Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp.
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Extraction and Separation
3.3.1. Spongenolactone A (1)
3.3.2. Spongenolactone B (2)
3.3.3. Spongenolactone C (3)
3.4. DFT and TD-DFT Calculations
3.5. Cytotoxicity Assay
3.6. Antibacterial Assay
3.7. Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Maximo, P.; Ferreira, L.M.; Branco, P.; Lima, P.; Lourenco, A. The role of Spongia sp. in the discovery of marine lead compounds. Mar. Drugs 2016, 14, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Mao, Q.; Bao, M.; Mou, Y.; Fang, C.; Zhao, M.; Jiang, W.; Yu, X.; Wang, C.; Dai, L.; et al. Spongian diterpenes including one with a rearranged skeleton from the marine sponge Spongia officinalis. J. Nat. Prod. 2019, 82, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-Q.; Liao, X.-J.; Lin, J.-L.; Xu, W.; Chen, G.-D.; Zhao, B.-X.; Xu, S.-H. Spongiains A−C: Three new spongian diterpenes with ring A rearrangement from the marine sponge Spongia sp. Tetrahedron 2019, 75, 3802–3808. [Google Scholar] [CrossRef]
- Liang, Y.Q.; Liao, X.J.; Zhao, B.X.; Xu, S.H. (+)- and (−)-Spongiterpene, a pair of new valerenane sesquiterpene enantiomers from the marine sponge Spongia sp. Nat. Prod. Res. 2019, 35, 2178–2183. [Google Scholar] [CrossRef]
- Liang, Y.Q.; Liao, X.J.; Zhao, B.X.; Xu, S.H. Novel 3,4-seco-3,19-dinorspongian and 5,17-epoxy-19-norspongian diterpenes from the marine sponge Spongia sp. Org. Chem. Front. 2020, 7, 3253–3261. [Google Scholar] [CrossRef]
- Yang, I.; Lee, J.; Lee, J.; Hahn, D.; Chin, J.; Won, D.H.; Ko, J.; Choi, H.; Hong, A.; Nam, S.-J.; et al. Scalalactams A−D, scalarane sesterterpenes with a γ-lactam moiety from a Korean Spongia sp. marine sponge. Molecules 2018, 23, 3187. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Nguyen, H.M.; Win, N.N.; Vo, H.Q.; Nguyen, H.T.; Morita, H. Three new sesquiterpene aminoquinones from a Vietnamese Spongia sp. and their biological activities. J. Nat. Prod. 2018, 72, 298–303. [Google Scholar] [CrossRef]
- Abdjul, D.B.; Yamazaki, H.; Kanno, S.I.; Wewengkang, D.S.; Rotinsulu, H.; Sumilat, D.A.; Ukai, K.; Kapojos, M.M.; Namikoshi, M. Furanoterpenes, new types of protein tyrosine phosphatase 1B inhibitors, from two Indonesian marine sponges, Ircinia and Spongia spp. Bioorg. Med. Chem. Lett. 2017, 27, 1159–1161. [Google Scholar] [CrossRef]
- El-Desoky, A.H.; Kato, H.; Tsukamoto, S. Ceylonins G−I: Spongian diterpenes from the marine sponge Spongia ceylonensis. J. Nat. Prod. 2017, 71, 765–769. [Google Scholar] [CrossRef]
- Li, J.; Gu, B.-B.; Sun, F.; Xu, J.-R.; Jiao, W.-H.; Yu, H.-B.; Han, B.-N.; Yang, F.; Zhang, X.-C.; Lin, H.-W. Sesquiterpene quinones/hydroquinones from the marine sponge Spongia pertusa Esper. J. Nat. Prod. 2017, 80, 1436–1445. [Google Scholar] [CrossRef]
