Demographic and Socioeconomic Predictors of Prehypertension and Hypertension in the Adult Population: Serbian National Health Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Target Population
2.3. Domains of Research and Stratification
2.4. Sample Size and Sample Allocation
2.5. Sample Selection Frame and Sample Selection
2.6. Respondents’ Participation in the Research and Response Rate
2.7. Ethical and Legal Aspects
2.8. Research Instruments
- A household info panel, which was used to collect information about all members of the household, i.e., socio-economic characteristics of the household itself;
- A self-completion questionnaire, which was filled in independently by each member of the household aged 15 and over.
2.9. Variables
2.10. Statistical Methods
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moussouni, A.; Sidi-Yakhlef, A.; Hamdaoui, H.; Aouar, A.; Belkhatir, D. Prevalence and risk factors of prehypertension and hypertension in Algeria. BMC Public Health 2022, 22, 1571. [Google Scholar] [CrossRef] [PubMed]
- Grujičić, S.Š.; Miljuš, D.; Soldatović, I.; Nikolić, A.; Vujčić, I. Prehypertension and hypertension prevalence and risk factors among adult population in Republic of Serbia: A cross-sectional study. Vojnosanit. Pregl. 2020, 77, 590–600. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.J.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef]
- Huang, Y.; Su, L.; Cai, X.; Mai, W.; Wang, S.; Hu, Y.; Wu, Y.; Tang, H.; Xu, D. Association of all-cause and cardiovascular mortality with prehypertension: A meta-analysis. Am. Heart J. 2014, 167, 160–168.e1. [Google Scholar] [CrossRef]
- Duan, W.; Wu, J.; Liu, S.; Jiao, Y.; Zheng, L.; Sun, Y.; Sun, Z. Impact of Prehypertension on the Risk of Major Adverse Cardiovascular Events in a Chinese Rural Cohort. Am. J. Hypertens. 2020, 33, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Lydia, A.; Setiati, S.; Soejono, C.H.; Istanti, R.; Marsigit, J.; Azwar, M.K. Prevalence of prehypertension and its risk factors in midlife and late life: Indonesian family life survey 2014–2015. BMC Public Health 2021, 21, 493. [Google Scholar] [CrossRef]
- Booth, J.N., 3rd; Li, J.; Zhang, L.; Chen, L.; Muntner, P.; Egan, B. Trends in Prehypertension and Hypertension Risk Factors in US Adults: 1999–2012. Hypertension 2017, 70, 275–284. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Cai, X.; Mai, W.; Hu, Y.; Tang, H.; Xu, D. Prehypertension and incidence of cardiovascular disease: A meta-analysis. BMC Med. 2013, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Jun, M.; Xiang, Y. The management of prehypertension in young adults. Saudi Med. J. 2020, 41, 223–231. [Google Scholar] [CrossRef]
- Malik, K.S.; Adoubi, K.A.; Kouame, J.; Coulibaly, M.; Tiade, M.L.; Oga, S.; Ake, M.; Ake, O.; Kouadio, L. Prevalence and Risks Factors of Prehypertension in Africa: A Systematic Review. Ann. Glob. Health 2022, 88, 13. [Google Scholar] [CrossRef]
- Grujičić, S.S.; Supić, Z.T.; Nikolić, Ž.; Gredić, D.; Bjekić, M.; Bjegović, V.; Ratkov, I. Risk factors for the development of arterial hypertension. Med. Glas. 2014, 11, 19–25. [Google Scholar]
- Longo-Mbenza, B.; Ngoma, D.V.; Nahimana, D.; Mayuku, D.M.; Fuele, S.M.; Ekwanzala, F.; Beya, C. Screen detection and the WHO stepwise approach to the prevalence and risk factors of arterial hypertension in Kinshasa. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 503–508. [Google Scholar] [CrossRef] [PubMed]
- European Health Interview Survey (EHIS Wave 3)—Methodological Manual, Eurostat. 2018. Available online: https://ec.europa.eu/eurostat/documents/3859598/8762193/KS-02-18-240-EN-N.pdf/5fa53ed4-4367-41c4-b3f5-260ced9ff2f6 (accessed on 20 January 2023).
