Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lipophilic Composition
2.1.1. Diterpenes and Other Terpenoids
2.1.2. Fatty Acids
2.1.3. Long-Chain Aliphatic Alcohols
2.1.4. Sterols
2.1.5. Monoglycerides
2.2. Antioxidant Activity
2.3. Anti-Inflammatory Activity
2.4. Antibacterial Activity
3. Material and Methods
3.1. Sample
3.2. Lipophilic Compounds Extraction
3.3. GC-MS Analysis
3.3.1. Analysis of Trimethylsilyl Derivatizable Compounds
3.3.2. Analysis of diterpenes
3.4. Antioxidant Activity
3.4.1. DPPH Assay
3.4.2. ABTS Assay
3.5. Anti-Inflammatory Activity
3.5.1. Cell Culture
3.5.2. Determination of Cell Viability
3.5.3. Measurement of Nitrite Production by Griess Reagent
3.6. Antibacterial Activity
3.6.1. Bacterial Strains
3.6.2. Growth Kinetics
3.6.3. Minimal Inhibitory Concentration (MIC) Determination
3.6.4. Synergistic Assays
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.G.; Pereira, L. Review of marine algae as source of bioactive metabolites. In Marine Algae Bodiversity, Taxonomy, Environmental Assessment, and Biotechnology; Pereira, L., Neto, J.M., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 195–227. [Google Scholar]
- Plaza, M.; Cifuentes, A.; Ibanez, E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef]
- Van Hal, J.W.; Huijgen, W.J.J.; López-Contreras, A.M. Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol. 2014, 32, 231–233. [Google Scholar] [CrossRef] [PubMed]
- FAO Yearbook of Fishery Statistics. Available online: http://www.fao.org/3/a-i5716t.pdf (accessed on 4 April 2017).
- Martins, C.D.L.; Ramlov, F.; Nocchi Carneiro, N.P.; Gestinari, L.M.; dos Santos, B.F.; Bento, L.M.; Lhullier, C.; Gouvea, L.; Bastos, E.; Horta, P.A.; et al. Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J. Appl. Phycol. 2012, 25, 1179–1187. [Google Scholar] [CrossRef]
- Fleurence, J.; Gutbier, G.; Mabeau, S.; Leray, C. Fatty acids from 11 marine macroalgae of the French Brittany coast. J. Appl. Phycol. 1994, 6, 527–532. [Google Scholar] [CrossRef]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Robert Waaland, J.; Rabiei, R. Fatty acids, amino acids, mineral contents, and proximate composition of some brown seaweeds. J. Phycol. 2012, 48, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Abreu, M.H.; Rocha, S.M.; Silvestre, A.J.D. Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals. Food Chem. 2015, 183, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Oliveira, C.S.D.; Trindade, S.S.; Abreu, M.H.; Rocha, S.S.M.; Silvestre, A.J.D. Bioprospecting for lipophilic-like components of five Phaeophyta macroalgae from the Portuguese coast. J. Appl. Phycol. 2016, 1–8. [Google Scholar] [CrossRef]
- Lopes, G.; Sousa, C.; Bernardo, J.; Andrade, P.B.; Valentão, P.; Ferreres, F.; Mouga, T. Sterol profiles in 18 macroalgae of the Portuguese coast. J. Phycol. 2011, 47, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Melo, T.; Alves, E.; Azevedo, V.; Martins, A.S.; Neves, B.; Domingues, P.; Calado, R.; Abreu, M.H.; Domingues, M.R. Lipidomics as a new approach for the bioprospecting of marine macroalgae—Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res. 2015, 8, 181–191. [Google Scholar] [CrossRef]
- Fundação para a Ciência e a Tecnologia Estratégia de Investigação e Inovação para uma Especialização Inteligente 2014–2020. Available online: https://www.fct.pt/gabestudosestrategia/ENEI/docs/ENEI_Julho2014_apos consulta_VF_completa.pdf (accessed on 27 February 2017).