- Tai, C.-J.; Huang, C.-Y.; Ahmed, A.-F.; Orfali, R.-S.; Alarif, W.-M.; Huang, Y.M.; Wang, Y.-H.; Hwang, T.-L.; Sheu, J.-H. An anti-inflammatory 2,4-cyclized-3,4-secospongian diterpenoid and furanoterpene-related metabolites of a marine sponge Spongia sp. from the Red Sea. Mar. Drugs 2021, 19, 38. [Google Scholar] [CrossRef]
- Tai, C.-J.; Ahmed, A.F.; Chao, C.-H.; Yen, C.-H.; Hwang, T.-L.; Chang, F.-R.; Huang, Y.M.; Sheu, J.-H. The chemically highly diversified metabolites from the Red Sea marine sponge Spongia sp. Mar. Drugs 2022, 20, 241. [Google Scholar] [CrossRef]
- Zeng, L.-M.; Guan, Z.; Su, J.-Y.; Feng, X.-L.; Cai, J.-W. Two new spongian diterpene lactones. Acta Chim. Sin. 2001, 59, 1675–1679. [Google Scholar]
- Li, C.-J.; Schmitz, F.J.; Kelly-Borges, M. Six new spongian diterpenes from the sponge Spongia matamata. J. Nat. Prod. 1999, 62, 287–290. [Google Scholar] [CrossRef]
- Pescitelli, G.; Bruhn, T. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 2016, 28, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Chen, Y.-S.; Chang, H.-S.; Hsiao, H.-H.; Chen, Y.-F.; Kuo, Y.-P.; Yen, F.-L.; Yen, C.-H. Identification of beilschmiedia tsangii root extract as a liver cancer cell–normal keratinocyte dual-selective NRF2 regulator. Antioxidants 2021, 10, 544. [Google Scholar] [CrossRef]
- Kao, Y.-T.; Chen, Y.-S.; Tang, K.-W.; Lee, J.-C.; Tseng, C.-H.; Tzeng, C.-C.; Yen, C.-H.; Chen, Y.-L. Discovery of 4-anilinoquinolinylchalcone derivatives as potential NRF2 activators. Molecules 2020, 25, 3133. [Google Scholar] [CrossRef]
- Yu, H.-P.; Hsieh, P.-W.; Chang, Y.-J.; Chung, P.-J.; Kuo, L.-M.; Hwang, T.-L. 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. Free Radic. Biol. Med. 2011, 50, 1737–1748. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chung, P.-J.; Ho, C.-M.; Kuo, C.-Y.; Hung, M.-F.; Huang, Y.-T.; Chang, W.-Y.; Chang, Y.-W.; Chan, K.-H.; Hwang, T.-L. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. J. Immunol. 2013, 190, 6511–6519. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.-L.; Su, Y.-C.; Chang, H.-L.; Leu, Y.-L.; Chung, P.-J.; Kuo, L.-M.; Chang, Y.-J. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. J. Lipid Res. 2009, 50, 1395–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.W.; Watkins, D.; Jin, Y.; Gong, C.; King, A.; Washington, A.Z.; Green, K.D.; Garneau-Tsodikova, S.; Oyelere, A.K.; Arya, D.P. Rapid synthesis, RNA binding, and antibacterial screening of a peptidic-aminosugar (PA) library. ACS Chem. Biol. 2015, 10, 1278–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1 | 2 | 3 | ||||
---|---|---|---|---|---|---|
Position | δH | δC | δH | δC | δH | δC |
1 | 3.86, br s | 91.2, CH | 3.84 br s | 91.1, CH | 3.83, br s | 91.2, CH2 |
2 | − | 90.2, C | − | 90.1, C | − | 90.4, C |
3 | − | 183.3, C | − | 182.4, C | − | 183.3, C |
