Hemiacetalmeroterpenoids A–C and Astellolide Q with Antimicrobial Activity from the Marine-Derived Fungus Penicillium sp. N-5
Abstract
:1. Introduction
2. Results
2.1. Structure Identification
2.2. Antimicrobial Assay
3. Experimental Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation
3.4. Extraction and Purification
3.5. ECD Calculation
3.6. Bioassays Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsuda, Y.; Quan, Z.; Mitsuhashi, T.; Li, C.; Abe, I. Cytochrome P450 for citreohybridonol synthesis: Oxidative derivatization of the andrastin scaffold. Org. Lett. 2016, 18, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Awakawa, T.; Abe, I. Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 2013, 69, 8199–8204. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, X.; Zheng, Z.H.; Zhang, X.X.; Lu, X.H.; Yao, F.H.; Qi, S.H. Penicimeroterpenoids A-C, meroterpenoids with rearrangement skeletons from the marine-derived fungus Penicillium sp. SCSIO 41512. Org. Lett. 2020, 62, 6330–6333. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Huang, X.S.; Liu, X.B.; Mo, T.X.; Xu, Z.L.; Li, B.C.; Qin, X.Y.; Li, J.; Schäberle, T.F.; Yang, R.Y. Three new andrastin derivatives from the endophytic fungus Penicillium vulpinum. Nat. Prod. Res. 2022, 36, 13. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Huo, R.; Liu, G.; Liu, L. New andrastin-type meroterpenoids from the marine-derived fungus Penicillium sp. Mar. Drugs 2021, 19, 189. [Google Scholar] [CrossRef]
- Xie, C.L.; Xia, J.M.; Lin, T.; Lin, Y.J.; Lin, Y.K.; Xia, M.L.; Chen, H.F.; Luo, Z.H.; Shao, Z.Z.; Yang, X.W. Andrastone A from the deep sea-derived fungus Penicillium allii-sativi acts as an inducer of caspase and RXRa-dependant apoptosis. Front. Chem. 2019, 7, 692. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Xu, W.; Wang, Y.; Bai, S.; Liu, L.; Luo, Z.; Yuan, W.; Li, Q. Two new meroterpenoids and two new monoterpenoids from the deep sea-derived fungus Penicillium sp. YPGA11. Fitoterapia 2019, 133, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Powers, Z.; Scharf, A.; Cheng, A.; Yang, F.; Himmelbauer, M.; Mitsuhashi, T.; Barra, L.; Taniguchi, Y.; Kikuchi, T.; Fujita, M.; et al. Biomimetic synthesis of meroterpenoids by dearomatization-driven polycyclization. Angew. Chem. Int. Ed. 2019, 58, 16141–16146. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Wang, W.J.; Xu, T. Total synthesis of bioactive marine mero-terpenoids: The cases of liphagal and frondosin B. Mar. Drugs 2018, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Kuan, K.K.W.; Markwell-Heys, A.W.; Cruickshank, M.C.; Tran, D.P.; Adlington, R.M.; Baldwin, J.E.; George, J.H. Biomimetic synthetic studies on meroterpenoids from the marine sponge Aka coralliphaga: Divergent total syntheses of siphonodictyal B, liphagal and corallidictyals A–D. Bioorgan. Med. Chem. 2019, 27, 2449–2465. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shi, Y.; Liu, Y.; Zhang, Y.; Wu, J.; Zhang, G.; Che, Q.; Zhu, T.; Li, M.; Li, D. Brasilterpenes A-E, bergamotane sesquiterpenoid derivatives with hypoglycemic activity from the deep sea-derived fungus Paraconiothyrium brasiliense HDN15-135. Mar. Drugs 2022, 20, 338. [Google Scholar] [CrossRef]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, C.; Huang, L.; Zhang, X.; Zhang, G.; Che, Q.; Li, D.; Zhu, T. Talarodrides A-F, nonadrides from the antarctic sponge-derived fungus Talaromyces sp. HDN1820200. J. Nat. Prod. 2021, 84, 3011–3019. [Google Scholar] [CrossRef]