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Pereira, M.; Lunet, N.; Azevedo, A.; Barros, H. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries. J. Hypertens. 2009, 27, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.A.; Sullivan, J.C. Hypertension: What’s sex got to do with its physiology? Physiology 2013, 28, 234–244. [Google Scholar] [CrossRef]
- Bachir Cherif, A.; Bouamra, A.; Taleb, A.; Nedjar, R.; Bouraghda, A.; Hamida, F.; Temmar, M.; Bouafia, M.T. Differences in prevalence, treatment and control rates of hypertension between male and female in the area of Blida (Algeria). Ann. Cardiol. Angeiol. 2017, 66, 123–129. [Google Scholar] [CrossRef]
- Yang, G.; Ma, Y.; Wang, S.; Su, Y.; Rao, W.; Fu, Y.; Yu, Y.; Kou, C. Prevalence and correlates of prehypertension and hypertension among adults in Northeastern China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2016, 13, 82. [Google Scholar] [CrossRef]
- Umuerri, E.M.; Aiwuyo, H.O. Prevalence and correlates of prehypertension and hypertension among adults in Delta State, Nigeria: A cross-sectional community-based study. Ghana Med. J. 2020, 54, 48–57. [Google Scholar] [CrossRef]
- Rumball-Smith, J.; Nandi, A.; Kaufman, J.S. Working and hypertension: Gaps in employment not associated with increased risk in 13 European countries, a retrospective cohort study. BMC Public Health 2014, 14, 536. [Google Scholar] [CrossRef]
- Boukli, H.L.; Khelil, M.A.; Chabane Sari, D.; Meguenni, K.; Meziane, T.A. Prevalence of cardiovascular risk factors in urban and rural communities in the Wilaya of Tlemcen (Algeria): A comparative study. Rev. Epidemiol. Sante Publique. 2017, 65, 277–284. [Google Scholar] [CrossRef]
- Sarki, A.M.; Nduka, C.U.; Stranges, S.; Kandala, N.B.; Uthman, O.A. Prevalence of hypertension in low- and middle-income countries: A systematic review and meta-analysis. Medicine 2015, 94, e1959. [Google Scholar] [CrossRef] [PubMed]
- Mosha, N.R.; Mahande, M.; Juma, A.; Mboya, I.; Peck, R.; Urassa, M.; Michael, D.; Todd, J. Prevalence, awareness and factors associated with hypertension in North West Tanzania. Glob. Health Action 2017, 10, 1321279. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Zaman, M.M.; Islam, J.Y.; Chowdhury, J.; Ahsan, H.N.; Rahman, R.; Hassan, M.; Hossain, Z.; Alam, B.; Yasmin, R. Prevalence, treatment patterns, and risk factors of hypertension and pre-hypertension among Bangladeshi adults. J. Hum. Hypertens. 2018, 32, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Msemo, O.A.; Schmiegelow, C.; Nielsen, B.B.; Kousholt, H.; Grunnet, L.G.; Christensen, D.L.; Lusingu, J.P.; Møller, S.L.; Kavishe, R.A.; Minja, D.T.; et al. Risk factors of pre-hypertension and hypertension among non-pregnant women of reproductive age in northeastern Tanzania: A community-based cross-sectional study. Trop. Med. Int. Health 2018, 23, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Bhimma, R.; Naicker, E.; Gounden, V.; Nandlal, L.; Connolly, C.; Hariparshad, S. Prevalence of Primary Hypertension and Risk Factors in Grade XII Learners in KwaZulu-Natal, South Africa. Int. J. Hypertens. 2018, 2018, 3848591. [Google Scholar] [CrossRef]
