One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility in Water
2.2. Optimization of the IP-RP-HPLC Method
2.3. Stability of Sulfate Groups in Water
2.4. GAP-Based Marine Coatings
2.4.1. Synthesis Optimization
2.4.2. GAP Immobilization Strategies
2.4.3. Marine Coating Formulations
2.4.4. GAP Quantification in Leaching Water Samples
2.4.5. Anti-Settlement Behavior of GAP after Incorporation in Coatings
3. Materials and Methods
3.1. Materials General Methods
3.2. Chromatographic Conditions
3.3. Preparation of Standard Solutions
3.4. Water Solubility
3.5. Stability in Seawater
3.6. Synthesis of GAP
3.7. Immobilization of GAP in Polymeric Coatings
3.8. Evaluation of the TZA Crosslinker Interaction with GAP
3.9. Leaching Assays
3.10. Extractive Procedure
3.11. Anti-Settlement Activity Assessment of GAP Based Coatings
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Briand, J.-F. Marine antifouling laboratory bioassays: An overview of their diversity. Biofouling 2009, 25, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Holm, E.R. Barnacles and Biofouling. Integr. Comp. Biol. 2012, 52, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callow, J.A.; Callow, M.E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2011, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Clare, A.S.; Aldred, N. 3—Surface colonisation by marine organisms and its impact on antifouling research. In Advances in Marine Antifouling Coatings and Technologies; Hellio, C., Yebra, D., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 46–79. [Google Scholar]
- Bixler, G.D.; Bhushan, B. Review article: Biofouling: Lessons from nature. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2381–2417. [Google Scholar] [CrossRef]
- Demirel, Y.K.; Uzun, D.; Zhang, Y.; Fang, H.-C.; Day, A.H.; Turan, O. Effect of barnacle fouling on ship resistance and powering. Biofouling 2017, 33, 819–834. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Wang, J.; Chen, H.; Chen, D. Progress of marine biofouling and antifouling technologies. Chin. Sci. Bull. 2011, 56, 598–612. [Google Scholar] [CrossRef] [Green Version]
- Price, A.R.G.; Readman, J.W.; Gee, D. Booster biocide antifoulants: Is history repeating itself? Late Lessons Early Warn. Sci. Precaut. Innov. 2013, 297, 265–278. [Google Scholar]
- Takahashi, K. Release Rate of Biocides from Antifouling Paints. In Ecotoxicology of Antifouling Biocides; Arai, T., Harino, H., Ohji, M., Langston, W.J., Eds.; Springer: Tokyo, Japan, 2009; pp. 3–22. [Google Scholar]
- Konstantinou, I.K.; Albanis, T.A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ. Int. 2004, 30, 235–248. [Google Scholar]
- Chen, L.; Lam, J.C.W. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern. J. Environ. Sci. 2017, 61, 68–79. [Google Scholar] [CrossRef]
- Thomas, K.V.; McHugh, M.; Waldock, M. Antifouling paint booster biocides in UK coastal waters: Inputs, occurrence and environmental fate. Sci. Total Environ. 2002, 293, 117–127. [Google Scholar] [CrossRef]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Martins, S.E.; Fillmann, G.; Lillicrap, A.; Thomas, K.V. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 2018, 34, 34–52. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Aoyama, I.; Liu, D.; Maguire, R.J.; Pacepavicius, G.J.; Lau, Y.L. Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res. 2000, 34, 3523–3530. [Google Scholar] [CrossRef]
- Silva, E.R.G.; Bordado, J.C.M.; Ferreira, O.R.V. Functionalization Process for Biocide Immobilization in Polymer Matrices. Granted Patent PT108096B (WO2016093719A1), 2019. Available online: https://patents.google.com/patent/PT108096B/en (accessed on 24 September 2020).