- Shun, C.; Liu, Q.; Shah, M.; Che, Q.; Zhang, G.; Zhu, T.; Zhou, J.; Rong, X.; Li, D. Talaverrucin A, heterodimeric oxaphenalenone from antarctica sponge-derived fungus Talaromyces sp. HDN151403, Inhibits Wnt/β-Catenin Signaling Pathway. Org. Lett. 2022, 24, 3993–3997. [Google Scholar] [CrossRef]
- Ye, G.; Huang, C.; Li, J.; Chen, T.; Tang, J.; Liu, W.; Long, Y. Isolation, structural characterization and antidiabetic activity of new diketopiperazine Alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Mar. Drugs 2021, 19, 402. [Google Scholar] [CrossRef]
- Wu, Q.; Chang, Y.; Che, Q.; Li, D.; Zhang, G.; Zhu, T. Citreobenzofuran D-F and phomenone A-B: Five novel sesquiterpenoids from the mangrove-derived fungus Penicillium sp. HDN13-494. Mar. Drugs 2022, 20, 137. [Google Scholar] [CrossRef]
- Yang, W.; Tan, Q.; Yin, Y.; Chen, Y.; Zhang, Y.; Wu, J.; Gao, L.; Wang, B.; She, Z. Secondary metabolites with α-glucosidase inhibitory activity from mangrove endophytic fungus talaromyces sp. CY-3. Mar. Drugs 2021, 19, 492. [Google Scholar] [CrossRef]
- Zang, Z.; Yang, W.; Cui, H.; Cai, R.; Li, C.; Zou, G.; Wang, B.; She, Z. Two antimicrobial heterodimeric tetrahydroxanthones with a 7, 7′-Linkage from mangrove endophytic fungus Aspergillus flavus QQYZ. Molecules 2022, 27, 2691. [Google Scholar] [CrossRef]
- Zou, G.; Chen, Y.; Yang, W.; Zang, Z.; Jiang, H.; Chen, S.; Wang, B.; She, Z. Furobenzotropolones A, B and 3-Hydroxyepicoccone B with antioxidative activity from mangrove endophytic fungus Epicoccum nigrum MLY-3. Mar. Drugs 2021, 19, 395. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, G.; Wang, G.; Kang, W.; Yuan, J.; She, Z. Cytotoxic bromine- and iodine-containing cytochalasins produced by the mangrove endophytic fungus Phomopsis sp. QYM-13 using the OSMAC approach. J. Nat. Prod. 2022, 85, 1229–1238. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, R.; Zang, Z.; Yang, W.; Wang, B.; Zhu, G.; Yuan, J.; She, Z. Azaphilone derivatives with anti-inflammatory activity from the mangrove endophytic fungus Penicillium sclerotiorum ZJHJJ-18. Bioorg. Chem. 2022, 122, 105721. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Jiang, H.; Xiao, Z.; Cao, W.; Yan, T.; Liu, Z.; Lin, S.; Long, Y.; She, Z. (−)- and (+)-Asperginulin A, a pair of indole diketopiperazine alkaloid dimers with a 6/5/4/5/6 pentacyclic skeleton from the mangrove endophytic fungus Aspergillus sp. SK-28. Org. Lett. 2019, 21, 9633–9636. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Shang, Z.; Li, X.M.; Li, C.S.; Gui, C.M.; Wang, B.G. Secondary metabolites produced by solid fermentation of the marine-derived fungus Penicillium commune QSD-17. Biosci. Biotechnol. Biochem. 2012, 76, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Kosemura, S.H.; Miyata, K.; Matsunaga, S. Yamamura, Biosynthesis of citreohybridones, the metabolites of a hybrid strain KO 0031 derived from penicillium citreo-viride B. IFO 6200 and 4692. Tetrahedron Lett. 1992, 33, 3883–3886. [Google Scholar] [CrossRef]