Variables | Study Population | p | |||
---|---|---|---|---|---|
Normotension n = 1539 | Prehypertension n = 5165 | Hypertension n = 3811 | |||
Gender | female | 1141 (73.66%) | 2550 (49.37%) | 1824 (47.86%) | <0.001 |
male | 408 (26.34%) | 2615 (50.63%) | 1987 (52.14%) | ||
Age | 20–29 | 335 (21.77%) | 751 (14.54%) | 95 (2.49%) | <0.001 |
30–39 | 335 (21.77%) | 878 (16.99%) | 205 (5.37%) | ||
40–49 | 296 (19.23%) | 966 (18.70%) | 414 (10.86%) | ||
50–59 | 219 (14.23%) | 946 (18.31%) | 739 (19.39%) | ||
60–69 | 189 (12.28%) | 917 (17.75%) | 1135 (29.78%) | ||
70–79 | 122 (7.93%) | 477 (9.23%) | 823 (21.59%) | ||
80+ | 53 (2.79%) | 230 (4.48%) | 400 (10.52%) | ||
Region | Belgrade | 467 (30.34%) | 922 (17.85%) | 556 (14.58%) | <0.001 |
Vojvodina | 281 (18.26%) | 1010 (19.55%) | 995 (26.10%) | ||
Šumadija and Western Serbia | 532 (34.56%) | 1985 (38.43%) | 1236 (32.43%) | ||
Southern and Eastern Serbia | 269 (16.84%) | 1248 (24.17%) | 1024 (26.89%) | ||
Marital status | never married/unmarried community | 386 (25.08%) | 1043 (20.19%) | 296 (7.76%) | <0.001 |
divorce, separation, death of a partner | 225 (14.62%) | 795 (15.39%) | 1005 (26.37%) | ||
marriage/common-law union | 935 (60.3%) | 3320 (64.42%) | 2506 (65.87%) | ||
Education | primary and lower school | 274 (17.80%) | 1089 (21.08%) | 1390 (36.47%) | <0.001 |
secondary school | 860 (55.88%) | 3054 (59.23%) | 1933 (50.72%) | ||
college and university | 415 (26.32%) | 1022 (19.69%) | 487 (12.81%) | ||
Employment status | unemployed | 312 (20.27%) | 1047 (20.27%) | 582 (15.27%) | <0.001 |
inactive | 542 (35.22%) | 1854 (35.89%) | 2279 (59.80%) | ||
employed | 694 (44.51%) | 2264 (43.84%) | 948 (24.93%) | ||
Well-being index | the poorest | 610 (39.63%) | 2075 (40.17%) | 1735 (45.52%) | <0.001 |
middle layer | 312 (20.27%) | 1030 (19.94%) | 814 (21.35%) | ||
the richest layer | 627 (40,1%) | 2060 (39,89%) | 1262 (33.13%) | ||
Self-assessment of general health | bad and very bad | 1101 (71.53%) | 3564 (69%) | 1677 (44%) | <0.001 |
average | 295 (19.16%) | 1136 (21.99%) | 1367 (35.86%) | ||
good and very good | 143 (9.31%) | 465 (9.01%) | 767 (20,14%) | ||
Multimorbidity | multimorbidity | 401 (26.05%) | 1479 (28.63%) | 1990 (52.21%) | <0.001 |
one disease | 234 (15.20%) | 919 (17.79%) | 889 (23.32%) | ||
no illness | 904 (58.73%) | 2767 (53.57%) | 932 (24.45%) | ||
Depressiveness | no symptoms | 24 (1.56%) | 43 (0.83%) | 53 (1.39%) | <0.001 |
mild symptoms | 1204 (78.23%) | 4122 (79.80%) | 2567 (67.35%) | ||
a depressive episode | 311 (20.21%) | 1000 (19.37%) | 1191 (31.25%) | ||
BMI | malnutrition | 99 (6.43%) | 140 (2.71%) | 84 (2.20%) | <0.001 |
normal nutrition | 821 (53.34%) | 2035 (39.39%) | 1007 (26.42%) | ||
preobesity | 415 (26.96%) | 2043 (39.55%) | 1464 (38.41%) | ||
obesity | 204 (13.25%) | 947 (18.33%) | 1256 (32.95%) |
Vriables | Study Population | p | |||
---|---|---|---|---|---|
Normotension n = 1539 | Prehypertension n = 5165 | Hypertension n = 3811 | |||
