One-Step Preparative Separation of Phytosterols from Edible Brown Seaweed Sargassum horneri by High-Speed Countercurrent Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Analysis of the Crude Extract
2.2. Selection of Two-phase Solvent System for CCC
2.3. Studies on the Retention of the Stationary Phase
2.4. HSCCC Separations
2.5. Structure Elucidation of the Isolated Compounds
3. Materials and Methods
3.1. Reagents and Materials
3.2. Preparation of Crude Extract
3.3. Determination of Solute Partition Coefficient
3.4. Preliminary Studies on Retention of the Stationary Phase
3.5. HSCCC Procedures
3.6. HPLC Analysis
3.7. Nuclear Magnetic Resonance Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, S.Y.; Wang, L.; Wang, W.D. Algal communities at Gouqi Island in the Zhoushan archipelago, China. J. Appl. Phycol. 2008, 20, 853–861. [Google Scholar] [CrossRef]
- Pang, S.J.; Liu, F.; Shan, T.F.; Gao, S.Q.; Zhang, Z.H. Cultivation of the brown alga Sargassum horneri: Reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J. Appl. Phycol. 2009, 21, 413–422. [Google Scholar] [CrossRef]
- Yoshioka, H.; Kamata, A.; Konishi, T.; Takahashi, J.; Oda, H.; Tamai, T.; Toyohara, H.; Sugahara, T. Inhibitory effect of chlorophyll c2 from brown algae, Sargassum horneri, on degranulation of RBL-2H3 cells. J. Funct. Foods 2013, 5, 204–210. [Google Scholar] [CrossRef]
- Yoshioka, H.; Ishida, M.; Nishi, K.; Oda, H.; Toyohara, H.; Sugahara, T. Studies on anti-allergic activity of Sargassum horneri extract. J. Funct. Foods 2014, 10, 154–160. [Google Scholar] [CrossRef]
- Cho, J.Y. Antifouling chromanols isolated from brown alga Sargassum horneri. J. Appl. Phycol. 2013, 25, 299–309. [Google Scholar] [CrossRef]
- Ma, A.C.; Chen, Z.; Wang, T.; Song, N.; Yan, Q.; Fang, Y.C.; Guan, H.S.; Liu, H.B. Isolation of the molecular species of monogalactosyl diacyl glycerols from brown edible seaweed Sargassum horneri and their inhibitory effects on triglyceride accumulation in 3T3-L1 adipocytes. J. Agric. Food. Chem. 2014, 62, 11157–11162. [Google Scholar] [CrossRef]
- Wena, Z.S.; Xiang, X.W.; Jin, H.X.; Guo, X.Y.; Liu, L.J.; Huang, Y.N.; OuYang, X.K.; Qu, Y.L. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. Int. J. Biol. Macromol. 2016, 88, 403–413. [Google Scholar] [CrossRef]
- Kim, M.E.; Jung, Y.C.; Jung, I.; Lee, H.W.; Youn, H.Y.; Lee, J.S. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide stimulated macrophage activation via NF-κB pathway regulation. Immunol. Invest. 2015, 44, 137–146. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Fu, Z.F.; Ye, C.; Zhang, R.S.; Song, Y.Y.; Zhang, Y.; Li, H.H.; Ying, H.; Liu, H.B. 24(S)-Saringosterol from edible marine seaweed Sargassum fusiforme is a novel selective LXRβ agonist. J. Agric. Food Chem. 2014, 62, 6130–6137. [Google Scholar] [CrossRef]
- CalPe-Berdiel, L.; Escolà-Gil, J.C.; Rotllan, N.; Blanco-Vaca, F. Phytosterols do not change susceptibility to obesity insulin resistance, and diabetes induced by a high-fat diet in mice. Metabolism 2008, 57, 1497–1501. [Google Scholar] [CrossRef]
- Rozner, S.; Verkhovski, L.; Nissimov, Y.; Aserin, A.; Vilensky, R.; Danino, D.; Zouboulis, C.C.; Milner, Y.; Garti, N. Inhibition of cholesterol transport into skin cells in cultures by phytosterol-loaded microemulsion. Chem. Phys. Lipids 2008, 153, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, A.; Gomes, J. Androstenedione production by biotransformation of phytosterols. Bioresour. Technol. 2008, 99, 6725–6737. [Google Scholar] [CrossRef] [PubMed]
- Volger, O.L.; van der Boom, H.; de Wit, E.C.; van Duyvenvoorde, W.; Hornstra, G.; Plat, J.; Havekes, L.M.; Mensink, R.P.; Princen, H.M. Dietary plant stanol esters reduce VLDL cholesterol secretion and bile saturation inapolipoprotein E*3-Leiden transgenic mice. Arterioscl. Thromb. Vasc. Biol. 2001, 21, 1046–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahelivao, M.P.; Gruner, M.; Andriamanantoanina, H.; Bauer, I.; Knölker, H.J. Brown algae (Phaeophyceae) from the coast of madagascar: Preliminary bioactivity studies and isolation of natural products. Natur. Prod. Bioprosp. 2015, 5, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Bowman, R.L. Countercurrent chromatography: Liquid-liquid partition chromatography without solid support. Science 1970, 167, 281–283. [Google Scholar] [CrossRef]
- Ito, Y. Chapter 1, Principles, Apparatus and Methodology. In High-Speed Countercurrent Chromatography, Chemical Analysis Serials; Ito, Y., Conway, W.D., Eds.; Wiley: New York, NY, USA, 1996; Volume 132, pp. 3–44. [Google Scholar]