- Shiomi, K.R.; Uchida, J.; Inokoshi, H.; Tanaka, Y.; Iwai, S. Ōmura, Andrastins A-C, new protein farnesyltransferase inhibitors, produced by Penicillium sp. FO-3929. Tetrahedron Lett. 1996, 37, 1265–1268. [Google Scholar] [CrossRef]
- Yang, X.; Xie, C.; Xia, J.; He, Z. Andrastone Compound and its Preparation Method and Application in Preparation of Antiallergic Drug. CN 111217878, 2 June 2020. [Google Scholar]
- Hamasaki, T.; Kuwano, H.; Isono, K.; Hatsuda, Y.; Fukuyama, K.; Tsukihara, T.; Katsube, Y. A new metabolite, parasiticolide A, from Aspergillus parasiticus. Agric. Biol. Chem. 1975, 37, 749–751. [Google Scholar] [CrossRef]
- Kosemura, S. Meroterpenoids from Penicillium citreo-viride B. IFO 4692 and 6200 hybrid. Tetrahedron 2003, 59, 5055–5072. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Y.N.; Li, J.; Huang, X.S.; Yan, T.; Cao, W.H.; Liu, H.J.; Long, Y.H.; She, Z.G. Diaporindenes A-D: Four unusual 2,3-dihydro-1H-indene analogues with anti-inflammatory activities from the mangrove endophytic fungus Diaporthe sp. SYSU. J. Org. Chem. 2018, 83, 11804–11813. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, UK, 2016. [Google Scholar]
- Yang, W.; Yuan, J.; Tan, Q.; Chen, Y.; Zhu, Y.; Jiang, H.; Zou, G.; Zang, Z.; Wang, B.; She, Z. Peniazaphilones A-I, produced by co-culturing of mangrove endophytic fungi, Penicillium sclerotiorum THSH-4 and Penicillium sclerotio-rum ZJHJJ-18. Chin. J. Chem. 2021, 39, 3404–3412. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, G.; Chen, S.; Pang, J.; She, Z. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 2019, 139, 10436. [Google Scholar] [CrossRef]
Position | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 34.7 (CH2) | 1.42, m 2.33, m | 35.3 (CH2) | 1.12, m 2.19, m | 34.8 (CH2) | 1.15, m 2.20, m |
2 | 30.2 (CH2) | 1.85, m 2.16, m | 30.3 (CH2) | 1.74, m 2.12, m | 30.1 (CH2) | 1.76, m 2.14, m |
3 | 99.8 (C) | 99.5 (C) | 99.5 (C) | |||
4 | 41.4 (C) | 41.3 (C) | 41.3 (C) | |||
5 | 49.1 (CH) | 1.47, m | 50.9 (CH) | 1.33, m | 51.4 (CH) | 1.21, m |
6 | 19.4 (CH2) | 1.62, m 1.91, m | 20.5 (CH2) | 1.55, m 1.75, m | 20.4 (CH2) | 1.62, m 1.81, m |
7 | 32.3 (CH2) | 1.94, m 2.61, m | 32.5 (CH2) | 2.07, m 2.76, m | 32.9 (CH2) | 1.94, m 2.23, m |
8 | 40.2 (C) | 42.4 (C) | 41.9 (C) | |||
9 | 150.1 (C) | 48.5 (CH) | 1.89, t (2.7) | 48.6 (CH) | 1.98, t (2.7) | |
10 | 38.5 (C) | 36.3 (C) | 36.3 (C) | |||
11 | 127.2 (CH) | 5.63, s | 124.2 (CH) | 5.42, m | 126.0 (CH) | 5.60, m |
12 | 77.4 (C) | 137.7 (C) | 133.7 (C) | |||
13 | 54.4 (C) | 57.5 (C) | 60.6 (C) | |||
14 | 73.4 (C) | 69.7 (C) | 69.2 (C) | |||
15 | 203.7 (C) | 190.7 (C) | 171.9 (C) | |||
16 | 76.7 (C) | 113.5 (C) | 131.9 (C) | |||
17 | 203.8 (C) | 201.4 (C) | 202.1 (C) | |||
18 | 7.9 (CH3) | 1.19, s | 6.6 (CH3) | 1.57, s | 8.8 (CH3) | 1.55, s |
19 | 11.0 (CH3) | 1.33, s | 18.0 (CH3) | 1.18, s | 17.4 (CH3) | 1.20, s |
20 | 24.2 (CH3) | 1.23, s | 20.2 (CH3) | 1.82, s | 19.1 (CH3) | 1.75, s |
21 | 74.4 (CH2) | 3.55, d (7.6) 4.39, d (8.7) | 68.6 (CH2) | 3.81, d (9.0) 4.22, d (9.0) | 68.5 (CH2) | 3.82, d (8.9) 4.21, d (9.0) |