Cigarette consumption | no answer | 200 (12.99%) | 899 (17.40%) | 688 (18.05%) | <0.001 |
yes, everyday | 310 (20.14%) | 1095 (21.20%) | 792 (20.78%) | ||
yes, occasionally | 78 (5.07%) | 198 (3.83%) | 116 (3.04%) | ||
not | 824 (61.8%) | 2696 (57.57%) | 2013 (58.13%) | ||
Alcohol consumption | no answer | 275 (17.86%) | 1165 (22.12%) | 989 (25.94%) | <0.001 |
once a week or more often | 189 (12.27%) | 703 (13.59%) | 579 (3.91%) | ||
2–3 days a month and less often | 578 (37.54%) | 1805 (34.93%) | 1141 (29.93%) | ||
not, never | 497 (32.29%) | 1492 (28.88%) | 1102 (28.91%) | ||
Fruit and vegetable consumption | no answer | 23 (1.49%) | 42 (0.81%) | 52 (1.35%) | <0.001 |
once or more times a day | 622 (40.41%) | 2029 (39.28%) | 1430 (37.52%) | ||
4–6 times a week | 441 (28.65%) | 1417 (27.43%) | 954 (25.03%) | ||
1–3 times a week | 370 (24.04%) | 1278 (24.74%) | 1044 (27.39%) | ||
less than once a week | 67 (4.35%) | 352 (6.81%) | 277 (7.26%) | ||
never | 16 (1.04%) | 47 (0.91%) | 54 (1.41%) | ||
Physical activity | less than 150 min | 1187 (77.12%) | 4107 (79.51%) | 3045 (79.90%) | <0.001 |
more than 150 min | 352 (22.88%) | 1058 (20.49%) | 766 (20.1%) |
Variables | Prehypertension | Hypertension | ||||||
---|---|---|---|---|---|---|---|---|
Univariate Model | Multivariate Model | Univariate Model | Multivariate Model | |||||
OR (95%) | p | OR (95%) | p | OR (95%) | p | OR (95%) | p | |
Gender | ||||||||
female | 0.328 (0.288–0.374) | <0.001 | 0.244 (0.211–0.283) | <0.001 | 0.349 (0.308–0.395) | <0.001 | 0.324 (0.284–0.370) | <0.001 |
male | 1 | 1 | 1 | |||||
Age | ||||||||
20–29 | 0.038 (0.026–0.054) | 0.043 (0.027–0.067) | <0.001 | 0.517 (0.373–0.715) | <0.001 | 0.454 (0.305–0.674) | <0.001 | |
30–39 | 0.081 (0.058–0.113) | <0.001 | 0.094 (0.062–0.142) | <0.001 | 0.604 (0.437–0.835) | 0.002 | 0.527 (0.357–0.778) | <0.001 |
40–49 | 0.185 (0.134–0.256) | <0.001 | 0.202 (0.137–0.299) | <0.001 | 0.752 (0.543–1.042) | 0.086 | 0.638 (0.434–0.937) | 0.022 |
50–59 | 0.447 (0.323–0.618) | <0.001 | 0.507 (0.347–0.739) | <0.001 | 0.995 (0.714–1.389) | 0.978 | 0.890 (0.610–1.299) | 0.547 |
60–69 | 0.796 (0.575–1.102) | 0.168 | 0.869 (0.614–1.230) | 0.428 | 1.118 (0.798–1.566) | 0.517 | 1.075 (0.754–1.534) | 0.689 |
70–79 | 0.894 (0.634–1.261) | 0.522 | 0.940 (0.659–1.341) | 0.732 | 0.901 (0.629–1.290) | 0.569 | 0.893 (0.618–1.289) | 0.545 |
80+ | 1 | 1 | 1 | 1 | ||||
Region | ||||||||
Belgrade | 0.313 (0.261–0.375) | <0.001 | 0.338 (0.274–0.417) | <0.001 | 0.426 (0.358–0.506) | <0.001 | 0.399 (0.330–0.482) | <0.001 |
Vojvodina | 0.930 (0.770–1.123) | 0.452 | 0.976 (0.795–1.199) | 0.816 | 0.775 (0.643–0.934) | 0.007 | 0.755 (0.622–0.917) | 0.005 |
Šumadija and Western Serbia | 0.610 (0.516–0.722) | <0.001 | 0.630 (0.525–0.756) | <0.001 | 0.804 (0.683–0.946) | 0.009 | 0.773 (0.653–0.915) | 0.003 |
Southern and Eastern Serbia | 1 | 1 | 1 | 1 | ||||
Marital status | ||||||||
never married/unmarried community | 0.286 (0.242–0.339) | <0.001 | 0.870 (0.697–1.085) | 0.216 | 0.761 (0.663–0.873) | <0.001 | 0.904 (0.756–1.082) | 0.272 |
