Cloning and Characterization of a New β-Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sequence Analysis of gal2A from Alteromonas sp. QD01
2.2. Expression and Purification of Gal2A
2.3. Properties of Gal2A
2.3.1. Effects of Temperature and pH on Activity and Stability of Gal2A
2.3.2. Effects of Metal Ions and Organic Reagents on Activity of Gal2A
2.4. Analysis of Hydrolysates from Milk and Lactose
3. Materials and Methods
3.1. Materials
3.2. Isolation and Identification of Bacteria
3.3. Sequence Analysis of gal2A
3.4. Expression and Purification of Gal2A
3.5. Enzymatic Activity Assay
3.6. Characterization of the Purified Gal2A
3.7. Thin-Layer Chromatography Analysis of the Reaction Products in Milk and Lactose
3.8. Nucleotide Sequence Accession Numbers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oliveira, C.; Guimaraes, P.M.; Domingues, L. Recombinant microbial systems for improved beta-galactosidase production and biotechnological applications. Biotechnol. Adv. 2011, 29, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, J.P.; Huber, R.E.; Heo, C.; Amyes, T.L.; Lin, S. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases. Biochemistry 1996, 35, 12387–12401. [Google Scholar] [CrossRef] [PubMed]
- Ugidos-Rodriguez, S.; Matallana-Gonzalez, M.C.; Sanchez-Mata, M.C. Lactose malabsorption and intolerance: A review. Food Funct. 2018, 9, 4056–4068. [Google Scholar] [CrossRef]
- Lomer, M.C.; Parkes, G.C.; Sanderson, J.D. Review article: Lactose intolerance in clinical practice--myths and realities. Aliment. Pharmacol. Ther. 2008, 27, 93–103. [Google Scholar] [CrossRef]
- Heyman, M.B. Lactose intolerance in infants, children, and adolescents. Pediatrics 2006, 118, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lu, L.; Lu, L.; Zhao, Y.; Kang, L.; Pang, X.; Liu, J.; Jiang, T.; Xiao, M.; Ma, B. Galactosylation of steroidal saponins by beta-galactosidase from Lactobacillus bulgaricus L3. Glycoconj. J. 2016, 33, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Mano, M.C.R.; Neri-Numa, I.A.; da Silva, J.B.; Paulino, B.N.; Pessoa, M.G.; Pastore, G.M. Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 2018, 102, 17–37. [Google Scholar] [CrossRef]
- Boon, M.A.; Janssen, A.E.; van’t Riet, K. Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzym. Microb. Technol. 2000, 26, 271–281. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Yang, K.; Li, S. Characterization of a New Chitosanase from a Marine Bacillus sp. and the Anti-Oxidant Activity of Its Hydrolysate. Mar. Drugs 2020, 18, 126. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; He, N.; Wang, L. Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Mar. Drugs 2019, 17, 540. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, L.; Liu, B.; He, N. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice. Food Funct. 2020. [Google Scholar] [CrossRef] [PubMed]
- Vera, C.; Cordova, A.; Aburto, C.; Guerrero, C.; Suarez, S.; Illanes, A. Synthesis and purification of galacto-oligosaccharides: State of the art. World J. Microbiol. Biotechnol. 2016, 32, 197. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Moreno, F.J.; Olano, A.; Clemente, A.; Villar, C.J.; Lombo, F. A Galacto-Oligosaccharides Preparation Derived From Lactulose Protects Against Colorectal Cancer Development in an Animal Model. Front. Microbiol. 2018, 9, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.; Lu, J.; Lin, W.; Wei, X.; Li, H.; Zhao, X.; Jiang, A.; Yuan, J. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 2018, 9, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Lyu, W.; Xie, M.; Yuan, Q.; Ye, H.; Hu, B.; Zhou, L.; Zeng, X. Effects of alpha-Galactooligosaccharides from Chickpeas on High-Fat-Diet-Induced Metabolic Syndrome in Mice. J. Agric. Food Chem. 2017, 65, 3160–3166. [Google Scholar] [CrossRef]