22 | 27.2 (CH3) | 1.07, s | 27.9 (CH3) | 1.04, s | 27.9 (CH3) | 1.07, s |
23 | 18.9 (CH3) | 1.04, s | 18.9 (CH3) | 1.01, s | 18.8 (CH3) | 1.03, s |
24 | 25.9 (CH3) | 1.49, s | 16.7 (CH3) | 1.19, s | 16.5 (CH3) | 1.24, s |
25 | 169.3 (C) | 172.6 (C) | 170.9 (C) | |||
26 | 52.5 (CH3) | 3.60, s | 51.9 (CH3) | 3.56,s | 52.4 (CH3) | 3.59,s |
Ac-CH3 | 21.2 (CH3) | 2.36, s | ||||
Ac-OCO | 167.3 (C) |
Position | δC | δH (J in Hz) | Position | δC | δH (J in Hz) |
---|---|---|---|---|---|
1 | 35.3 (CH2) | 1.45, m 2.05, m | 10 | 44.2 (C) | |
2 | 19.5 (CH2) | 1.54, m 1.78, m | 11 | 71.8 (CH2) | 5.00, d (17.7) 4.84, d (17.6) |
3 | 37.0 (CH2) | 1.16, m 1.91, m | 12 | 177.0 (C) | |
4 | 39.3 (C) | 13 | 68.1 (CH2) | 4.44, d (11.2) 4.62, d (5.4) | |
5 | 56.4 (CH) | 1.74, s | 14 | 28.1 (CH3) | 1.16, s |
6 | 63.6 (CH) | 4.61, d (11.0) | 15 | 65.7 (CH2) | 3.76, d (12.0) 4.33, d (11.9) |
7 | 33.0 (CH2) | 2.34, d, (18.9) 2.50, d (18.3) | Ac-CH3 | 20.8 (CH3) | 2.08, s |
8 | 124.0 (C) | Ac-OCO | 173.1 (C) | ||
9 | 169.0 (C) |
Microbia | Methicillin-Resistent Staphyococcus aureus (μg/mL) a | Bacillus subtilis (μg/mL) a | Pseudomonas aeruginosa (μg/mL) a | Salmonella typhimurium (μg/mL) a | Penicillium italicum (μg/mL) a | Colletrichum gloeosporioides (μg/mL) a | |
---|---|---|---|---|---|---|---|
Compound | |||||||
1 | 25 | 6.25 | >50 | >50 | 6.25 | 6.25 | |
2 | >50 | >50 | 25 | >50 | 50 | >50 | |
3 | >50 | >50 | >50 | >50 | 50 | >50 | |
4 | >50 | >50 | >50 | >50 | >50 | >50 | |
5 | 50 | 25 | 25 | >50 | 1.56 | 3.13 | |
6 | >50 | 25 | 50 | >50 | 12.50 | 25 | |
7 | >50 | >50 | >50 | >50 | 25 | 25 | |
8 | >50 | >50 | >50 | >50 | >50 | >50 | |
9 | >50 | >50 | >50 | >50 | >50 | >50 | |
10 | 25 | 12.50 | 25 | 3.13 | 6.25 | 6.25 | |
11 | >50 | >50 | >50 | >50 | >50 | >50 | |
12 | >50 | >50 | >50 | >50 | >50 | >50 | |
13 | 50 | >50 | >50 | >50 | 50 | >50 | |
14 | >50 | >50 | >50 | >50 | >50 | >50 | |
15 | >50 | >50 | >50 | >50 | 25 | 25 | |
Ampicillin | 0.13 | 0.13 | 0.07 | 0.13 | - | - | |
Ketoconazole | - | - | - | - | 0.78 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Yang, W.; Li, T.; Yin, Y.; Liu, Y.; Wang, B.; She, Z. Hemiacetalmeroterpenoids A–C and Astellolide Q with Antimicrobial Activity from the Marine-Derived Fungus Penicillium sp. N-5. Mar. Drugs 2022, 20, 514. https://doi.org/10.3390/md20080514
Chen T, Yang W, Li T, Yin Y, Liu Y, Wang B, She Z. Hemiacetalmeroterpenoids A–C and Astellolide Q with Antimicrobial Activity from the Marine-Derived Fungus Penicillium sp. N-5. Marine Drugs. 2022; 20(8):514. https://doi.org/10.3390/md20080514
Chicago/Turabian StyleChen, Tao, Wencong Yang, Taobo Li, Yihao Yin, Yufeng Liu, Bo Wang, and Zhigang She. 2022. "Hemiacetalmeroterpenoids A–C and Astellolide Q with Antimicrobial Activity from the Marine-Derived Fungus Penicillium sp. N-5" Marine Drugs 20, no. 8: 514. https://doi.org/10.3390/md20080514
APA StyleChen, T., Yang, W., Li, T., Yin, Y., Liu, Y., Wang, B., & She, Z. (2022). Hemiacetalmeroterpenoids A–C and Astellolide Q with Antimicrobial Activity from the Marine-Derived Fungus Penicillium sp. N-5. Marine Drugs, 20(8), 514. https://doi.org/10.3390/md20080514