Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB
Abstract
:1. Introduction
2. Results
2.1. Reaction Condition Optimization and Synthesis of TxIB Analogs
2.2. Electrophysiological Activity Measurements
2.3. Serum Stability of Native Peptide and Its Analogs
2.4. CD Spectroscopy Assays
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Peptide Synthesis
4.3. General Method for the Synthesis of TxIB[1,3]-m,o,p and TxIB[2,4]-m,o,p
4.4. Electrophysiological Activity on Different nAChRs
4.5. Stability Assays
4.6. Circular Dichroism Spectroscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gotti, C.; Zoli, M.; Clementi, F. Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends Pharmacol. Sci. 2006, 27, 482–491. [Google Scholar] [CrossRef]
- Bordia, T.; McGregor, M.; McIntosh, J.M.; Drenan, R.M.; Quik, M. Evidence for a role for alpha6* nAChRs in l-dopa-induced dyskinesias using Parkinsonian alpha6* nAChR gain-of-function mice. Neuroscience 2015, 295, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, C.A.; McIntosh, J.M.; Jones, S.R.; Ferris, M.J. alpha6beta2 subunit containing nicotinic acetylcholine receptors exert opposing actions on rapid dopamine signaling in the nucleus accumbens of rats with high-versus low-response to novelty. Neuropharmacology 2017, 126, 281–291. [Google Scholar] [CrossRef]
- Steffensen, S.C.; Shin, S.I.; Nelson, A.C.; Pistorius, S.S.; Williams, S.B.; Woodward, T.J.; Park, H.J.; Friend, L.; Gao, M.; Gao, F.; et al. alpha6 subunit-containing nicotinic receptors mediate low-dose ethanol effects on ventral tegmental area neurons and ethanol reward. Addict. Biol. 2018, 23, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.C.; Jin, G.Z.; Wu, J. Mysterious alpha6-containing nAChRs: Function, pharmacology, and pathophysiology. Acta Pharmacol. Sin. 2009, 30, 740–751. [Google Scholar] [CrossRef]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef] [PubMed]
- van Hout, M.; Valdes, A.; Christensen, S.B.; Tran, P.T.; Watkins, M.; Gajewiak, J.; Jensen, A.A.; Olivera, B.M.; McIntosh, J.M. α-Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors. Neuropharmacology 2019, 157, 107691. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, X.; Harvey, P.J.; Kaas, Q.; Zhangsun, D.; Craik, D.J.; Luo, S. Single Amino Acid Substitution in alpha-Conotoxin TxID Reveals a Specific alpha3beta4 Nicotinic Acetylcholine Receptor Antagonist. J. Med. Chem. 2018, 61, 9256–9265. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhangsun, D.; Harvey, P.J.; Kaas, Q.; Wu, Y.; Zhu, X.; Hu, Y.; Li, X.; Tsetlin, V.I.; Christensen, S.; et al. Cloning, synthesis, and characterization of alphaO-conotoxin GeXIVA, a potent alpha9alpha10 nicotinic acetylcholine receptor antagonist. Proc. Natl. Acad. Sci. USA 2015, 112, E4026–E4035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, D.; Zhao, L.; Chen, B.; Zhang, X.; Wang, X.; Yu, Z.; Ni, X.; Zhang, Q. alpha-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to alpha7-nAChR overexpressed non-small cell lung cancer. Drug Deliv. 2018, 25, 493–503. [Google Scholar] [CrossRef]
- Smolyar, I.V.; Yudin, A.K.; Nenajdenko, V.G. Heteroaryl Rings in Peptide Macrocycles. Chem. Rev. 2019, 119, 10032–10240. [Google Scholar] [CrossRef] [PubMed]
