Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model
Abstract
:1. Introduction
2. Results
2.1. Toxicity of the Extracts from C. lentillifera
2.2. CL Extracts Decrease Total Fat Accumulation in High Glucose-Fed C. elegans
2.2.1. Fat Deposition in High Glucose-Fed C. elegans
2.2.2. Triglyceride Levels in High-Glucose-Fed C. elegans
2.2.3. GFP-Labeled dhs-3 Expression Levels in High Glucose-Fed C. elegans
2.3. Gas Chromatography–Mass Spectrometry (GC-MS) of CLET and CLEA
2.4. CLET and CLEA Reduce Intracellular Reactive Oxygen Species (ROS) in High Glucose-Fed C. elegans
2.5. CLET and CLEA Did Not Affect the Lifespan of High-Glucose-Fed C. elegans
2.6. CLET and CLEA Downregulated Levels of mRNA Transcripts of Fatty-Acid-Synthesis-Related Genes
2.7. CLET and CLEA Altered the Expression Levels of GFP-Labeled Lipogenesis and Lipolysis Genes
2.7.1. CLET and CLEA Attenuated GFP-Labeled sbp-1 Expression Levels
2.7.2. CLET and CLEA Increased GFP-Labeled atgl-1 Expression Levels
3. Discussion
4. Materials and Methods
4.1. C. elegans Strains and Maintenance
4.2. Establishment of Obesity Model in C. elegans
4.3. The Extraction and Analysis of Caulerpa lentillifera
4.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4.5. Dose–Response Assessment
4.6. Nile Red Staining Assay
4.7. Triglyceride Quantification Assay
4.8. Intracellular ROS Levels Analysis
4.9. Lifespan Assay
4.10. Quantitative RT-PCR
4.11. Quantification of GFP-Labeled Gene Expression Levels
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Bonorden, M.J.L.; Pandit, R.; Nkhata, K.J.; Bishayee, A. Infections and immunity: Associations with obesity and related metabolic disorders. J. Pathol. Transl. Med. 2023, 57, 28–42. [Google Scholar] [CrossRef] [PubMed]
- The World Obesity Federation. World Obesity Atlas. Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 (accessed on 18 October 2023).
- World Health Organization (WHO). Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 15 September 2023).
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.I.; Gao, Y.; Anugu, P.; Anugu, A.; Correa, A. Obesity and overall mortality: Findings from the Jackson Heart Study. BMC Public Health 2021, 21, 50. [Google Scholar] [CrossRef]
- Telles, S.; Gangadhar, B.N.; Chandwani, K.D. Lifestyle Modification in the Prevention and Management of Obesity. J. Obes. 2016, 2016, 5818601. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Gomez, G.; Stanford, F.C. US health policy and prescription drug coverage of FDA-approved medications for the treatment of obesity. Int. J. Obes. 2018, 42, 495–500. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Tschöp, M.H.; Wilding, J.P. Anti-obesity drugs: Past, present and future. Dis. Models Mech. 2012, 5, 621–626. [Google Scholar] [CrossRef]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Leandro, A.; Pereira, L.; Gonçalves, A.M.M. Diverse Applications of Marine Macroalgae. Mar. Drugs 2019, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef]
- Guo, J.; Qi, M.; Chen, H.; Zhou, C.; Ruan, R.; Yan, X.; Cheng, P. Macroalgae-Derived Multifunctional Bioactive Substances: The Potential Applications for Food and Pharmaceuticals. Foods 2022, 11, 3455. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 85. [Google Scholar] [CrossRef]
- Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Liu, H.; Liu, S.; Qin, Y.; Li, P. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ 2019, 7, e6118. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Shaleh, S.R.M.; Zuldin, W.H.; Gnanaraj, C.; Yong, Y.S. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar. Drugs 2022, 20, 101. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Muhammad, K.; Mustapha, N.M. Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food 2010, 13, 792–800. [Google Scholar] [CrossRef]
- du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Caulerpa lentillifera (Sea Grapes) Improves Cardiovascular and Metabolic Health of Rats with Diet-Induced Metabolic Syndrome. Metabolites 2020, 10, 500. [Google Scholar] [CrossRef]
- Ashrafi, K. Obesity and the regulation of fat metabolism. WormBook: The online review of C. elegans. Biology 2007, 1–20. [Google Scholar] [CrossRef]
