar] [CrossRef]
- Hussain, A.; Korma, S.A.; Kabir, K.; Kauser, S.; Arif, M.R.; Fatima, H.; Ali, S.; Ali, M.Q.; Yaqub, S.; Shehzad, A. In vitro and In vivo Determination of Biological Activities of Bitter Gourd (Momordica charantia L.) Peel, Flesh and Seeds. Plant Foods Hum. Nutr. 2024, 79, 316–321. [Google Scholar] [CrossRef]
- Hussain, A.; Fatima, H.; Komal, M.; Kauser, S.; Yaqub, S.; Akram, S.; Gorsi, F.I.; Najam, A.; Atta, A.; Elkhedir, A.E. Evaluation of peel, flesh and seeds of bitter gourd (Momordica charantia L.) for biologically active components, through development of powders and ethanolic extracts. Discov. Appl. Sci. 2024, 6, 432. [Google Scholar] [CrossRef]
- Ouassou, H.; Bouhrim, M.; Kharchoufa, L.; Imtara, H.; elhouda Daoudi, N.; Benoutman, A.; Bencheikh, N.; Ouahhoud, S.; Elbouzidi, A.; Bnouham, M. Caralluma europaea (Guss) NE Br.: A review on ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicology. J. Ethnopharmacol. 2021, 273, 113769. [Google Scholar] [CrossRef] [PubMed]
- Bencheikh, N.; Radi, F.Z.; Fakchich, J.; Elbouzidi, A.; Ouahhoud, S.; Ouasti, M.; Bouhrim, M.; Ouasti, I.; Hano, C.; Elachouri, M. Ethnobotanical, phytochemical, toxicological, and pharmacological properties of Ziziphus lotus (L.) lam.: A comprehensive review. Pharmaceuticals 2023, 16, 575. [Google Scholar] [CrossRef]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) mosyakin and clemants essential oils: Experimental and computational approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin—A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Arora, D.S.; Chandra, P. Antioxidant activity of Aspergillus fumigatus. Int. Sch. Res. Not. 2011, 2011, 619395. [Google Scholar] [CrossRef]
- Tayoub, G.; Al-Odat, M.; Amer, A.; Aljapawe, A.; Ekhtiar, A. Antiproliferative effects of Pancratium maritimum extracts on normal and cancerous cells. Iran. J. Med. Sci. 2018, 43, 52. [Google Scholar] [PubMed]
- Castagné, R.; Kelly-Irving, M.; Campanella, G.; Guida, F.; Krogh, V.; Palli, D.; Panico, S.; Sacerdote, C.; Tumino, R.; Kleinjans, J. Biological marks of early-life socioeconomic experience is detected in the adult inflammatory transcriptome. Sci. Rep. 2016, 6, 38705. [Google Scholar] [CrossRef] [PubMed]
- Urzì Brancati, V.; Scarpignato, C.; Minutoli, L.; Pallio, G. Use of pharmacogenetics to optimize immunosuppressant therapy in kidney-transplanted patients. Biomedicines 2022, 10, 1798. [Google Scholar] [CrossRef] [PubMed]
- Sweilam, S.H.; Abdel Bar, F.M.; Foudah, A.I.; Alqarni, M.H.; Elattal, N.A.; El-Gindi, O.D.; El-Sherei, M.M.; Abdel-Sattar, E. Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of Echinops erinaceus Kit Tan. Separations 2022, 9, 447. [Google Scholar] [CrossRef]
- Saha, T.; Makar, S.; Swetha, R.; Gutti, G.; Singh, S.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur. J. Med. Chem. 2019, 177, 116–143. [Google Scholar] [CrossRef]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA A Cancer J. Clin. 2014, 64, 9–29. [Google Scholar]
- Tang, Y.; Wang, Y.; Kiani, M.F.; Wang, B. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin. Breast Cancer 2016, 16, 335–343. [Google Scholar] [CrossRef]
- Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience 2012, 6, ed16. [Google Scholar]
- Balkhi, B.; Alqahtani, S.; Altayyar, W.; Ghawaa, Y.; Alqahtani, Z.; Alsaleh, K.; Asiri, Y. Drug utilization and expenditure of anticancer drugs for breast cancer. Saudi Pharm. J. 2020, 28, 669–674. [Google Scholar]