- Tomassi, S.; Trotta, A.M.; Ierano, C.; Merlino, F.; Messere, A.; Rea, G.; Santoro, F.; Brancaccio, D.; Carotenuto, A.; D’Amore, V.M.; et al. Disulfide Bond Replacement with 1,4- and 1,5-Disubstituted [1–3]-Triazole on C-X-C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chem. Eur. J. 2020, 26, 10113–10125. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Ohshima, T. Bioconjugation with Thiols by Benzylic Substitution. Chemistry 2018, 24, 3959–3964. [Google Scholar] [CrossRef]
- Williams, G.M.; Lee, K.; Li, X.; Cooper, G.J.; Brimble, M.A. Replacement of the CysA7-CysB7 disulfide bond with a 1,2,3-triazole linker causes unfolding in insulin glargine. Org. Biomol. Chem. 2015, 13, 4059–4063. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Y.H.; Li, X.; Zou, Y.; Liao, H.L.; Liu, L.; Chen, Y.G.; Bierer, D.; Hu, H.G. A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/beta-catenin signalling pathway. Chem. Sci. 2017, 8, 7368–7373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Vinogradova, E.V.; Spokoyny, A.M.; Buchwald, S.L.; Pentelute, B.L. Arylation Chemistry for Bioconjugation. Angew. Chem. Int. Ed. Engl. 2019, 58, 4810–4839. [Google Scholar] [CrossRef] [Green Version]
- Skowron, K.J.; Speltz, T.E.; Moore, T.W. Recent structural advances in constrained helical peptides. Med. Res. Rev. 2019, 39, 749–770. [Google Scholar] [CrossRef]
- Rojas, A.J.; Zhang, C.; Vinogradova, E.V.; Buchwald, N.H.; Reilly, J.; Pentelute, B.L.; Buchwald, S.L. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation. Chem. Sci. 2017, 8, 4257–4263. [Google Scholar] [CrossRef] [Green Version]
- Fadzen, C.M.; Wolfe, J.M.; Cho, C.F.; Chiocca, E.A.; Lawler, S.E.; Pentelute, B.L. Perfluoroarene-Based Peptide Macrocycles to Enhance Penetration Across the Blood-Brain Barrier. J. Am. Chem. Soc. 2017, 139, 15628–15631. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, R.; Xu, H.; Chen, J.; Zhan, Y.; Zhou, X.; Chen, H.; Jiang, B. Divinylsulfonamides as Specific Linkers for Stapling Disulfide Bonds in Peptides. Org. Lett. 2017, 19, 4972–4975. [Google Scholar] [CrossRef]
- van Lierop, B.J.; Robinson, S.D.; Kompella, S.N.; Belgi, A.; McArthur, J.R.; Hung, A.; MacRaild, C.A.; Adams, D.J.; Norton, R.S.; Robinson, A.J. Dicarba alpha-conotoxin Vc1.1 analogues with differential selectivity for nicotinic acetylcholine and GABAB receptors. ACS Chem. Biol. 2013, 8, 1815–1821. [Google Scholar] [CrossRef]
- MacRaild, C.A.; Illesinghe, J.; van Lierop, B.J.; Townsend, A.L.; Chebib, M.; Livett, B.G.; Robinson, A.J.; Norton, R.S. Structure and Activity of (2,8)-Dicarba-(3,12)-cystino α-ImI, an α-Conotoxin Containing a Nonreducible Cystine Analogue. J. Med. Chem. 2009, 52, 3, 755–762. [Google Scholar] [CrossRef]
- Jin, A.H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and Biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.C.; Belgi, A.; Husselbee, B.W.; Spanswick, D.; Norton, R.S.; Robinson, A.J. alpha-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins 2020, 12, 505. [Google Scholar] [CrossRef]
- Knuhtsen, A.; Whitmore, C.; McWhinnie, F.S.; McDougall, L.; Whiting, R.; Smith, B.O.; Timperley, C.M.; Green, A.C.; Kinnear, K.I.; Jamieson, A.G. α-Conotoxin GI triazole-peptidomimetics: Potent and stable blockers of a human acetylcholine receptor. Chem. Sci. 2019, 10, 1671–1676. [Google Scholar] [CrossRef] [Green Version]