- Zhai, Q.; Wang, J.; Cen, S.; Zhao, J.; Zhang, H.; Tian, F.; Chen, W. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice. Food Funct. 2019, 10, 3768–3781. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Masuoka, N.; Kano, M.; Iizuka, R. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Benef. Microbes 2014, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Bouchaud, G.; Castan, L.; Chesne, J.; Braza, F.; Aubert, P.; Neunlist, M.; Magnan, A.; Bodinier, M. Maternal exposure to GOS/inulin mixture prevents food allergies and promotes tolerance in offspring in mice. Allergy 2016, 71, 68–76. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, J.; Liu, L.; Yaqoob, M.U.; Pei, X.; Tao, W.; Xiao, Z.; Sun, W.; Wang, M. Optimization for galactooligosaccharides synthesis: A potential alternative for gut health and immunity. Life Sci. 2020, 245, 117353. [Google Scholar] [CrossRef] [PubMed]
- Paganini, D.; Uyoga, M.A.; Kortman, G.A.M.; Boekhorst, J.; Schneeberger, S.; Karanja, S.; Hennet, T.; Zimmermann, M.B. Maternal Human Milk Oligosaccharide Profile Modulates the Impact of an Intervention with Iron and Galacto-Oligosaccharides in Kenyan Infants. Nutrients 2019, 11, 2596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Liang, W.; Yang, X.; Li, Q.; Zhang, G. Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b. Life Sci. 2019, 231, 116589. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, X.; Xing, M. A New beta-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides. Mar. Drugs 2019, 17, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, Z.; Kiss, T.; Szentirmai, A.; Biro, S. Beta-galactosidase of Penicillium chrysogenum: Production, purification, and characterization of the enzyme. Protein Expr. Purif. 2001, 21, 24–29. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Jiang, Z.; Yan, Q.; Yang, S. Biochemical characterization of a novel beta-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Int. J. Biol. Macromol. 2017, 104, 1055–1063. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Splechtna, B.; Steinbock, M.; Kneifel, W.; Lettner, H.P.; Kulbe, K.D.; Haltrich, D. Purification and characterization of two novel beta-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 2006, 54, 4989–4998. [Google Scholar] [CrossRef]
- Sun, J.; Yao, C.; Wang, W.; Zhuang, Z.; Liu, J.; Dai, F.; Hao, J. Cloning, Expression and Characterization of a Novel Cold-adapted beta-galactosidase from the Deep-sea Bacterium Alteromonas sp. ML52. Mar. Drugs 2018, 16, 469. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicka-Wos, A.; Cieslinski, H.; Wanarska, M.; Kozlowska-Tylingo, K.; Hildebrandt, P.; Kur, J. A novel cold-active beta-D-galactosidase from the Paracoccus sp. 32d--gene cloning, purification and characterization. Microb. Cell Factories 2011, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Ren, G.; Qin, Z.; Huang, X.; Kong, W.; Wang, Z.; Liang, W.; Bi, X.; Liu, Y. Improving the Secretion Yield of the beta-Galactosidase Bgal1-3 in Pichia pastoris for Use as a Potential Catalyst in the Production of Prebiotic-Enriched Milk. J. Agric. Food Chem. 2017, 65, 10757–10766. [Google Scholar] [CrossRef]
- Ethiraj, S.; Gopinath, S. Production, purification, characterization, immobilization, and application of Serrapeptase: A review. Front. Biol. 2017, 12, 333–348. [Google Scholar] [CrossRef]
- Kim, C.S.; Ji, E.S.; Oh, D.K. A new kinetic model of recombinant beta-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem. Biophys. Res. Commun. 2004, 316, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Hernandez, O.; Montanes, F.; Clemente, A.; Moreno, F.J.; Sanz, M.L. Characterization of galactooligosaccharides derived from lactulose. J. Chromatogr. A 2011, 1218, 7691–7696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juajun, O.; Nguyen, T.H.; Maischberger, T.; Iqbal, S.; Haltrich, D.; Yamabhai, M. Cloning, purification, and characterization of beta-galactosidase from Bacillus licheniformis DSM 13. Appl. Microbiol. Biotechnol. 2011, 89, 645–654. [Google Scholar] [CrossRef]
- Juers, D.H.; Matthews, B.W.; Huber, R.E. LacZ beta-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 2012, 21, 1792–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, R.H.; Zhang, X.J.; DuBose, R.F.; Matthews, B.W. Three-dimensional structure of beta-galactosidase from E. coli. Nature 1994, 369, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Rutkiewicz, M.; Bujacz, A.; Bujacz, G. Structural features of cold-adapted dimeric GH2 beta-D-galactosidase from Arthrobacter sp. 32cB. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 776–786. [Google Scholar] [CrossRef]