- Silva, E.R.; Ferreira, O.; Ramalho, P.A.; Azevedo, N.F.; Bayón, R.; Igartua, A.; Bordado, J.C.; Calhorda, M.J. Eco-friendly non-biocide-release coatings for marine biofouling prevention. Sci. Total Environ. 2019, 650, 2499–2511. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Xie, Q.; Chiang, H.; Peng, Q.; Qian, P.-Y.; Ma, C.; Zhang, G. “From the Nature for the Nature”: An Eco-Friendly Antifouling Coating Consisting of Poly(lactic acid)-Based Polyurethane and Natural Antifoulant. ACS Sustain. Chem. Eng. 2020, 8, 1671–1678. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, W.; Zhang, G.; Qian, P.-Y. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant. ACS Sustain. Chem. Eng. 2017, 5, 6304–6309. [Google Scholar] [CrossRef]
- Ciriminna, R.; Bright, F.V.; Pagliaro, M. Ecofriendly Antifouling Marine Coatings. ACS Sustain. Chem. Eng. 2015, 3, 559–565. [Google Scholar] [CrossRef]
- Cui, Y.; Teo, S.; Leong, W.; Chai, C. Searching for “Environmentally-Benign” Antifouling Biocides. Int. J. Mol. Sci. 2014, 15, 9255. [Google Scholar] [CrossRef]
- Vilas-Boas, C.; Sousa, E.; Pinto, M.; Correia-da-Silva, M. An antifouling model from the sea: A review of 25 years of zosteric acid studies. Biofouling 2017, 33, 927–942. [Google Scholar] [CrossRef]
- Carvalhal, F.; Correia-da-Silva, M.; Sousa, E.; Pinto, M.; Kijjoa, A. SULFATION PATHWAYS: Sources and biological activities of marine sulfated steroids. J. Mol. Endocrinol. 2018, 61, T211. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Correia-da-Silva, M.; Sousa, E.; Antunes, J.; Pinto, M.; Vasconcelos, V.; Cunha, I. Antifouling potential of Nature-inspired sulfated compounds. Sci. Rep. 2017, 7, 42424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Species Profile: Mytilus Galloprovincialis. Available online: http://www.iucngisd.org/gisd/species.php?sc=102 (accessed on 31 October 2019).
- Neves, A.R.; Almeida, J.R.; Carvalhal, F.; Câmara, A.; Pereira, S.; Antunes, J.; Vasconcelos, V.; Pinto, M.; Silva, E.R.; Sousa, E.; et al. Overcoming environmental problems of biocides: Synthetic bile acid derivatives as a sustainable alternative. Ecotoxicol. Environ. Saf. 2020, 187, 109812. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Tang, Y.H.; Yao, T.W.; Zeng, S. Separation of rutin nona(H-) and deca(H-) sulfonate sodium by ion-pairing reversed-phase liquid chromatography. J. Chromatogr. A 2004, 1036, 229–232. [Google Scholar] [CrossRef]
- USP. USP Pharmacists’ Pharmacopeia, 2nd ed.; United States Pharmacopeia: Bethesda, MD, USA, 2009; p. S3/13. [Google Scholar]
- Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Carvalho, F.; Cunha-Ribeiro, L.M.; Pinto, M. Polysulfated Xanthones: Multipathway Development of a New Generation of Dual Anticoagulant/Antiplatelet Agents. J. Med. Chem. 2011, 54, 5373–5384. [Google Scholar] [CrossRef]
- Verghese, J.; Liang, A.; Sidhu, P.P.S.; Hindle, M.; Zhou, Q.; Desai, U.R. First steps in the direction of synthetic, allosteric, direct inhibitors of thrombin and factor Xa. Bioorganic Med. Chem. Lett. 2009, 19, 4126–4129. [Google Scholar] [CrossRef] [Green Version]
- Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Carvalho, F.; Cunha-Ribeiro, L.M.; Pinto, M. Flavonoids with an Oligopolysulfated Moiety: A New Class of Anticoagulant Agents. J. Med. Chem. 2011, 54, 95–106. [Google Scholar] [CrossRef]
- Gill, D.M.; Male, L.; Jones, A.M. Sulfation made simple: A strategy for synthesising sulfated molecules. Chem. Commun. 2019, 55, 4319–4322. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, S.; Karthikeyan, E. Microwave Synthesis-A Potential Tool for Green Chemistry. Int. J. ChemTech Res. 2011, 3, 974–4290. [Google Scholar]
- Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Cunha-Ribeiro, L.M.; Pinto, M.M. Dual anticoagulant/antiplatelet persulfated small molecules. Eur. J. Med. Chem. 2011, 46, 2347–2358. [Google Scholar] [CrossRef]