- Clancy, E. Cancer Drug Shortages Persist, Increasing Calls for Action. In Cancer Therapy Advisor; Haymarket Media, Inc.: New York, NY, USA, 2023. [Google Scholar]
- Rafique, H.S.; Hussain, A.; Nadeem, M.; Rehman, A.; Siddique, T.; Najam, A.; Haroon, H.; Arif, M.R.; Yaqub, S.; Fatima, H. Impact of different proportions of sweet potato (Ipomoea batatas L.) flour on physical, chemical and sensory parameters of straight grade flour-based cake rusk. Food Humanit. 2023, 1, 1282–1296. [Google Scholar]
- Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z. Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef]
- Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Zaid, A.; Cavò, E.; Miceli, N. Silene vulgaris subsp. macrocarpa leaves and roots from morocco: Assessment of the efficiency of different extraction techniques and solvents on their antioxidant capacity, brine shrimp toxicity and phenolic characterization. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2020, 154, 692–699. [Google Scholar] [CrossRef]
- Loukili, E.H.; Bouchal, B.; Bouhrim, M.; Abrigach, F.; Genva, M.; Zidi, K.; Bnouham, M.; Bellaoui, M.; Hammouti, B.; Addi, M. Chemical composition, antibacterial, antifungal and antidiabetic activities of ethanolic extracts of Opuntia dillenii fruits collected from Morocco. J. Food Qual. 2022, 2022, 9471239. [Google Scholar]
- Tikent, A.; Laaraj, S.; Marhri, A.; Taibi, M.; Elbouzidi, A.; Khalid, I.; Bouhrim, M.; Elfazazi, K.; Elamrani, A.; Addi, M. The Antioxidant and Antimicrobial Activities of Two Sun-Dried Fig Varieties (Ficus carica L.) Produced in Eastern Morocco and the Investigation of Pomological, Colorimetric, and Phytochemical Characteristics for Improved Valorization. Int. J. Plant Biol. 2023, 14, 845–863. [Google Scholar] [CrossRef]
- Laaraj, S.; Hussain, A.; Mouhaddach, A.; Noutfia, Y.; Gorsi, F.I.; Yaqub, S.; Hussain, I.; Nisar, R.; Salmaoui, S.; Elfazazi, K. Nutritional benefits and Antihyperglycemic potential of carob fruit (Ceratonia siliqua L.): An overview. Ecol. Eng. Environ. Technol. 2024, 25, 124–132. [Google Scholar]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical composition, in vitro and in silico antioxidant potential of Melissa officinalis subsp. officinalis essential oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Nakyai, W.; Pabuprapap, W.; Sroimee, W.; Ajavakom, V.; Yingyongnarongkul, B.-e.; Suksamrarn, A. Anti-acne vulgaris potential of the ethanolic extract of Mesua ferrea L. flowers. Cosmetics 2021, 8, 107. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chandrashekar, K.S.; Pai, K.S.; Setty, M.M.; Devkar, R.A.; Reddy, N.D.; Shoja, M.H. Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement. Altern. Med. 2015, 15, 50. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Barry, A.L.; Craig, W.A.; Nadler, H.; Reller, L.B.; Sanders, C.C.; Swenson, J.M. Methods for determining bactericidal activity of antimicrobial agents. Approv. Guidel. 1999, 19, 1–3. [Google Scholar]
- Wayne, P. National committee for clinical laboratory standards. Perform. Stand. Antimicrob. Disc Susceptibil. Test. 2002, 12, 01–53. [Google Scholar]
- Danciu, C.; Muntean, D.; Alexa, E.; Farcas, C.; Oprean, C.; Zupko, I.; Bor, A.; Minda, D.; Proks, M.; Buda, V. Phytochemical characterization and evaluation of the antimicrobial, antiproliferative and pro-apoptotic potential of Ephedra alata Decne. hydroalcoholic extract against the MCF-7 breast cancer cell line. Molecules 2018, 24, 13. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef]