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef]
- Bourgougnon, N.; Stiger-Pouvreau, V. Chemodiversity and Bioactivity within Red and Brown Macroalgae Along the French coasts, Metropole and Overseas Departements and Territories. In Handbook of Marine Macroalgae; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 58–105. ISBN 9781119977087. [Google Scholar]
- Muñoz, J.; Culioli, G.; Köck, M. Linear diterpenes from the marine brown alga Bifurcaria bifurcata: A chemical perspective. Phytochem. Rev. 2013, 12, 407–424. [Google Scholar] [CrossRef]
- Culioli, G.; Daoudi, M.; Ortalo-magne, A.; Valls, R.; Piovetti, L. (S)-12-Hydroxygeranylgeraniol-derived diterpenes from the brown alga Bifurcaria bifurcata. Phytochemistry 2001, 57, 529–535. [Google Scholar] [CrossRef]
- Valls, R.; Piovetti, L.; Banaigs, B.; Archavlis, A.; Pellegrini, M. (S)-13-hydroxygeranylgeraniol-derived furanoditerpenes from Bifurcaria bifurcata. Phytochemistry 1995, 39, 145–149. [Google Scholar] [CrossRef]
- Ortalo-Magné, A.; Culioli, G.; Valls, R.; Pucci, B.; Piovetti, L. Polar acyclic diterpenoids from Bifurcaria bifurcata (Fucales, Phaeophyta). Phytochemistry 2005, 66, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Culioli, G.; Daoudi, M.; Mesguiche, V.; Valls, R.; Piovetti, L. Geranylgeraniol-derived diterpenoids from the brown alga Bifurcaria bifurcata. Phytochemistry 1999, 52, 1447–1454. [Google Scholar] [CrossRef]
- Göthel, Q.; Muñoz, J.; Köck, M. Formyleleganolone and bibifuran, two metabolites from the brown alga Bifurcaria bifurcata. Phytochem. Lett. 2012, 5, 693–695. [Google Scholar] [CrossRef]
- Biard, J.; Verbist, J.; Letourneux, Y.; Floch, R. Cétols Diterpeniques à Activité Antimicrobienne de Bifurcaria bifurcata. Planta Med. 1980, 40, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Valls, R.; Banaigs, B.; Piovetti, L.; Archavlis, A.; Artaud, J. Linear diterpene with antimitotic activity from the brown alga Bifurcaria bifurcata. Phytochemistry 1993, 34, 1585–1588. [Google Scholar] [CrossRef]
- Moreau, D.; Thomas-Guyon, H.; Jacquot, C.; Jugé, M.; Culioli, G.; Ortalo-Magné, A.; Piovetti, L.; Roussakis, C. An extract from the brown alga Bifurcaria bifurcata induces irreversible arrest of cell proliferation in a non-small-cell bronchopulmonary carcinoma line. J. Appl. Phycol. 2006, 18, 87–93. [Google Scholar] [CrossRef]
- Alves, C.; Pinteus, S.; Simões, T.; Horta, A.; Silva, J.; Tecelão, C.; Pedrosa, R. Bifurcaria bifurcata: A key macro-alga as a source of bioactive compounds and functional ingredients. Int. J. Food Sci. Technol. 2016, 51, 1638–1646. [Google Scholar] [CrossRef]
- Le Lann, K.; Rumin, J.; Cérantola, S.; Culioli, G.; Stiger-Pouvreau, V. Spatiotemporal variations of diterpene production in the brown macroalga Bifurcaria bifurcata from the western coasts of Brittany (France). J. Appl. Phycol. 2014, 26, 1207–1214. [Google Scholar] [CrossRef]
- Daoudi, M.; Bakkas, S.; Culioli, G.; Ortalo-Magné, A.; Piovetti, L.; Guiry, M.D. Acyclic diterpenes and sterols from the genera Bifurcaria and Bifurcariopsis (Cystoseiraceae, Phaeophyceae). Biochem. Syst. Ecol. 2001, 29, 973–978. [Google Scholar] [CrossRef]