- Skalova, T.; Dohnalek, J.; Spiwok, V.; Lipovova, P.; Vondrackova, E.; Petrokova, H.; Duskova, J.; Strnad, H.; Kralova, B.; Hasek, J. Cold-active beta-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDa hexamers: Crystal structure at 1.9A resolution. J. Mol. Biol. 2005, 353, 282–294. [Google Scholar] [CrossRef]
- Guo, B.S.; Zheng, F.; Crouch, L.; Cai, Z.P.; Wang, M.; Bolam, D.N.; Liu, L.; Voglmeir, J. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj. J. 2018, 35, 255–263. [Google Scholar] [CrossRef]
- Iqbal, S.; Nguyen, T.H.; Nguyen, H.A.; Nguyen, T.T.; Maischberger, T.; Kittl, R.; Haltrich, D. Characterization of a heterodimeric GH2 beta-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J. Agric. Food Chem. 2011, 59, 3803–3811. [Google Scholar] [CrossRef]
- Wang, G.X.; Gao, Y.; Hu, B.; Lu, X.L.; Liu, X.Y.; Jiao, B.H. A novel cold-adapted beta-galactosidase isolated from Halomonas sp. S62: Gene cloning, purification and enzymatic characterization. World J. Microbiol. Biotechnol. 2013, 29, 1473–1480. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z.; Jiang, C.; Sun, J.; Xue, C.; Mao, X. A novel agaro-oligosaccharide-lytic beta-galactosidase from Agarivorans gilvus WH0801. Appl. Microbiol. Biotechnol. 2018, 102, 5165–5172. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Fujimoto, Y.; Ikehata, R.; Miyaji, T.; Tomizuka, N. Purification and molecular characterization of cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl. Microbiol. Biotechnol. 2006, 72, 720–725. [Google Scholar] [CrossRef]
- Sinnott, M. Carbohydrate Chemistry and Biochemistry, 1st ed.; Royal Society of Chemistry: Britain, UK, 2007; pp. 483–484. [Google Scholar]
Protein Name | Source | Optimal pH | Stable pH Range | Optimal Temperature (°C) | Products | Ref. |
---|---|---|---|---|---|---|
Gal2A | Alteromonas sp. QD01 | 8.0 | 6.0–9.5 | 40 | GOS, glucose, galactose | This study |
Gal | Alteromonas sp. ML52 | 8.0 | 6.5–9.0 | 35 | glucose, galactose | [27] |
GalA | Alteromonas sp. ANT48 | 7.0 | 6.6–9.6 | 50 | GOS, glucose, galactose | [23] |
PbBGal2A | Paenibacillus barengoltzii | 7.5 | 6.0–8.8 | 45 | GOS, glucose, galactose | [25] |
LacLM | Lactobacillus sakei Lb790 | 6.5 | 6.0–7.5 | 55 | GOS, glucose, galactose | [39] |
BGalH | Halomonas sp. S62 | 7.5 | 6.0–8.5 | 45 | glucose, galactose | [40] |
BgaL | Paracoccus sp. 32d | 7.5 | 6.0–7.0 | 40 | - | [28] |
AgWH2A | Agarivorans gilvus WH0801 | 8.0 | 6.0–10.0 | 40 | Agarooligosaccharides | [41] |
BglA | Arthrobacter psychrolactophilus strain F2 | 8.0 | 6.0–10.0 | 10 | - | [42] |
Reagent Added | Concentration (mM) | Relative Activity (%) |
---|---|---|
None | - | 100.0 ± 0.0 |
Na+ | 10 | 137.9 ± 2.6 |
K+ | 1 | 131.3 ± 3.9 |
Fe2+ | 1 | 95.6 ± 2.2 |
Zn2+ | 1 | 69.0 ± 1.1 |
Ba2+ | 1 | 130.2 ± 0.4 |
Co2+ | 1 | 128.8 ± 0.2 |
Mg2+ | 1 | 154.9 ± 5.2 |
Ca2+ | 1 | 95.7 ± 1.2 |
Fe3+ | 1 | 132.7 ± 0.9 |
Li+ | 1 | 124.1 ± 3.6 |
Al3+ | 1 | 110.6 ± 0.7 |
Cu2+ | 1 | 16.2 ± 2.2 |
NH4+ | 1 | 160.7 ± 3.3 |
Mn2+ | 1 | 199.6 ± 5.0 |
SDS | 1 | 100.0 ± 4.2 |
EDTA | 1 | 118.4 ± 2.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Li, S.; Wu, Y.; Jin, M.; Zhou, Y.; Wang, Y.; Chen, X.; Han, Y. Cloning and Characterization of a New β-Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides. Mar. Drugs 2020, 18, 312. https://doi.org/10.3390/md18060312
Li D, Li S, Wu Y, Jin M, Zhou Y, Wang Y, Chen X, Han Y. Cloning and Characterization of a New β-Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides. Marine Drugs. 2020; 18(6):312. https://doi.org/10.3390/md18060312
Chicago/Turabian StyleLi, Dandan, Shangyong Li, Yanhong Wu, Mengfei Jin, Yu Zhou, Yanan Wang, Xuehong Chen, and Yantao Han. 2020. "Cloning and Characterization of a New β-Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides" Marine Drugs 18, no. 6: 312. https://doi.org/10.3390/md18060312
APA StyleLi, D., Li, S., Wu, Y., Jin, M., Zhou, Y., Wang, Y., Chen, X., & Han, Y. (2020). Cloning and Characterization of a New β-Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides. Marine Drugs, 18(6), 312. https://doi.org/10.3390/md18060312