- Lafraxo, S.; El Moussaoui, A.; A Bin Jardan, Y.; El Barnossi, A.; Chebaibi, M.; Baammi, S.; Ait Akka, A.; Chebbac, K.; Akhazzane, M.; Chelouati, T. GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark. Evid.-Based Complement. Altern. Med. 2022, 2022, 6305672. [Google Scholar] [CrossRef]
- Tourabi, M.; Nouioura, G.; Touijer, H.; Baghouz, A.; El Ghouizi, A.; Chebaibi, M.; Bakour, M.; Ousaaid, D.; Almaary, K.S.; Nafidi, H.-A. Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. Plants 2023, 12, 3783. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Alfhili, M.A.; Bari, A.; Ennaji, H.; Ahamed, M.; Bourhia, M.; Chebaibi, M.; Benbacer, L.; Ghneim, H.K.; Abudawood, M. Apoptosis-mediated anti-proliferative activity of Calligonum comosum against human breast cancer cells, and molecular docking of its major polyphenolics to Caspase-3. Front. Cell Dev. Biol. 2022, 10, 972111. [Google Scholar] [CrossRef]
- El Abdali, Y.; Mahraz, A.M.; Beniaich, G.; Mssillou, I.; Chebaibi, M.; Bin Jardan, Y.A.; Lahkimi, A.; Nafidi, H.-A.; Aboul-Soud, M.A.; Bourhia, M. Essential oils of Origanum compactum Benth: Chemical characterization, in vitro, in silico, antioxidant, and antibacterial activities. Open Chem. 2023, 21, 20220282. [Google Scholar] [CrossRef]
- Kang, J.; Li, Z.; Wu, T.; Jensen, G.S.; Schauss, A.G.; Wu, X. Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem. 2010, 122, 610–617. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Boughalleb, F.; Maaloul, S.; Mabrouk, M.; Abdellaoui, R. Phytochemical screening, antioxidant potential, and LC–ESI–MS profiling of Ephedra alata and Ephedra altissima seeds naturally growing in Tunisia. Appl. Biochem. Biotechnol. 2023, 195, 5903–5915. [Google Scholar] [CrossRef] [PubMed]
- Cherrat, A.; Amalich, S.; Regragui, M.; Bouzoubae, A.; Elamrani, M.; Mahjoubi, M.; Bourakhouadar, M.; Zair, T. Polyphenols content and evaluation of antioxidant activity of Anacyclus pyrethrum (L.) lag. from timahdite a moroccan middle atlas region. Int. J. Adv. Res 2017, 5, 569–577. [Google Scholar] [CrossRef]
- Sakanaka, S.; Tachibana, Y.; Okada, Y. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem. 2005, 89, 569–575. [Google Scholar] [CrossRef]
- Ladoh, Y.; Dibong, S.; Nyegue, M.; Djembissi, T.; Lenta, N.; Mpondo, M.; Yinyang, J.; Wansi, J. Activité antioxydante des extraits méthanoliques de Phragmanthera capitata (Loranthaceae) récoltée sur Citrus sinensis. J. Appl. Biosci. 2014, 84, 7636–7643. [Google Scholar] [CrossRef]
- Yahyaoui, M.; Ghazouani, N.; Sifaoui, I.; Abderrabba, M. Comparison of the effect of various extraction methods on the phytochemical composition and antioxidant activity of Thymelaea hirsuta L. aerial parts in Tunisia. Biosci. Biotechnol. Res. Asia 2017, 14, 997–1007. [Google Scholar] [CrossRef]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Abramovič, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [PubMed]
- Walton, N.J.; Mayer, M.J.; Narbad, A. Vanillin. Phytochemistry 2003, 63, 505–515. [Google Scholar] [CrossRef]
- Zacchino, S.A.; Butassi, E.; Di Liberto, M.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017, 37, 27–48. [Google Scholar] [CrossRef]