- Valls, R.; Mesguiehe, V.; Pellegrini, M.; Pellegrini, L.; Banaigs, B. Variation de la composition en diterpènes de Bifurcaria bifurcata sur les côtes atlantiques françaises. Acta Bot. Gall. 1995, 142, 119–124. [Google Scholar] [CrossRef]
- Touati, R.; Santos, S.A.O.; Rocha, S.M.; Belhamel, K.; Silvestre, A.J.D. Retama sphaerocarpa: An unexploited and rich source of alkaloids, unsaturated fatty acids and other valuable phytochemicals. Ind. Crops Prod. 2015, 69, 238–243. [Google Scholar] [CrossRef]
- Vilela, C.; Santos, S.A.O.; Oliveira, L.; Camacho, J.F.; Cordeiro, N.; Freire, C.S.R.; Silvestre, A.J.D. The ripe pulp of Mangifera indica L.: A rich source of phytosterols and other lipophilic phytochemicals. Food Res. Int. 2013, 54, 1535–1540. [Google Scholar] [CrossRef]
- Silva, R.G. Estudos em Bifurcaria bifurcata: Aquacultura, Atividade Antioxidante e Antifungica; Universidade de Coimbra: Coimbra, Portugal, 2014. [Google Scholar]
- Culioli, G.; Mesguiche, V.; Piovetti, L.; Valls, R. Geranylgeraniol and geranylgeraniol-derived diterpenes from the brown alga Bifurcaria bifurcata (Cystoseiraceae). Biochem. Syst. Ecol. 1999, 27, 665–668. [Google Scholar] [CrossRef]
- Culioli, G.; Ortalo-Magné, A.; Richou, M.; Valls, R.; Piovetti, L. Seasonal variations in the chemical composition of Bifurcaria bifurcata (Cystoseiraceae). Biochem. Syst. Ecol. 2002, 30, 61–64. [Google Scholar] [CrossRef]
- González-Burgos, E.; Gómez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, V.; Seca, A.M.L.; Barreto, M.C.; Pinto, D.C.G.A. Di- and sesquiterpenoids from Cystoseira genus: Structure, intra-molecular transformations and biological activity. Mini Rev. Med. Chem. 2013, 13, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Manzo, E.; Ciavatta, M.L.; Bakkas, S.; Villani, G.; Varcamonti, M.; Zanfardino, A.; Gavagnin, M. Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem. Lett. 2009, 2, 211–215. [Google Scholar] [CrossRef]
- Abrantes, J.L.; Barbosa, J.; Cavalcanti, D.; Pereira, R.C.; Frederico Fontes, C.L.; Teixeira, V.L.; Moreno Souza, T.L.; Paixão, I.C.P. The effects of the diterpenes isolated from the Brazilian brown algae Dictyota pfaffii and Dictyota menstrualis against the herpes simplex type-1 replicative cycle. Planta Med. 2010, 76, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Awad, N.E. Bioactive Brominated Diterpenes from the Marine Red Alga Jania rubens (L.) Lamx. Phyther. Res. 2004, 279, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Ravi, B.; Murphy, P.; Lidgard, R.; Warren, R.; Wells, R. C18 terpenoid metabolites of the brown alga Cystophora moniliformis. Aust. J. Chem. 1982, 35, 171–182. [Google Scholar] [CrossRef]