- Ferreira, O.; Rijo, P.; Gomes, J.F.; Santos, R.; Monteiro, S.; Vilas-Boas, C.; Correia-da-Silva, M.; Almada, S.; Alves, L.G.; Bordado, J.C.; et al. Biofouling Inhibition with Grafted Econea Biocide: Toward a Nonreleasing Eco-Friendly Multiresistant Antifouling Coating. ACS Sustain. Chem. Eng. 2020, 8, 12–17. [Google Scholar]
- Chen, P.-C.; Wang, S.-C.; Huang, C.-Y.; Yeh, J.-T.; Chen, K.-N. New crosslinked polymer from a rapid polymerization of acrylic acid with triaziridine-containing compound. J. Appl. Polym. Sci. 2007, 104, 809–815. [Google Scholar]
- Yebra, D.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar]
- Zhang, X.M.; Li, L.; Zhang, Y. Study on the Surface Structure and Properties of PDMS/PMMA Antifouling Coatings. Phys. Procedia 2013, 50, 328–336. [Google Scholar]
- ICH. Validation of Analytical Procedures: Text and Methodology. In Geneva, Q2(R1); European Medicines Agency: London, UK, 2005; p. 17. [Google Scholar]
- OECD. Guideline for the Testing of Chemicals (Water Solubility). In Nº 105; Organisation for Economic Co-Operation and Development: Paris, France, 1995. [Google Scholar]
Reaction | Reagents | Solvent | Reaction Conditions | Reaction Time | Yields |
---|---|---|---|---|---|
Previous synthesis [35] | TEA·SO3 (2 eq/OH) | DMA | Conventional heating 65 °C | 24 h | 36% |
Optimized synthesis | TEA·SO3 (6 eq/OH) TEA (9 eq/OH) | DMF | MW 200 W 86 °C | 1 h | 98% |
Coating Formulation | Polymeric Matrix | Base/Curing Agent Ratio (v/v) | GAP Content (wt.%) | TZA Content (wt.%) |
---|---|---|---|---|
GAP-DI/PU | Polyurethane | 2/1 | 1.99 ± 0.02 | ---- |
GAP-CI/PU | Polyurethane | 2/1 | 2.05 ± 0.02 | 2.06 ± 0.02 |
GAP-DI/PDMS | Polydimethylsiloxane | 17.8/2.2 | 0.55 ± 0.02 | ---- |
GAP-CI/PDMS | Polydimethylsiloxane | 17.8/2.2 | 0.56 ± 0.02 | 2.05 ± 0.02 |
Polymeric Coatings(n) | Immobilization | GAP Amount in Coated PVC Plates (mg) * | Amount of Detected GAP Leached to Waters after 45 Days (mg) * | Content of Released GAP from Coated PVC Plates (wt.%) * |
---|---|---|---|---|
GAP-DI/PU(2) | Direct | 26.90 ± 2.60 | 4.95 ± 0.25 | 18.49 ± 0.86 |
GAP-CI/PU(2) | Chemical | 34.00 ± 1.7 | 1.37 ± 0.06 | 4.02 ± 0.03 |
GAP-DI/PDMS(2) | Direct | 6.75 ± 0.25 | 1.39 ± 0.02 | 20.59 ± 1.00 |
GAP-CI/PDMS(2) | Chemical | 4.95 ± 0.75 | 0.55 ± 0.13 | 10.94 ± 0.90 |
Coating Formulation | Polymeric Matrix | Base/Curing Agent Ratio (v/v) | GAP Content (wt.%) | TZA Content (wt.%) |
---|---|---|---|---|
GAP-DI/AV | Acrylic | 3/1 | 0.56 ± 0.02 | ---- |
GAP-CI/AV | Acrylic | 3/1 | 0.56 ± 0.02 | 2.46 ± 0.03 |
GAP-DI/AV | Acrylic | 3/1 | 1.00 ± 0.02 | ---- |
GAP-CI/AV | Acrylic | 3/1 | 1.00 ± 0.02 | 2.42 ± 0.03 |
GAP-DI/RTV-PDMS | Polydimethylsiloxane | 199/1 | 0.58 ± 0.02 | ---- |
GAP-CI/RTV-PDMS | Polydimethylsiloxane | 199/1 | 0.54 ± 0.02 | 3.08 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilas-Boas, C.; Carvalhal, F.; Pereira, B.; Carvalho, S.; Sousa, E.; Pinto, M.M.M.; Calhorda, M.J.; Vasconcelos, V.; Almeida, J.R.; Silva, E.R.; et al. One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound. Mar. Drugs 2020, 18, 489. https://doi.org/10.3390/md18100489
Vilas-Boas C, Carvalhal F, Pereira B, Carvalho S, Sousa E, Pinto MMM, Calhorda MJ, Vasconcelos V, Almeida JR, Silva ER, et al. One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound. Marine Drugs. 2020; 18(10):489. https://doi.org/10.3390/md18100489
Chicago/Turabian StyleVilas-Boas, Cátia, Francisca Carvalhal, Beatriz Pereira, Sílvia Carvalho, Emília Sousa, Madalena M. M. Pinto, Maria José Calhorda, Vitor Vasconcelos, Joana R. Almeida, Elisabete R. Silva, and et al. 2020. "One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound" Marine Drugs 18, no. 10: 489. https://doi.org/10.3390/md18100489
APA StyleVilas-Boas, C., Carvalhal, F., Pereira, B., Carvalho, S., Sousa, E., Pinto, M. M. M., Calhorda, M. J., Vasconcelos, V., Almeida, J. R., Silva, E. R., & Correia-da-Silva, M. (2020). One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound. Marine Drugs, 18(10), 489. https://doi.org/10.3390/md18100489