4 | − | 48.6, C | − | 48.6, C | − | 48.7, C |
5 | 2.00, dd (13.0, 1.5) b | 56.1, CH | 2.01, m | 56.2, CH | 1.96, m | 56.1, CH |
6α | 1.60, m | 18.6, CH2 | 1.57 m | 18.4, CH2 | 1.61, m | 18.4, CH2 |
6β | 1.75, m | 1.71 dd (13.0, 3.0) | 1.74, m | |||
7α | 1.22, m | 38.3, CH2 | 1.03 dt (13.0, 3.5) | 33.2, CH2 | 1.14, m | 37.8, CH2 |
7β | 1.81, m | 2.23 m | 1.98, m | |||
8 | − | 38.0, C | − | 44.2, C | − | 38.1, C |
9 | 1.88, dd (12.0, 1.0) | 49.4, CH | 1.93, dd (12.0, 2.0) | 49.9, CH | 1.74, m | 50.0, CH |
10 | − | 47.4, C | − | 47.1, C | − | 47.5, C |
11α | 1.79, m | 19.9, CH2 | 1.76, m | 19.5, CH2 | 1.77, m | 19.8, CH2 |
11β | 1.65, m | 1.82, m | 1.66, m | |||
12α | 2.02, m | 22.2, CH2 | 2.04 m | 22.2, CH2 | 2.03, m | 22.1, CH2 |
12β | 2.22, m | 2.24 m | 2.26, m | |||
13 | − | 123.5, C | − | 124.9, C | − | 127.8, C |
14 | − | 172.2, C | − | 170.5, C | − | 169.0, C |
15α | 4.51, dd (17.0, 2.5) | 68.8, CH2 | 4.53, dd (17.0, 2.5) | 72.4, CH2 | 5.86, d (2.0) | 97.7, CH |
15β | 4.82, tt (17.0, 2.5) | 4.96, tt (17.0, 2.5) | ||||
16 | − | 174.7, C | − | 174.8, C | − | 172.9, C |
17 | 1.19, s | 22.4, CH3 | 3.67, dd (10.5, 4.5) | 65.3, CH2 | 1.26, s | 21.0, CH3 |
4.01, dd (10.5, 4.5) | ||||||
18 | 1.13, s | 22.4, CH3 | 1.12, s | 22.4, CH3 | 1.14, s | 22.4, CH3 |
19α | 3.83, d (10.0) | 75.3, CH2 | 3.82, d (10.0) | 75.3, CH2 | 3.83, d (10.0) | 75.4, CH2 |
19β | 4.40, d (10.0) | 4.40, d (10.0) | 4.40, d (10.0) | |||
20 | 0.80, s | 15.6, CH3 | 0.76, s | 15.6, CH3 | 0.80, s | 15.8, CH3 |
Compound | Superoxide Anion | Elastase Release | ||
---|---|---|---|---|
IC50 (μM) a | Inh% b | IC50 (μM) | Inh% | |
1 | 16.5 ± 1.6 | 61.0 ± 4.4 *** | >20 | 49.8 ± 4.2 *** |
2 | 13.1 ± 1.3 | 70.8 ± 4.8 *** | 18.6 ± 0.9 | 52.2 ± 1.4 *** |
3 | 17.4 ± 1.9 | 58.9 ± 6.0 *** | >20 | 46.5 ± 6.2 ** |
LY294002 | 1.9 ± 0.8 | 88.7 ± 1.5 *** | 2.9 ± 0.1 | 79.5 ± 2.0 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, C.-J.; Ahmed, A.F.; Chao, C.-H.; Yen, C.-H.; Hwang, T.-L.; Chang, F.-R.; Huang, Y.M.; Sheu, J.-H. Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp. Mar. Drugs 2022, 20, 498. https://doi.org/10.3390/md20080498
Tai C-J, Ahmed AF, Chao C-H, Yen C-H, Hwang T-L, Chang F-R, Huang YM, Sheu J-H. Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp. Marine Drugs. 2022; 20(8):498. https://doi.org/10.3390/md20080498
Chicago/Turabian StyleTai, Chi-Jen, Atallah F. Ahmed, Chih-Hua Chao, Chia-Hung Yen, Tsong-Long Hwang, Fang-Rong Chang, Yusheng M. Huang, and Jyh-Horng Sheu. 2022. "Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp." Marine Drugs 20, no. 8: 498. https://doi.org/10.3390/md20080498
APA StyleTai, C. -J., Ahmed, A. F., Chao, C. -H., Yen, C. -H., Hwang, T. -L., Chang, F. -R., Huang, Y. M., & Sheu, J. -H. (2022). Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp. Marine Drugs, 20(8), 498. https://doi.org/10.3390/md20080498