- Reddy, P.; Urban, S. Linear and cyclic C18 terpenoids from the southern Australian marine brown alga Cystophora moniliformis. J. Nat. Prod. 2008, 71, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Chen, B.; McClements, D.J.; Decker, E.A. Design of foods with bioactive lipids for improved health. Annu. Rev. Food Sci. Technol. 2013, 4, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Hoang, M.-H.; Jia, Y.; Jun, H.; Lee, J.H.; Lee, B.Y.; Lee, S.-J. Fucosterol is a selective liver X receptor modulator that regulates the expression of key genes in cholesterol homeostasis in macrophages, hepatocytes, and intestinal cells. J. Agric. Food Chem. 2012, 60, 11567–11575. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 2013, 59, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.; Park, S.-Y.; Sun, Z.; Shin, H.-S.; Lee, D.-G.; Yi, T.H. The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts. Mar. Biotechnol. 2014, 16, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Ishita, I.J.; Jin, S.E.; Choi, R.J.; Lee, C.M.; Kim, Y.S.; Jung, H.A.; Choi, J.S. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem. Toxicol. 2013, 55, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Oh, Y.-S.; Lim, S.-B. Anti-inflammatory activities of some brown marine algae in LPS-stimulated RAW 264.7 cells. Food Sci. Biotechnol. 2014, 23, 865–871. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The “accidental” pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Cavaleiro, J.A.S. Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforschung 2002, 56, 372–379. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; ISBN 1562387855. [Google Scholar]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Ellof, J. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed]
Rt (min) | Compound | mg g−1 of Extract | mg kg−1 of Dry Macroalgae |
---|---|---|---|
Fatty acids 2 | 24.18 ± 0.56 | 947.88 ± 21.94 | |
Saturated | 14.04 ± 0.40 | 550.35 ± 15.67 | |
31.0 | Tetradecanoic acid | 1.94 ± 0.04 | 76.23 ± 1.69 |
33.5 | Pentadecanoic acid | 0.24 ± 0.02 | 9.45 ± 0.60 |
36.0 | Hexadecanoic acid | 10.11 ± 0.43 | 396.43 ± 17.01 |
38.2 | Heptadecanoic acid | 0.30 ± 0.02 | 11.81 ± 0.78 |
40.5 | Octadecanoic acid | 1.05 ± 0.09 | 41.01 ± 3.49 |
44.7 | Docosanoic acid | 0.24 ± 0.01 | 9.28 ± 0.48 |
48.5 | Tetracosanoic acid | 0.16 ± 0.01 | 6.15 ± 0.20 |
Unsaturated | 10.13 ± 0.47 | 397.06 ± 18.44 | |
35.3 | Hexadec-9-enoic acid | 1.08 ± 0.07 | 42.24 ± 2.79 |
39.5 | Octadeca-9,12-dienoic acid | 1.04 ± 0.05 | 40.74 ± 2.08 |
39.6 | Octadeca-9,12,15-trienoic acid | 1.47 ± 0.07 | 57.81 ± 2.70 |
39.9 | Octadec-9-enoic acid | 5.13 ± 0.26 | 200.95 ± 10.32 |
42.9 | Eicosa-5,8,11,14,17-pentaenoic acid | 0.91 ± 0.07 | 35.86 ± 2.57 |
43.3 | Eicosa-5,8,11-trienoic acid | 0.02 ± 0.00 | 0.75 ± 0.03 |
43.4 | Eicosa-11,14-dienoic acid | 0.07 ± 0.01 | 2.86 ± 0.05 |
ω-hydroxyacids | 0.01 ± 0.00 | 0.47 ± 0.02 | |
55.3 | 22-Hydroxydocosanoic acid | 0.01 ± 0.00 | 0.47 ± 0.02 |
Long-chain aliphatic alcohols 2 | 0.43 ± 0.03 | 17.03 ± 1.29 | |
29.0 | Tetradecan-1-ol | 0.10 ± 0.00 | 3.78 ± 0.02 |
34.1 | Hexadecan-1-ol | 0.15 ± 0.01 | 5.89 ± 0.38 |
38.7 | Octadecan-1-ol | 0.09 ± 0.00 | 3.41 ± 0.19 |
58.9 | Octacosan-1-ol | 0.12 ± 0.00 | 4.78 ± 0.17 |
Sterols 2 | 10.37 ± 0.67 | 406.45 ± 26.19 | |
58.6 | Cholesterol | 0.19 ± 0.01 | 7.29 ± 0.24 |