- Berthod, A. Chapter 1, Fundamentals. In Countercurrent Chromatography, the Support Free Liquid Stationary Phase, Comprehensive Analytical Chemistry; Berthod, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 38, pp. 1–20. [Google Scholar]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef]
- Wood, P.; Ignatova, S.; Janaway, L.; Keay, D.; Hawes, D.; Garrard, I.; Sutherland, I.A. Counter-current chromatography separation scaled up from an analytical column to a production column. J. Chromatogr. A 2007, 1151, 25–30. [Google Scholar] [CrossRef]
- Schröder, M.; Vetter, W. High-speed counter-current chromatographic separation of phytosterols. Anal. Bioanal. Chem. 2011, 400, 3615–3623. [Google Scholar] [CrossRef]
- Schröder, M.; Vetter, W. Investigation of unsaponifiable matter of plant oils and isolation of eight phytosterols by means of high-speed counter-current chromatography. J. Chromatogr. A 2012, 1237, 96–105. [Google Scholar] [CrossRef]
- Xiao, X.H.; Yuan, Z.Q.; Li, G.K. Preparation of phytosterols and phytol from edible marine algae by microwave-assisted extraction and high-speed counter-current chromatography. Sep. Purif. Technol. 2013, 104, 284–289. [Google Scholar] [CrossRef]
- Berthod, A.; Ruiz-Angel, M.J.; Carda-Broch, S. Elution−extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window. Anal. Chem. 2003, 75, 5886–5894. [Google Scholar] [CrossRef]
- Berthod, A.; Friesen, J.B.; Inui, T.; Pauli, G.F. Elution-extrusion countercurrent chromatography theory and concepts in metabolic analysis. Anal. Chem. 2007, 79, 3371–3382. [Google Scholar] [CrossRef] [Green Version]
- Guyot, M.; Davoust, D.; Belaud, C. Hydroperoxy-24-vinyl-24-cholésterol, nouvel hydroperoxide naturel isolé de deux tuniciers: Phallusia mamillata et ciona intestinalis. Tetrahedron Lett. 1982, 23, 1905–1906. [Google Scholar] [CrossRef]
- Shi, D.Y.; Fan, X.; Sun, J.; Han, L.J.; Shi, J.G. Steroids from green alga Chaetomorpha basiretorsa Setchell. Chin. J. Oceanol. Limn. 2008, 26, 415–418. [Google Scholar] [CrossRef]
- Su, H.; Zhu, X.B.; Yuan, Z.H.; Li, J.; Guo, S.J.; Han, L.J.; Shi, D.Y. Studies on the chemical constituents of Domatopsis cartilaginosa. Chin. J. Mar. Sci. 2009, 33, 33–35. (In Chinese) [Google Scholar]
- Brown, G.D.; Liang, G.Y.; Sy, L.K. Terpenoids from the seeds of Artemisia annua. Phytochemistry 2003, 64, 303–323. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.S.; Jung, S.H.; Kang, S.S.; Shin, K.H. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Phytochemistry 2003, 26, 719–722. [Google Scholar]
- Ito, Y. Efficient preparative counter-current chromatography with a coil planet centrifuge. J. Chromatogr. A 1981, 214, 122–125. [Google Scholar] [CrossRef]
Solvent System (v/v) | K Value | Separation Factor (α) a | ||
---|---|---|---|---|
Saringosterol (1) | Phytol (2) | Fucosterol (3) | ||
n-hexane-acetonitrile (1:1) | 0.97 | 3.55 | 4.42 | 1.25 |
n-hexane-acetonitrile-dichloromethane (10:7:3) | 0.79 | 2.43 | 2.73 | 1.12 |
n-hexane-acetonitrile-dichloromethane (8:7:3) | 0.68 | 2.37 | 2.51 | 1.06 |
n-hexane-dichloromethane-methanol-acetonitrile (10:3:2:5) | 0.43 | 1.06 | 1.07 | 1.01 |
n-hexane-acetonitrile-methanol (5:5:3) | 0.94 | 1.78 | 2.32 | 1.30 |
n-hexane-acetonitrile-methanol (5:5:4) | 0.84 | 1.59 | 2.18 | 1.37 |
n-hexane-acetonitrile-methanol (5:5:6) | 0.72 | 1.40 | 2.02 | 1.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Liu, C.; Gao, L.; Lu, Y. One-Step Preparative Separation of Phytosterols from Edible Brown Seaweed Sargassum horneri by High-Speed Countercurrent Chromatography. Mar. Drugs 2019, 17, 691. https://doi.org/10.3390/md17120691
Xia M, Liu C, Gao L, Lu Y. One-Step Preparative Separation of Phytosterols from Edible Brown Seaweed Sargassum horneri by High-Speed Countercurrent Chromatography. Marine Drugs. 2019; 17(12):691. https://doi.org/10.3390/md17120691
Chicago/Turabian StyleXia, Menglu, Chunping Liu, Lei Gao, and Yanbin Lu. 2019. "One-Step Preparative Separation of Phytosterols from Edible Brown Seaweed Sargassum horneri by High-Speed Countercurrent Chromatography" Marine Drugs 17, no. 12: 691. https://doi.org/10.3390/md17120691
APA StyleXia, M., Liu, C., Gao, L., & Lu, Y. (2019). One-Step Preparative Separation of Phytosterols from Edible Brown Seaweed Sargassum horneri by High-Speed Countercurrent Chromatography. Marine Drugs, 17(12), 691. https://doi.org/10.3390/md17120691