Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Characterization of Chitosan Batches
2.2. Antioxidant Activity and Total Amount of Polyphenols in the Olive Leaf Extract
2.3. Physico-Chemical Characterization of Chitosan/OLE Microspheres
2.4. In Vitro Release Profile of Olive Leaf Extract Loaded Microspheres
2.5. Physico-Chemical Characterization of Semi-Solid Formulations
Viscosity V (Pa·s) | Thixotropy T (Pa) | |
---|---|---|
Formulation | ||
A | 3.146 | 8.65 |
A + MP | 2.674 | 5.64 |
B | 6.763 | 46.27 |
B + MP | 5.426 | 37.62 |
C | 4.404 | 47.58 |
C + MP | 2.595 | 9.17 |
2.6. In Vitro Release Profile of Semi-Solid Formulations
3. Experimental Section
3.1. Physico-Chemical Characterization of Chitosan
3.1.1. Determination of Molecular Weight by Size Exclusion Chromatography
3.1.2. Determination of Acetylation Degree by Nuclear Magnetic Resonance (1H-NMR)
3.2. Antioxidant Activity and Total Amount of Polyphenols in the Olive Leaf Extract
3.3. Preparation of Chitosan Microparticles Loaded with Olive Leaf Extract
3.4. Physico-Chemical Characterization of the Chitosan Microparticles
3.4.1. Estimation of the Encapsulation Efficiency of Polyphenolic Compounds
3.4.2. Evaluation of the Microparticles’ Morphology by Scanning Electron Microscopy
3.4.3. Drug-Polymer Interactions
Infrared Spectroscopy FT-IR
3.4.4. Zeta Potential Measurements
3.4.5. In Vitro Release Profile of Olive Leaf Extract Encapsulated in Microspheres
3.5. Design of Semi-Solid Formulations Containing Chitosan Microspheres
Formulation | Oil Phase Ingredients | Water Phase Ingredients |
---|---|---|
A(o/w emulsion) | 0.8% (w/w) calendula oil 2.5% (w/w) jojoba oil 13% (w/w) olive oil 1.6% (w/w) olivem® 1000 (emulsifier) 2.5% (w/w) glycerol stearate (emollient) 0.35% (w/w) xanthan gum (thickener) 0.25% (w/w) candy dye 0. 2% (w/w) OLE/chitosan microspheres | 52.4% (w/w) purified water 26.4% (w/w) eucalyptus water |
B (o/w emulsion) | 6.5% (w/w) olive oil 3.7% (w/w) jojoba oil 5.5% (w/w) calendula oil 4.5% (w/w) sodium stearoyl lactylate 0.9% (w/w) beeswax 8% (w/w) glycerol stearate (emollient) 1.7% (w/w) shea butter 0. 2% (w/w) OLE/chitosan microspheres | 46% (w/w) purified water 23% (w/w) roses water |
C (w/o emulsion) | 9.7% (w/w) jojoba oil 29% (w/w) avocado oil 5.5% (w/w) beeswax 3.2% (w/w) sodium stearoyl lactylate (emulsifier) 4.3% (w/w) shea butter 0.10% (w/w) chlorophyll dye 0. 2% (w/w) OLE/chitosan microspheres | 32% (w/w) purified water 16% (w/w) eucalyptus water |
Physico-Chemical Characterization of Semi-Solid Formulations
3.6. In Vitro Release Profile of Semi-Solid Formulations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sailaja, A.K.; Awareshwar, P.R. Chitosan nanoparticles as a drug delivery system. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 474–478. [Google Scholar]
- Gupta, K.C.; Jabrail, F.H. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr. Res. 2006, 341, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Caiqin, Q.; Huirong, L.; Qi, X.; Yi, L.; Juncheng, Z.; Yumin, D. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374. [Google Scholar]
- He, W.; Guo, X.; Zhang, M. Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int. J. Pharm. 2008, 356, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Kosaraju, S.L.; D’ath, L.; Lawrence, A. Preparation and characterization of chitosan microspheres for antioxidant delivery. Carbohydr. Polym. 2006, 64, 163–167. [Google Scholar] [CrossRef]
- Belscak-Cvitanovic, A.; Stojanovic, R.; Manojlovic, V.; Komes, D.; Cindric, I.J.; Nedovic, V.; Bugarski, B. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res. Int. 2011, 44, 1094–1101. [Google Scholar] [CrossRef]
- Harris, R.; Lecumberri, E.; Mateos-Aparicio, I.; Mengíbar, M.; Heras, A. Chitosan nanoparticles and microspheres for encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr. Polym. 2011, 83, 803–806. [Google Scholar] [CrossRef]
- Chimi, H.; Cillard, J.; Cillard, P.; Rahmani, M. Peroxyl and hydroxyl radical scavening activity of some natural phenolic antioxidants. J. Am. Oil Chem. Soc. 1991, 68, 307–312. [Google Scholar] [CrossRef]
- Glampedaki, P.; Deuth, V. Stability studies of cosmetic emulsions prepare from natural products such as wine, grape seed oil and mastic resin. J. Cosmet. Sci. 2006, 57, 205–214. [Google Scholar]
- Badiu, D.; Luque, R.; Rajendram, R. Effect of Olive Oil on the Skin. In Olives and Olive Oil in Health and Disease Prevention; Victor, R., Ed.; Preedy and Ronald Ross Watson: Constanza, Romania, 2010. [Google Scholar]
- Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol. 2010, 27, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Mengibar, M.; Harris, R.; Miralles, B.; Acosta, N.; Calderon, L.; Sanchez, A.; Heras, A. Role of Physicochemical Properties of Chitin and Chitosan on their Functionality. Curr. Chem. Biol. 2014, 8, 27–42. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengíbar, M.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar]
- Montreau, F.R. On the analysis of total phenolic compounds in wines by the Folin-Ciocalteu method. Connaiss. Vigne Vin 1972, 24, 397–340. [Google Scholar]