- Gori, A.; Wang, C.I.; Harvey, P.J.; Rosengren, K.J.; Bhola, R.F.; Gelmi, M.L.; Longhi, R.; Christie, M.J.; Lewis, R.J.; Alewood, P.F.; et al. Stabilization of the cysteine-rich conotoxin MrIA by using a 1,2,3-triazole as a disulfide bond mimetic. Angew Chem. Int. Ed. Engl. 2015, 54, 1361–1364. [Google Scholar] [CrossRef]
- Luo, S.; Zhangsun, D.; Wu, Y.; Zhu, X.; Hu, Y.; McIntyre, M.; Christensen, S.; Akcan, M.; Craik, D.J.; McIntosh, J.M. Characterization of a novel alpha-conotoxin from conus textile that selectively targets alpha6/alpha3beta2beta3 nicotinic acetylcholine receptors. J. Biol. Chem. 2013, 288, 894–902. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Li, X.; Xiong, J.; Zhu, X.; Zhangsun, D.; Zhu, X.; Luo, S. alpha-Conotoxin TxIB: A Uniquely Selective Ligand for alpha6/alpha3beta2beta3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Mar. Drugs 2019, 17, 490. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wu, Y.; Zhu, F.; Yang, Q.; Wu, Q.; Zhangsun, D.; Luo, S. Optimal cleavage and oxidative folding of alpha-conotoxin TxIB as a therapeutic candidate peptide. Mar. Drugs 2013, 11, 3537–3553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Zhu, X.; Yang, Y.; Luo, S.; Zhangsun, D. Expression in Escherichia coli of fusion protein comprising alpha-conotoxin TxIB and preservation of selectivity to nicotinic acetylcholine receptors in the purified product. Chem. Biol. Drug. Des. 2018, 91, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Zhu, X.; Zhangsun, D.; Wu, Y.; Luo, S. Effects of Cyclization on Activity and Stability of alpha-Conotoxin TxIB. Mar. Drugs 2020, 18, 180. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.S.; Villequey, C.; Kong, X.D.; Zorzi, A.; Deyle, K.; Heinis, C. Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat. Chem. 2018, 10, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, S.; Belgi, A.; Bartels, P.; van Lierop, B.J.; Robinson, S.D.; Kompella, S.N.; Hung, A.; Callaghan, B.P.; Adams, D.J.; Robinson, A.J.; et al. Dicarba analogues of alpha-conotoxin RgIA. Structure, stability, and activity at potential pain targets. J. Med. Chem. 2014, 57, 9933–9944. [Google Scholar] [CrossRef]
- Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Inclusion of denatured proteins with native proteins in the analysis. Anal. Biochem. 2000, 287, 243–251. [Google Scholar] [CrossRef] [Green Version]
Name | Secondary Structures | |||
---|---|---|---|---|
α-Helix | β-Sheet | β-Turns | Random Coil | |
TxIB | 38.2% | 6.4% | 22.1% | 33.3% |
TxIB[1,3]-p | 23.3% | 21.7% | 23.3% | 31.7% |
TxIB[2,4]-p | 18.8% | 27.2% | 20.7% | 33.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Ren, M.; Xiong, Y.; Li, H.; Wu, Y.; Fu, Y.; Zhangsun, D.; Dong, S.; Luo, S. Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB. Mar. Drugs 2021, 19, 119. https://doi.org/10.3390/md19020119
Zhang B, Ren M, Xiong Y, Li H, Wu Y, Fu Y, Zhangsun D, Dong S, Luo S. Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB. Marine Drugs. 2021; 19(2):119. https://doi.org/10.3390/md19020119
Chicago/Turabian StyleZhang, Baojian, Maomao Ren, Yang Xiong, Haonan Li, Yong Wu, Ying Fu, Dongting Zhangsun, Shuai Dong, and Sulan Luo. 2021. "Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB" Marine Drugs 19, no. 2: 119. https://doi.org/10.3390/md19020119
APA StyleZhang, B., Ren, M., Xiong, Y., Li, H., Wu, Y., Fu, Y., Zhangsun, D., Dong, S., & Luo, S. (2021). Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB. Marine Drugs, 19(2), 119. https://doi.org/10.3390/md19020119