divorce, separation, death of a partner | 1.667 (1.416–1.961) | <0.001 | 1.136 (0.940–1.373) | 0.188 | 0.995 (0.844–1.173) | 0.953 | 1.050 (0.872–1.264) | 0.604 |
marriage/common-law union | 1 | 1 | 1 | 1 | ||||
Education | ||||||||
primary and lower school | 4.323 (3.596–5.197) | <0.001 | 2.103 (1.679–2.635) | <0.001 | 1.614 (1.355–1.922) | <0.001 | 1.348 (1.096–1.658) | <0.001 |
secondary school | 1.915 (1.643–2.233) | <0.001 | 1.628 (1.364–1.943) | <0.001 | 1.442 (1.258–1.654) | <0.001 | 1.282 (1.103–1.489) | <0.001 |
college and university | 1 | 1 | 1 | 1 | ||||
Employment status | ||||||||
unemployed | 0.687 (0.367–1.288) | 0.242 | 1.167 (0.589–2.313) | 0.657 | 0.824 (0.453–1.499) | 0.526 | 1.208 (0.650–2.244) | 0.550 |
inactive | 1.549 (0.833–2.879) | 0.166 | 1.071 (0.540–2.124) | 0.845 | 0.840 (0.465–1.519) | 0.564 | 1.038 (0.557–1.935) | 0.907 |
employed | 1 | 1 | 1 | 1 | ||||
Well-being index | ||||||||
the poorest | 1.413 (1.237–1.614) | <0.001 | 0.864 (0.731–1.021) | 0.087 | 1.035 (0.912–1.176) | <0.001 | 0.762 (0.654–0.887) | 0.592 |
middle layer | 1.296 (1.102–1.524) | <0.001 | 0.968 (0.807–1.161) | 0.726 | 1.005 (0.861–1.173) | 0.066 | 0.856 (0.726–1.010) | 0.952 |
the richest layer | 1 | 1 | 1 | 1 | ||||
Self-assessment of general health | ||||||||
bad and very bad | 0.997 (0.815–1.220) | 0.980 | 1.187 (0.937–1.504) | 0.956 | 0.280 (0.230–0.341) | <0.001 | 0.622 (0.491–0.787) | <0.001 |
average | 1.188 (0.944–1.495) | 0.141 | 1.192 (0.932–1.524) | 0.162 | 0.860 (0.690–1.073) | 0.182 | 1.027 (0.807–1.307) | 0.829 |
good and very good | 1 | 1 | 1 | 1 | ||||
Multimorbidity | ||||||||
multimorbidity | 1.218 (1.066–1.392) | <0.001 | 1.505 (1.187–1.909) | 0.001 | 4.867 (4.227–5.603) | <0.001 | 3.555 (2.758–4.582) | <0.001 |
one disease | 1.297 (1.103–1.525) | <0.001 | 1.199 (0.901–1.595) | 0.113 | 3.726 (3.142–4.418) | <0.001 | 2.401 (1.778–3.242) | <0.001 |
no illness | 1 | 1 | 1 | 1 | ||||
Depressiveness | ||||||||
no symptoms | 0.557 (0.333–0.933) | 0.026 | 0.563 (0.336–0.943) | 0.029 | 0.577 (0.350–0.949) | 0.030 | 0.611 (0.368–1.015) | 0.057 |
mild symptoms | 1.056 (0.916–1.218) | 0.108 | 1.132 (0.973–1.317) | 0.454 | 0.552 (0.479–0.637) | <0.001 | 0.849 (0.728–0.990) | 0.037 |
a depressive episode | 1 | 1 | 1 | 1 | ||||
BMI | ||||||||
malnutrition | 0.226 (0.161–0.319) | <0.001 | 0.334 (0.184–0.608) | <0.001 | 0.052 (0.033–0.083) | <0.001 | 0.100 (0.050–0.201) | <0.001 |
normal nutrition | 0.509 (0.426–0.608) | <0.001 | 0.548 (0.416–0.722) | <0.001 | 0.182 (0.152–0.218) | <0.001 | 0.268 (0.204–0.352) | <0.001 |
preobesity | 1.036 (0.855–1.255) | 0.716 | 1.003 (0.750–1.342) | 0.983 | 0.547 (0.452–0.662) | <0.001 | 0.625 (0.470–0.830) | <0.001 |
obesity | 1 | 1 | 1 | 1 |
Variables | Prehypertension | Hypertension | ||||||
---|---|---|---|---|---|---|---|---|
Univariate Model | Multivariate Model | Univariate Model | Multivariate Model | |||||
OR (95%) | p | OR (95%) | p | OR (95%) | p | OR (95%) | p | |
Cigarette consumption | ||||||||