- Lewandowski, T.A.; Norman, J. Dose-Response Assessment. In Toxicological Risk Assessment for Beginners; Torres, J.A., Bobst, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 43–66. [Google Scholar]
- Chumphoochai, K.; Chalorak, P.; Suphamungmee, W.; Sobhon, P.; Meemon, K. Saponin-enriched extracts from body wall and Cuvierian tubule of Holothuria leucospilota reduce fat accumulation and suppress lipogenesis in Caenorhabditis elegans. J. Sci. Food Agric. 2019, 99, 4158–4166. [Google Scholar] [CrossRef]
- Nomura, T.; Horikawa, M.; Shimamura, S.; Hashimoto, T.; Sakamoto, K. Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes Nutr. 2010, 5, 17–27. [Google Scholar] [CrossRef]
- Mak, H.Y. Lipid droplets as fat storage organelles in Caenorhabditis elegans: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: From Yeast to Man. J. Lipid Res. 2012, 53, 28–33. [Google Scholar] [CrossRef]
- Zhang, S.O.; Trimble, R.; Guo, F.; Mak, H.Y. Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol. 2010, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Jhun, B.S.; Yoon, Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid. Redox Signal. 2011, 14, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jiang, L.; Zhang, H.; Shimoda, L.A.; DeBerardinis, R.J.; Semenza, G.L. Chapter Twenty-Two—Analysis of Hypoxia-Induced Metabolic Reprogramming. In Methods in Enzymology; Galluzzi, L., Kroemer, G., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 542, pp. 425–455. [Google Scholar]
- Schlotterer, A.; Kukudov, G.; Bozorgmehr, F.; Hutter, H.; Du, X.; Oikonomou, D.; Ibrahim, Y.; Pfisterer, F.; Rabbani, N.; Thornalley, P.; et al. C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 2009, 58, 2450–2456. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Martinez, F.; Franco-Juarez, B.; Moreno-Arriola, E.; Hernández-Vázquez, A.; Martinez-Avila, M.; Gómez-Manzo, S.; Marcial-Quino, J.; Carvajal, K.; Velazquez-Arellano, A.; Ortega-Cuellar, D. The MXL-3/SBP-1 Axis Is Responsible for Glucose-Dependent Fat Accumulation in C. elegans. Genes 2017, 8, 307. [Google Scholar] [CrossRef]
- Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids Composition of Green Algae Caulerpa racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023, 28, 3267. [Google Scholar] [CrossRef]
- Nurkolis, F.; Taslim, N.A.; Qhabibi, F.R.; Kang, S.; Moon, M.; Choi, J.; Choi, M.; Park, M.N.; Mayulu, N.; Kim, B. Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules 2023, 28, 1365. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 609934, dl-2-Phenyltryptophane. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/dl-2-Phenyltryptophane (accessed on 21 September 2023).
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Caballero, B.; Finer, N.; Wurtman, R.J. Plasma amino acids and insulin levels in obesity: Response to carbohydrate intake and tryptophan supplements. Metab. Clin. Exp. 1988, 37, 672–676. [Google Scholar] [CrossRef]
- Cussotto, S.; Delgado, I.; Anesi, A.; Dexpert, S.; Aubert, A.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Mattivi, F.; et al. Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated with Systemic Inflammation. Front. Immunol. 2020, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Breum, L.; Rasmussen, M.H.; Hilsted, J.; Fernstrom, J.D. Twenty-four–hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am. J. Clin. Nutr. 2003, 77, 1112–1118. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Ramachandran, S.; Sikder, M.O.F.; Bhutia, Y.D.; Wachtel, M.W.; Ganapathy, V. α-Methyl-l-tryptophan as a weight-loss agent in multiple models of obesity in mice. Biochem. J. 2021, 478, 1347–1358. [Google Scholar] [CrossRef]
- Hajishafiee, M.; Ullrich, S.S.; Fitzgerald, P.C.; Horowitz, M.; Lange, K.; Poppitt, S.D.; Feinle-Bisset, C. Suppression of Energy Intake by Intragastric l-Tryptophan in Lean and Obese Men: Relations with Appetite Perceptions and Circulating Cholecystokinin and Tryptophan. J. Nutr. 2021, 151, 2932–2941. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 12439, 2,6-Dimethylbenzoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_6-Dimethylbenzoic-acid (accessed on 20 September 2023).
