New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation
2.2. Bioassays
3. Materials and Methods
3.1. Instrumentation
3.2. Fungal Material
3.3. Extraction and Isolation
3.4. Antibacterial Assays
3.5. Antifungal Assays
3.6. PTP1B Inhibition Assays
3.7. DPPH Scavenging Activities
3.8. Cytotoxicity Assays
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Quan, C.; Hou, X.; Fan, S. Potential pharmacological resources: Natural bioactive compounds from marine-derived fungi. Mar. Drugs 2016, 14, 76. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.W.; Ding, P. New bioactive metabolites from the marine-derived fungi Aspergillus. Mini-Rev. Med. Chem. 2018, 18, 1072–1094. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, M.J.; Li, H.; Zhang, P.; Bao, B.; Lee, K.J.; Jung, J.H. Marine-derived Aspergillus species as a source of bioactive secondary metabolites. Mar. Biotechnol. 2013, 15, 499–519. [Google Scholar] [CrossRef]
- Welch, T.R.; Williams, R.M. Epidithiodioxopiperazines. occurrence, synthesis and biogenesis. Nat. Prod. Rep. 2014, 31, 1376–1404. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, H.; Sumino, M.; Okuyama, E.; Ishibashi, M. Immunomodulatory constituents from an ascomycete, Chaetomium Seminudum. J. Nat. Prod. 2004, 67, 98–102. [Google Scholar] [CrossRef]
- Sun, Y.; Takada, K.; Takemoto, Y.; Yoshida, M.; Nogi, Y.; Okada, S.; Matsunaga, S. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J. Nat. Prod. 2011, 75, 111–114. [Google Scholar] [CrossRef]
- Zheng, C.J.; Kim, C.J.; Bae, K.S.; Kim, Y.H.; Kim, W.G. Bionectins A−C, epidithiodioxopiperazines with anti-MRSA activity, from Bionectra byssicola F120. J. Nat. Prod. 2006, 69, 1816–1819. [Google Scholar] [CrossRef]
- Curtis, P.J.; Greatbanks, D.; Hesp, B.; Cameron, A.F.; Freer, A.A. Sirodesmins A, B, C, and G, antiviral epipolythiopiperazine-2,5-diones of fungal origin: X-Ray analysis of sirodesmin A diacetate. J. Chem. Soc. Perkin Trans. 1977, 1, 180–189. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.H.; Hwang, B.Y.; Kim, H.S.; Lee, J.J. Anti-angiogenic activities of gliotoxin and its methylthio-derivative, fungal metabolites. Arch. Pharmacal Res. 2001, 24, 397. [Google Scholar] [CrossRef]
- Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafatim, O.; Fusetani, N. Marine pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 273. [Google Scholar]
- Liu, L.; Zheng, Y.Y.; Shao, C.L.; Wang, C.Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Tech. 2019, 1, 60–94. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.W.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W.H. Eutypellazines N−S, new thiodiketopiperazines from a deep sea sediment derived fungus Eutypella sp. with anti-VRE activities. Tetrahedron Lett. 2017, 58, 3695–3699. [Google Scholar] [CrossRef]
- Kawahara, N. Sulfur-containg dioxopiperazine derivatives from Emericella heterothallica. Heterocycles 1989, 29, 397–402. [Google Scholar]
- Neuss, N.; Nagarajan, R.; Molloy, B.B.; Huckstep, L.L. Aranotin and related metabolites. II. Isolation, characterization, and structures of two new metabolites. Tetrahedron Lett. 1968, 9, 4467–4471. [Google Scholar] [CrossRef]
- Kamata, S.; Sakai, H.; Hirota, A. Isolation of acetylaranotin, bisdethiodi (methylthio)-acetylaranotin and terrein as plant growth inhibitors from a strain of Aspergillus terreus. Agric. Biol. Chem. 1983, 47, 2637–2638. [Google Scholar] [CrossRef]
- Nagarajan, R.; Huckstep, L.L.; Lively, D.H.; DeLng, D.C.; Marsh, M.M.; Neuss, N. Aranotin and related metabolites from Arachniotus aureus. I. Determination of structure. J. Am. Chem. Soc. 1968, 90, 2980–2982. [Google Scholar] [CrossRef]
- Dethoup, T.; Manoch, L.; Kijjoa, A.; Pinto, M.; Gales, L.; Damas, A.M.; Silva, A.M.S.; Eaton, G.; Herz, W. Merodrimanes and other constituents from Talaromyces thailandiasis. J. Nat. Prod. 2007, 70, 1200–1202. [Google Scholar] [CrossRef]