62.0 | Desmosterol | 1.11 ± 0.03 | 43.56 ± 1.10 |
63.1 | Fucosterol | 8.10 ± 0.67 | 317.68 ± 26.11 |
63.4 | Campesterol | 0.97 ± 0.04 | 37.92 ± 1.61 |
Monoglycerides 2 | 0.89 ± 0.03 | 34.99 ± 1.10 | |
47.8 | 1-Monohexadecanoin | 0.66 ± 0.03 | 25.82 ± 1.01 |
50.9 | 1-Monooctadecenoin | 0.13 ± 0.00 | 5.17 ± 0.17 |
51.5 | 1-Monoeicosa-tetraenoin | 0.10 ± 0.01 | 4.00 ± 0.31 |
Diterpenes 3 | 48.29 ± 3.42 | 1892.78 ± 133.97 | |
26.8 | Neophytadiene | 1.53 ± 0.08 | 59.86 ± 3.29 |
32.4 | Phytol | 0.87 ± 0.07 | 34.02 ± 3.25 |
34.0 | Trans-geranylgeraniol | 1.70 ± 0.16 | 66.53 ± 2.93 |
34.5 | 6,7,9,10,11,12,14,15-Tetradehydrophytol | 2.41 ± 0.88 | 94.35 ± 6.29 |
36.5 | 6-Hydroxy-13-oxo-7,7′,10,11-didehydrophytol | 16.27 ± 2.41 | 637.84 ± 34.41 |
40.7 | 1-Acetyl-10,13-dioxo-6,7,11,11′,14,15-tridehydrophytol | 25.51 ± 4.04 | 1000.17 ± 94.47 |
Other terpenic compounds 3 | 0.28 ± 0.00 | 10.79 ± 0.18 | |
26.6 | 6,10,14-Trimethyl-2-pentadecanone | 0.28 ± 0.00 | 10.79 ± 0.18 |
Total | 84.44 ± 4.14 | 3309.93 ± 162.25 |
Heading | DPPH Assay | ABTS Assay | ||
---|---|---|---|---|
IC50 | mg AAE g−1 DW | IC50 | mg TE g−1 DW | |
B. bifurcata | 365.57 ± 10.04 | 11.18 ± 0.30 | 116.25 ± 2.54 | 23.10 ± 0.51 |
Ascorbic acid | 4.08 ± 0.05 | |||
BHT | 14.32 ± 0.69 | |||
Trolox | 2.68 ± 0.07 |
Bacteria | Ext | Rif | Rif+ Ext | Gent | Gent+ Ext | Amp | Amp+ Ext | Tetra | Tetra + Ext |
---|---|---|---|---|---|---|---|---|---|
MIC (µg mL−1) | |||||||||
E. coli ATCC®25922 | 2048 | 32 | 16 | >256 | <2 | 32 | 128 | 18 | <2 |
Staphylococcus aureus ATCC®43300 | 2048 | 16 | <2 | >256 | 16 | 128 | 256 | >256 | <2 |
Staphylococcus aureus ATCC®6538 | 1024 | 64 | 64 | 32 | 16 | 256 | 512 | 16 | 8 |
Pseudomonas aeruginosa PAO1 | >2048 | 32 | - | 2 | - | 16 | - | 16 | - |
Staphylococcus epidermidis | >2048 | 32 | - | 512 | - | >2048 | - | 32 | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, S.A.O.; Trindade, S.S.; Oliveira, C.S.D.; Parreira, P.; Rosa, D.; Duarte, M.F.; Ferreira, I.; Cruz, M.T.; Rego, A.M.; Abreu, M.H.; et al. Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties. Mar. Drugs 2017, 15, 340. https://doi.org/10.3390/md15110340
Santos SAO, Trindade SS, Oliveira CSD, Parreira P, Rosa D, Duarte MF, Ferreira I, Cruz MT, Rego AM, Abreu MH, et al. Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties. Marine Drugs. 2017; 15(11):340. https://doi.org/10.3390/md15110340
Chicago/Turabian StyleSantos, Sónia A. O., Stephanie S. Trindade, Catia S. D. Oliveira, Paula Parreira, Daniela Rosa, Maria F. Duarte, Isabel Ferreira, Maria T. Cruz, Andreia M. Rego, Maria H. Abreu, and et al. 2017. "Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties" Marine Drugs 15, no. 11: 340. https://doi.org/10.3390/md15110340
APA StyleSantos, S. A. O., Trindade, S. S., Oliveira, C. S. D., Parreira, P., Rosa, D., Duarte, M. F., Ferreira, I., Cruz, M. T., Rego, A. M., Abreu, M. H., Rocha, S. M., & Silvestre, A. J. D. (2017). Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties. Marine Drugs, 15(11), 340. https://doi.org/10.3390/md15110340