yes, everyday | 1.080 (0.931–1.252) | 0.311 | 1.062 (0.913–1.235) | 0.435 | 1.046 (0.896–1.220) | 0.570 | 1.113 (0.947–1.309) | 0.193 |
yes, occasionally | 0.776 (0.590–1.020) | 0.069 | 0.762 (0.578–1.005) | 0.162 | 0.609 (0.452–0.820) | 0.001 | 0.670 (0.490–0.914) | 0.012 |
not | 1 | 1 | 1 | 1 | ||||
Alcohol consumption | ||||||||
once a week or more often | 1.604 (1.001–2.569) | 0.049 | 1.304 (0.981–1.734) | 0.067 | 2.740 (1.723–4.358) | 0.001 | 2.815 (1.747–4.537) | 0.001 |
2–3 days a month and less often | 1.473 (1.006–2.157) | 0.046 | 1.516 (1.033–2.266) | 0.034 | 1.880 (1.280–2.762) | 0.001 | 2.315 (1.558–3.440) | 0.005 |
not | 1 | 1 | 1 | 1 | ||||
Fruit and vegetable consumption | ||||||||
Once or more times a day | 1.093 (0.615–1.941) | 0.762 | 1.138 (0.634–2.044) | 0.664 | 0.670 (0.381–1.180) | 0.166 | 0.747 (0.419–1.334) | 0.325 |
4–6 times a week | 1.094 (0.614–1.948) | 0.761 | 1.114 (0.618–2.007) | 0.720 | 0.641 (0.363–1.132) | 0.126 | 0.701 (0.392–1.256) | 0.223 |
1–3 times a week | 1.176 (0.659–2.098) | 0.583 | 1.187 (0.658–2.140) | 0.570 | 0.836 (0.473–1.479) | 0.538 | 0.849 (0.474–1.522) | 0.583 |
less than once a week | 1.789 (0.958–3.340) | 0.068 | 1.785 (0.949–3.357) | 0.072 | 1.225 (0.660–2.274) | 0.520 | 1.245 (0.665–2.331) | 0.494 |
not, never | 1 | 1 | 1 | 1 | ||||
Physical activity | ||||||||
less than 150 min | 1.213 (1.031–1.427) | 0.020 | 1.168 (0.857–1.591) | 0.325 | 3.437 (2.802–4.215) | 0.001 | 3.166 (2.176–4.605) | 0.001 |
more than 150 min | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrijev, I.; Radovanovic, S.; Vesic, Z.; Colakovic, G.; Selakovic, V.; Lackovic, A.; Djordjevic, S.S.; Pesic, M.; Nesovic, D.; Lazarevic, R.; et al. Demographic and Socioeconomic Predictors of Prehypertension and Hypertension in the Adult Population: Serbian National Health Survey. Medicina 2024, 60, 824. https://doi.org/10.3390/medicina60050824
Dimitrijev I, Radovanovic S, Vesic Z, Colakovic G, Selakovic V, Lackovic A, Djordjevic SS, Pesic M, Nesovic D, Lazarevic R, et al. Demographic and Socioeconomic Predictors of Prehypertension and Hypertension in the Adult Population: Serbian National Health Survey. Medicina. 2024; 60(5):824. https://doi.org/10.3390/medicina60050824
Chicago/Turabian StyleDimitrijev, Igor, Snezana Radovanovic, Zoran Vesic, Goran Colakovic, Viktor Selakovic, Ana Lackovic, Slavica S. Djordjevic, Maja Pesic, Danijela Nesovic, Radomir Lazarevic, and et al. 2024. "Demographic and Socioeconomic Predictors of Prehypertension and Hypertension in the Adult Population: Serbian National Health Survey" Medicina 60, no. 5: 824. https://doi.org/10.3390/medicina60050824
APA StyleDimitrijev, I., Radovanovic, S., Vesic, Z., Colakovic, G., Selakovic, V., Lackovic, A., Djordjevic, S. S., Pesic, M., Nesovic, D., Lazarevic, R., Djordjevic, O., Mihaljevic, O., Obradovic, A., Vukicevic, V., Janicijevic, N., & Radovanovic, J. (2024). Demographic and Socioeconomic Predictors of Prehypertension and Hypertension in the Adult Population: Serbian National Health Survey. Medicina, 60(5), 824. https://doi.org/10.3390/medicina60050824