- Sifaoui, I. Activity of olive leaf extracts against the promastigote stage of Leishmania species and their correlation with the antioxidant activity. Exp. Parasitol. 2014, 141, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Stulzer, H.K.; Tagliari, M.P.; Parize, A.L.; Silva, M.A.S.; Laranjeira, M.C.M. Evaluation of cross-linked chitosan microparticles containing acyclovir obtained by spray-drying. Mater. Sci. Eng. 2009, 29, 387–392. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandair, B. Encapsulation of polyphenols—A Review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Argüelles-Monal, W.; Peniche-Covas, C. Study of the Interpolyelectrolyte Reaction between Chitosan and Carboxymethyl Cellulose. Die Makromol. Chem. Rapid Commun. 1988, 10, 693–697. [Google Scholar] [CrossRef]
- Bocourt, M.; Argüelles, W.; Cauich, J.V.; Bada, N.; Peniche, C. Interpenetrated chitosan-poly (acrylic acid-co acrylamide) hydrogels. Synthesis, characterization and sustained protein release studies. Mater. Sci. Appl. 2011, 2, 509–520. [Google Scholar]
- Osman, Z.; Arof, A.K. FTIR studies of chitosan acetate based polymer electrolytes. Electrochim. Acta 2003, 48, 993–999. [Google Scholar] [CrossRef]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Ioelovich, M. Crystallinity and Hydrophility of Chitin and Chitosan. J. Chem. 2014, 3, 7–14. [Google Scholar]
- Hidalgo, C.; Fernández, M.; Nieto, O.M.; Paneque, A.A.; Fernández, G.; Lópiz, J.C.L. Estudio de quitosanos cubanos derivados de la quitina de la langosta. Rev. Iberoam. Polím. 2009, 10, 11–27. [Google Scholar]
- Yenilmez, E.; Başaran, E.; Yazan, Y. Release characteristics of vitamin E incorporated chitosan microspheres and in vitro-in vivo evaluation for topical application. Carbohydr. Polym. 2011, 8, 807–811. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A. Mucoadhesive polymers: Strategies, achievements and future challenges. Adv. Drug Deliv. Rev. 2005, 57, 1553–1555. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.M. Delivery System Handbook for Personal Care and Cosmetic Products: Technology, Applications and Formulations; William Andrew: Norwich, NY, USA, 2005. [Google Scholar]
- Popa, M.; Aelenei, N.; Popa, V.I.; Andrei, D. Study of the interactions between polyphenolic compounds and chitosan. React. Funct. Polym. 2000, 42, 35–43. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Córdoba-Díaz, M.; de Cortes Sánchez-Mata, M.; Marqués, C.; Isabel Goñi, I. The addition of cladodes (Opuntia ficus indica L. Miller) to instant maize flour improves physicochemical and nutritional properties of maize tortillas. LWT—Food Sci. Technol. 2015, 62, 675–681. [Google Scholar] [CrossRef]
- Prudencio, I.D.; Prudencio, E.S.; Gauche, C.; Barreto, P.; Bordignon-Luiz, M.T. Flow properties of petit Suisse cheeses use of cheese whey as a partial milk substitute. Ital. J. Food Sci. 2008, 20, 169–179. [Google Scholar]
- Di Mambro, V.M. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts. J. Pharm. Biomed. 2005, 37, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. In Methods in Enzymology; Packer, L., Ed.; Academic Press: Waltham, MA, USA, 1999; pp. 15–27. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.; Paños, I.; Acosta, N.; Heras, A. Preparation and characterization of chitosan microspheres for controlled release of tramadol. J. Control. Release 2008, 132, 76–77. [Google Scholar] [CrossRef]
- Campaña-Seoane, P.A. Bioadhesive emulsions for control release of progesterone resistant to vaginal fluids clearance. Int. J. Pharm. 2014, 477, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Measurement of Consistency by Penetrometry, 267. In European Pharmacopoeia 7.0; European Directorate for Quality Medicines & HealthCare: Strasbourg, France, 2008.
- Córdoba-Díaz, M.; Nova, M.; Elorza, B.; Córdoba-Díaz, D.; Chantres, J.R.; Córdoba-Borrego, M. Validation protocol of an automated in-line flow-through diffusion equipment for in vitro permeation studies. J. Control. Release 2000, 69, 357–367. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, N.; Sánchez, E.; Calderón, L.; Cordoba-Diaz, M.; Cordoba-Diaz, D.; Dom, S.; Heras, Á. Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres. Mar. Drugs 2015, 13, 5901-5919. https://doi.org/10.3390/md13095901
Acosta N, Sánchez E, Calderón L, Cordoba-Diaz M, Cordoba-Diaz D, Dom S, Heras Á. Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres. Marine Drugs. 2015; 13(9):5901-5919. https://doi.org/10.3390/md13095901
Chicago/Turabian StyleAcosta, Niuris, Elisa Sánchez, Laura Calderón, Manuel Cordoba-Diaz, Damián Cordoba-Diaz, Senne Dom, and Ángeles Heras. 2015. "Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres" Marine Drugs 13, no. 9: 5901-5919. https://doi.org/10.3390/md13095901
APA StyleAcosta, N., Sánchez, E., Calderón, L., Cordoba-Diaz, M., Cordoba-Diaz, D., Dom, S., & Heras, Á. (2015). Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres. Marine Drugs, 13(9), 5901-5919. https://doi.org/10.3390/md13095901