- Yoneyama, K.; Natsume, M. 4.13—Allelochemicals for Plant–Plant and Plant–Microbe Interactions. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 539–561. [Google Scholar]
- Shibamoto, T.; Bjeldanes, L.F. Chapter 9—Food Additives. In Introduction to Food Toxicology; Shibamoto, T., Bjeldanes, L.F., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 157–182. [Google Scholar]
- Mao, X.; Yang, Q.; Chen, D.; Yu, B.; He, J. Benzoic Acid Used as Food and Feed Additives Can Regulate Gut Functions. BioMed Res. Int. 2019, 2019, 5721585. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.; Khasati, A.; Hawi, M.; Hawash, M.; Shekfeh, S.; Qneibi, M.; Eid, A.M.; Arar, M.; Qaoud, M.T. Antidiabetic, antioxidant, and anti-obesity effects of phenylthio-ethyl benzoate derivatives, and molecular docking study regarding α-amylase enzyme. Sci. Rep. 2022, 12, 3108. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, M.; Kannabiran, K. Antidiabetic activity of 2-hydroxy 4-methoxy benzoic acid isolated from the roots of Hemidesmus indicus on streptozotocin-induced diabetic rats. Int. J. Diabetes Metab. 2019, 17, 53–57. [Google Scholar] [CrossRef]
- Murru, E.; Manca, C.; Carta, G.; Banni, S. Impact of Dietary Palmitic Acid on Lipid Metabolism. Front. Nutr. 2022, 9, 861664. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Martin, R.M.; Whincup, P.H.; Davey-Smith, G.; Gillman, M.W.; Cook, D.G. The effect of breastfeeding on mean body mass index throughout life: A quantitative review of published and unpublished observational evidence. Am. J. Clin. Nutr. 2005, 82, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Arenz, S.; Rückerl, R.; Koletzko, B.; von Kries, R. Breast-feeding and childhood obesity—A systematic review. Int. J. Obes. 2004, 28, 1247–1256. [Google Scholar] [CrossRef]
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci. 2021, 286, 120046. [Google Scholar] [CrossRef]
- Sanguanphun, T.; Promtang, S.; Sornkaew, N.; Niamnont, N.; Sobhon, P.; Meemon, K. Anti-Parkinson Effects of Holothuria leucospilota-Derived Palmitic Acid in Caenorhabditis elegans Model of Parkinson’s Disease. Mar. Drugs 2023, 21, 141. [Google Scholar] [CrossRef] [PubMed]
- Nurul, H.; Tukiran, T.; Dian, A.S.; Andika, P.W. Antioxidant Activity of Palmitic Acid and Pinostrobin from Methanol Extract of Syzygium litoralle (Myrtaceae). In Proceedings of the International Conference on Science and Technology (ICST 2018), Bali, Indonesia, 18–19 October 2018; pp. 183–187. [Google Scholar]
- Kraokaew, P.; Manohong, P.; Prasertsuksri, P.; Jattujan, P.; Niamnont, N.; Tamtin, M.; Sobhon, P.; Meemon, K. Ethyl Acetate Extract of Marine Algae, Halymenia durvillei, Provides Photoprotection against UV-Exposure in L929 and HaCaT Cells. Mar. Drug 2022, 20, 707. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, L. 3.20—Butyric Acid. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, MA, USA, 2011; pp. 207–215. [Google Scholar]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Chaabouni, E. Chapter 1—Platform Chemicals: Significance and Need. In Platform Chemical Biorefinery; Kaur Brar, S., Jyoti Sarma, S., Pakshirajan, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–20. [Google Scholar]
- van Deuren, T.; Blaak, E.E.; Canfora, E.E. Butyrate to combat obesity and obesity-associated metabolic disorders: Current status and future implications for therapeutic use. Obes. Rev. 2022, 23, e13498. [Google Scholar] [CrossRef]
- Pouillart, P.R. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci. 1998, 63, 1739–1760. [Google Scholar] [CrossRef]
- Mayorga-Ramos, A.; Barba-Ostria, C.; Simancas-Racines, D.; Guamán, L.P. Protective role of butyrate in obesity and diabetes: New insights. Front. Nutr. 2022, 9, 1067647. [Google Scholar] [CrossRef]