- Zaehle, C.; Gressler, M.; Shelest, E.; Geib, E.; Hertweck, C.; Brock, M. Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity. Chem. Biol. 2014, 21, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, Y.; Morimoto, N.; Hamada, N.; Tanahashi, T. Phenolic compounds from the cultured mycobionts of Graphis proserpens. Phytochemistry 2011, 72, 1431–1435. [Google Scholar] [CrossRef]
- Choudhary, M.I.; Musharraf, S.G.; Mukhmoor, T.; Shaheen, F.; Ali, S.; Rahman, A. Isolation of bioactive compounds from Aspergillus terreus. Z. Naturforsch. B J. Chem. Sci. 2004, 59, 324–328. [Google Scholar] [CrossRef]
- Islam, M.S.; Ishigami, K.; Watanabe, H. Synthesis of (−)-mellein, (+)-ramulosin, and related natural products. Tetrahedron 2006, 63, 1074–1079. [Google Scholar] [CrossRef]
- Krohn, K.; Bahramsari, R.; Flörke, U.; Ludewig, K.; Kliche-Spory, C.; Michel, A.; Aust, H.J.; Draeger, S.; Schulz, B.; Antus, S. Dihydroisocoumarins from fungi: Isolation, structure elucidation, circular dichroism and biological activity. Phytochemisty 1997, 45, 313–320. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. M100-S22; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012. [Google Scholar]
- Tian, J.L.; Liao, X.J.; Wang, Y.H.; Si, X.; Shu, C.; Gong, E.-S.; Xie, X.; Ran, X.L.; Li, B. Identification of cyanidin-3-arabinoside extracted from blueberry as selective PTP1B inhibitor. J. Agric. Food Chem. 2019, 67, 13624–13634. [Google Scholar] [CrossRef]
- Aquino, R.; Morelli, S.; Lauro, M.R.; Abdo, S.; Saija, A.; Tomaino, A. Phenolic constituents and antioxidant activity of an extract of Anthurium versicolor leaves. J. Nat. Prod. 2001, 64, 1019–1023. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 165.0, C | 166.6, C | ||
2 | 70.1, C | 68.9, C | ||
3 | 39.9, CH2 | 2.78, d (15.0) | 39.9, CH2 | 2.74, d (15.0) |
1.98, d (15.0) | 1.92, d (15.0) | |||
4 | 110.4, C | 109.5, C | ||
5 | 137.6, CH | 6.70, t (2.3) | 137.2, CH | 6.60, t (2.3) |
6 | 140.3, CH | 6.44, dd (8.3, 2.3) | 138.2, CH | 6.28, dd (8.3, 2.3) |
7 | 105.9, CH | 4.71, dd (8.3, 2.0) | 111.4, CH | 4.81, dd (8.3, 2.0) |
8 | 71.5, CH | 5.67, dt (7.9, 2.0) | 71.8, CH | 4.43, dt (7.9, 2.0) |
9 | 61.5, CH | 4.79, d (7.9) | 64.9, CH | 4.54, d (7.9) |
10 | 14.4, CH3 | 2.13, s | 14.4, CH3 | 2.17, s |
11 | 169.9, C | |||
12 | 21.3, CH3 | 1.99, s | ||
1′ | 164.8, C | 165.0, C | ||
2′ | 68.2, C | 68.4, C | ||
3′ | 39.1, CH2 | 3.43, d (13.7) | 39.2, CH2 | 3.45, d (13.7) |
3.19, d (13.7) | 3.19, d (13.7) | |||
4′ | 121.7, C | 121.4, C | ||
5′ | 156.3, C | 156.2, C | ||
6′ | 115.8, CH | 6.79, dd (8.0, 1.3) | 115.7, CH | 6.79, dd (8.0, 1.3) |
7′ | 128.8, CH | 7.03, td (8.0, 1.7) | 128.8, CH | 7.04, td (8.0, 1.7) |
8′ | 119.3, CH | 6.67, td (7.7, 1.3) | 119.2, CH | 6.68, dd (7.8, 1.3) |
9′ | 131.7, CH | 6.92, dd (7.7, 1.7) | 131.8, CH | 6.95, dd (7.8, 1.7) |
10′ | 13.8, CH3 | 2.25, s | 14.0, CH3 | 2.29, s |
8-OH | 5.44, d (6.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.-S.; Shi, X.-H.; Yao, G.-S.; Shao, C.-L.; Fu, X.-M.; Zhang, X.-L.; Guan, H.-S.; Wang, C.-Y. New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus. Mar. Drugs 2020, 18, 132. https://doi.org/10.3390/md18030132
Wu J-S, Shi X-H, Yao G-S, Shao C-L, Fu X-M, Zhang X-L, Guan H-S, Wang C-Y. New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus. Marine Drugs. 2020; 18(3):132. https://doi.org/10.3390/md18030132
Chicago/Turabian StyleWu, Jing-Shuai, Xiao-Hui Shi, Guang-Shan Yao, Chang-Lun Shao, Xiu-Mei Fu, Xiu-Li Zhang, Hua-Shi Guan, and Chang-Yun Wang. 2020. "New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus" Marine Drugs 18, no. 3: 132. https://doi.org/10.3390/md18030132
APA StyleWu, J. -S., Shi, X. -H., Yao, G. -S., Shao, C. -L., Fu, X. -M., Zhang, X. -L., Guan, H. -S., & Wang, C. -Y. (2020). New Thiodiketopiperazine and 3,4-Dihydroisocoumarin Derivatives from the Marine-Derived Fungus Aspergillus terreus. Marine Drugs, 18(3), 132. https://doi.org/10.3390/md18030132