- Du, H.; Wang, Y.; Hao, X.; Li, C.; Peng, Y.; Wang, J.; Liu, H.; Zhou, L. Antimicrobial phenolic compounds from Anabasis aphylla L. Nat. Prod. Commun. 2009, 4, 1934578X0900400314. [Google Scholar]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics 2024, 13, 746. [Google Scholar] [CrossRef]
- Aboul-Soud, M.A.; Ashour, A.E.; Challis, J.K.; Ahmed, A.F.; Kumar, A.; Nassrallah, A.; Alahmari, T.A.; Saquib, Q.; Siddiqui, M.A.; Al-Sheikh, Y. Biochemical and molecular investigation of in vitro antioxidant and anticancer activity spectrum of crude extracts of willow leaves salix safsaf. Plants 2020, 9, 1295. [Google Scholar] [CrossRef]
- Tomasetti, C.; Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015, 347, 78–81. [Google Scholar]
- Ashford, N.A.; Bauman, P.; Brown, H.S.; Clapp, R.W.; Finkel, A.M.; Gee, D.; Hattis, D.B.; Martuzzi, M.; Sasco, A.J.; Sass, J.B. Cancer risk: Role of environment. Science 2015, 347, 727. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Shin, H.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. GLOBOCAN Cancer Incidence and Mortality Worldwide; France International Agency for Research on Cancer: Lyon, France, 2008. [Google Scholar]
- Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010, 80, 1771–1792. [Google Scholar] [CrossRef]
- Lee, K.W.; Ching, S.M.; Hoo, F.K.; Ramachandran, V.; Swamy, M.K. Traditional medicinal plants and their therapeutic potential against major cancer types. Anticancer Plants Nat. Prod. Biotechnol. Implements 2018, 2, 383–410. [Google Scholar]
- Lee, I.-T.; Yang, C.-M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol. 2012, 84, 581–590. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, A.; Joshi, A.K.; Smith, S. Mechanism of the β-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 2002, 41, 10877–10887. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Rock, C.O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008, 6, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Rao, X.; Zhang, K. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol. Res. 2017, 205, 125–134. [Google Scholar] [CrossRef]
- Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 2022, 69, 1633–1645. [Google Scholar] [CrossRef]
Extract | Total Phenolic Content (mg GAE/100 g DW) | Flavonoid Content (mg RE/100 g DW) | Total Condensed Tannins (mg CE/100 DW) |
---|---|---|---|
AAE | 159.32 ± 0.63 | 8.52 ± 0.32 | 8.73 ± 0.23 |
Extract/Reference | DPPH Scavenging Capacity IC50 (µg/mL) | β-Carotene Bleaching Assay (mg/mL) | ABTS Scavenging (TE µmol/mL) | Total Antioxidant Capacity * |
---|---|---|---|---|
AAE | 51.28 ± 0.91 | 4.44 ± 0.21 | 28.63 ± 1.02 | 117.29 ± 2.66 |
Ascorbic acid (AA) | 8.10 ± 3.02 | - | 7.23 ± 1.37 | - |
Butylated hydroxytoluene (BHT) | - | 0.132 ± 0.33 | - | - |
C | DPPH | β-Carotene | ABTS | TAC | TPC | TFC | TCT |
---|---|---|---|---|---|---|---|
DPPH | 1.000 | ||||||
β-carotene | −0.946 | 1.000 | |||||
ABTS | 0.997 | −0.966 | 1.000 | ||||
TAC | −0.756 | 0.503 | −0.708 | 1.000 | |||
TPC | −0.988 | 0.908 | −0.997 | 0.648 | 1.000 | ||
TFC | −0.995 | 0.972 | −1.000 | 0.690 | 0.998 | 1.000 | |
TCT | 0.657 | −0.376 | 0.602 | −0.990 | −0.535 | −0.582 | 1.000 |
Bioactive Compound | Chemical Formula | Classification | Retention Time | Area (%) | |
---|---|---|---|---|---|
1 | Syringic acid | C9H10O5 | Hydroxybenzoic acid | 4.831 | 2.62 |
2 | Vanillic acid | C8H8O4 | Hydroxybenzoic acid | 5.901 | 0.8 |
3 | Vanillin | C8H8O3 | Phenolic aldehyde | 6.176 | 13.3 |