- Heimann, E.; Nyman, M.; Degerman, E. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte 2015, 4, 81–88. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kim, H.J.; Kim, M.S.; Park, C.M.; Rhyu, D.Y. Caulerpa okamurae extract inhibits adipogenesis in 3T3-L1 adipocytes and prevents high-fat diet–induced obesity in C57BL/6 mice. Nutr. Res. 2017, 47, 44–52. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Hu, J.-P.; Wu, M.-M.; Wang, L.-S.; Fang, N.-Y. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2015, 468, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, P.; Mayer, E.P.; Fowler, S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985, 100, 965–973. [Google Scholar] [CrossRef]
- Mitchell, D.H.; Stiles, J.W.; Santelli, J.; Sanadi, D.R. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J. Gerontol. 1979, 34, 28–36. [Google Scholar] [CrossRef]
Compounds | RT (min) | MW | Molecular Formula | Peak Area | % Peak Area | |
---|---|---|---|---|---|---|
1 | n-hexadecanoic acid | 33.51 | 256.24 | C16H32O2 | 56911251 | 69.76 |
2 | Butanoic acid, 3-methyl-, 3,7-dimethyl-6-octenyl ester | 36.312 | 240.209 | C15H28O2 | 5697899 | 6.98 |
3 | Hexadecanoic acid, ethyl ester | 34.084 | 284.272 | C18H36O | 4160343 | 5.10 |
4 | 1-Octadecyne | 31.895 | 250.266 | C18H34 | 3001459 | 3.68 |
5 | .alpha.,.alpha.,.alpha.’,.alpha.’-Tetramethyl-1,4-benzenedimethanol | 5.526 | 194.131 | C12H18O2 | 1984896 | 2.43 |
6 | Hexadecanal | 30.576 | 240.245 | C16H32O | 1707579 | 2.09 |
7 | Citronellyl isobutyrate | 31.537 | 226.193 | C14H26O2 | 1690647 | 2.07 |
Compounds | RT (min) | MW | Molecular Formula | Peak Area | % Peak Area | |
---|---|---|---|---|---|---|
1 | dl-2-Phenyltryptophane | 43.544 | 280.121 | C17H16N2O2 | 1655848 | 29.28 |
2 | Benzoic acid, 2,6-dimethyl- | 6.562 | 150.068 | C9H10O2 | 779649 | 13.79 |
3 | 4,7-Methanoazulene, decahydro-1,4,9,9-tetramethyl- | 31.028 | 206.203 | C15H26 | 752012 | 13.30 |
4 | 2-(4-Methyl-2-nitrophenylcarbamoyl)-terephthalic acid | 33.491 | 344.064 | C16H12N2O7 | 579464 | 10.25 |
5 | 4-Chloro-6-(2-hydroxyphenyl)pyrimidine | 11.949 | 206.025 | C10H7ClN2O | 405552 | 7.17 |
6 | Tetradecahydro-1-methylphenanthrene | 31.895 | 206.203 | C15H26 | 388071 | 6.86 |
7 | 1-(4-Methoxyphenyl)imidazoline-2-thione | 46.774 | 206.051 | C10H10N2OS | 314169 | 5.56 |
8 | Pyrimidin-2-amine, 4-(2,4-dimethyl-5-thiazolyl)- | 4.429 | 206.063 | C9H10N4S | 314395 | 5.56 |
9 | (S)-3-Ethyl-4-methylpentanol | 3.878 | 130.136 | C8H18O | 294186 | 5.20 |
10 | Butanoic acid, 4’-propyl[1,1’-bicyclohexyl]-4-yl ester | 43.261 | 294.256 | C19H34O2 | 171253 | 3.03 |
Strain | Mean Lifespan (Days) | No. of Worms | Increase in Lifespan (%) | p-Value |
---|---|---|---|---|
N2 | 16.2 ± 3.557 | 106 | - | |
N2 + 50 mM glucose | 14.09 ± 2.932 | 122 | −13.02 | <0.0001 |
N2 + 50 mM glucose + 1% DMSO | 13.89 ± 2.938 | 132 | - | |
N2 + 50 mM glucose + 500 µg/mL CLET | 14.02 ± 3.121 | 131 | 0.94 | ns |
N2 + 50 mM glucose + 500 µg/mL CLEA | 14.08 ± 3.090 | 126 | 1.37 | ns |
Genes | Forward Primer (5′ To 3′) | Reverse Primer (5′ To 3′) |
---|---|---|
sbp-1 | TCCATACGACCAAGCTCAAGG | TGCCACTTGTTCAGGGTTCT |
cebp-2 | TCGGAAGCGAAACACATCAGA | TTCTGTAGCTGCTCGACCTTT |
daf-16 | TTCCTGAAGAAGATGCTGACCTA | TATCGTCTGGCGATTCGGAC |
atgl-1 | TTATCCGCAGTTTCCGCTCC | ACATGCATCACGTTTACTTGTAGT |
hosl-1 | CAACTTCAGGACCACTGGGG | GTTGTCCGAACACATCTGTACTA |
nhr-49 | CCATGCACAACCGAGGATCT | TCGAGTTGTATCGGGACTTCG |
act-1 | CAATCTACGAAGGATATG | ATGAGGTAATCAGTAAGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chumphoochai, K.; Manohong, P.; Niamnont, N.; Tamtin, M.; Sobhon, P.; Meemon, K. Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model. Mar. Drugs 2023, 21, 577. https://doi.org/10.3390/md21110577
Chumphoochai K, Manohong P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model. Marine Drugs. 2023; 21(11):577. https://doi.org/10.3390/md21110577
Chicago/Turabian StyleChumphoochai, Kawita, Preeyanuch Manohong, Nakorn Niamnont, Montakan Tamtin, Prasert Sobhon, and Krai Meemon. 2023. "Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model" Marine Drugs 21, no. 11: 577. https://doi.org/10.3390/md21110577
APA StyleChumphoochai, K., Manohong, P., Niamnont, N., Tamtin, M., Sobhon, P., & Meemon, K. (2023). Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model. Marine Drugs, 21(11), 577. https://doi.org/10.3390/md21110577