4 | Naringin | C27H32O14 | Flavonoid | 6.67 | 4.24 |
5 | Cinnamic acid | C9H8O2 | Hydroxycinnamic acid | 7.213 | 29.39 |
6 | Ferulic acid | C10H10O4 | Hydroxycinnamic acid | 8.608 | 6.84 |
7 | p-coumaric acid | C9H8O3 | Hydroxycinnamic acid | 9.238 | 5.29 |
8 | Sinapic acid | C11H12O5 | Hydroxycinnamic acid | 9.579 | 22.99 |
9 | Succinic acid | C4H6O4 | Dicarboxylic acid | 10.732 | 0.43 |
10 | Quercetin 3-O-β-D-glucoside | C21H20O12 | Flavonoid | 11.636 | 9.49 |
11 | Rutin | C27H30O16 | Flavonoid | 12.364 | 3.6 |
12 | Apigenin | C15H10O5 | Flavonoid | 14.856 | 1 |
Bacterial Strains | Gram Type | AAE | Imipenem (10 µg/Disc) | Amoxicillin (25 µg/Disc) | |||
---|---|---|---|---|---|---|---|
IZ * (mm) | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | IZ (mm) | IZ (mm) | ||
E. coli | G- | 25 ± 0.50 | 15 | 15 | 1 | 20 ± 0.50 | 15 ± 0.33 |
P. aeruginosa | G- | 36 ± 2.66 | 15 | 30 | 2 | 25 ± 0.33 | 20 ± 0.20 |
S. aureus | G+ | 24 ± 1.50 | 7.5 | 15 | 2 | 18 ± 0.20 | 10 ± 1.30 |
E. faecalis | G+ | 27 ± 0.33 | 7.5 | 15 | 2 | 11 ± 0.66 | 9 ± 0.66 |
Treatments | IC50 Value ± SD (µg/mL) * | Selectivity Index ** | |||
---|---|---|---|---|---|
MCF-7 | MDA-MB-231 | PBMC | MCF-7 | MDA-MB-231 | |
AAE | 44.59 ± 3.33 | 34.05 ± 1.03 | 771.30 ± 12.30 | 17.30 ± 1.32 | 22.65 ± 0.79 |
Cisplatin | 2.59 ± 1.30 | 3.24 ± 0.37 | 20.95 ± 4.19 | 8.08 ± 4.41 | 6.45 ± 1.48 |
Bioactive Compound of AAE | Glide Score (Kcal/mol) | |||
---|---|---|---|---|
NADPH Oxidase (PDB: 2CDU) | E. coli (PDB: 1FJ4) | S. aureus (PDB: 3Q8U) | Caspase-3 (PDB: 3GJQ) | |
Apigenin | −6.405 | −6.488 | −8.656 | −5.832 |
Cinnamic acid | −4.637 | −5.519 | −7.053 | −5.655 |
Ferulic acid | −5.401 | −6.558 | −7.933 | −6.072 |
Naringin | −5.163 | −4.674 | −6.542 | |
p-Coumaric acid | −5.017 | −6.261 | −7.678 | −5.818 |
Quercetin3-O-β-D-glucoside | −6.788 | −2.88 | −6.226 | −6.476 |
Rutin | −6.889 | −4.837 | −7.817 | −7.003 |
Sinapic acid | −5.299 | −7.517 | −7.457 | −5.901 |
Succinic acid | −6.692 | −5.645 | −8.251 | −8.102 |
Syringic acid | −6.132 | −6.636 | −7.916 | −6.722 |
Vanillic acid | −6.12 | −6.217 | −8.01 | −6.516 |
Vanillin | −6.603 | −6.471 | −8.174 | −5.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laaraj, S.; Tikent, A.; Chebaibi, M.; Bouaouda, K.; Bouhrim, M.; Sweilam, S.H.; Herqash, R.N.; Shahat, A.A.; Addi, M.; Elfazazi, K. A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq. Curr. Issues Mol. Biol. 2024, 46, 12375-12396. https://doi.org/10.3390/cimb46110735
Laaraj S, Tikent A, Chebaibi M, Bouaouda K, Bouhrim M, Sweilam SH, Herqash RN, Shahat AA, Addi M, Elfazazi K. A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq. Current Issues in Molecular Biology. 2024; 46(11):12375-12396. https://doi.org/10.3390/cimb46110735
Chicago/Turabian StyleLaaraj, Salah, Aziz Tikent, Mohamed Chebaibi, Khawla Bouaouda, Mohamed Bouhrim, Sherouk Hussein Sweilam, Rashed N. Herqash, Abdelaaty A. Shahat, Mohamed Addi, and Kaoutar Elfazazi. 2024. "A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq." Current Issues in Molecular Biology 46, no. 11: 12375-12396. https://doi.org/10.3390/cimb46110735
APA StyleLaaraj, S., Tikent, A., Chebaibi, M., Bouaouda, K., Bouhrim, M., Sweilam, S. H., Herqash, R. N., Shahat, A. A., Addi, M., & Elfazazi, K. (2024). A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq. Current Issues in Molecular Biology, 46(11), 12375-12396. https://doi.org/10.3390/cimb46110735