In Vivo Skin Hydrating Efficacy of Fish Collagen from Greenland Halibut as a High-Value Active Ingredient for Cosmetic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Collagen Extracted from Greenland Halibut Skins
2.2. Marine Collagen as Ingredient of a Cosmetic Formulation
2.2.1. Preliminary Stability Study
2.2.2. Preservation Efficacy Test According to ISO 11930
2.3. Evaluation of the Hydrating Efficacy of Skin Cosmetic Formulation Comprising Marine Collagen
3. Materials and Methods
3.1. Marine Collagen Extraction
3.2. Collagen Characterization
3.2.1. Circular Dichroism
3.2.2. Moisture Uptake Capacity
3.2.3. In Vitro Assay of the Cytotoxicity of Collagen Extracts
3.3. Marine Collagen Evaluation for a Cosmetic Purpose
3.3.1. Incorporation of Marine Collagen on a Cosmetic Formulation
- (a)
- Formulation F1—base formulation or placebo, consisting of type II water HEC (Natrosol™ 250M from Ashland, supplied by Safic Alcan Portugal, Milheirós, Portugal) at 2.0%, sodium benzoate at 0.42%, and potassium sorbate at 0.21% dissolved in type II water. For preliminary stability study, pH was adjusted to approximately pH 4 with citric acid in solution (0.8 mL to 100 g);
- (b)
- Formulation F2—based on base formulation (F1) but with 10% w/w of the pre-dispersion of collagen (5% w/v in acetic acid 0.5 M), thus corresponding to a formulation with 0.5% w/w of marine collagen. The concentration of collagen tested in the formulation was selected after an extensive literature review of cosmetic products available on the market Table S1 (Supplementary SI).
3.3.2. Preliminary Stability Studies
3.3.3. Preservation Efficacy Test (challenge Test)
3.3.4. Clinical Study for the Evaluation of the Hydrating Efficacy of a Cosmetic Ingredient
- (I)
- an active ingredient (marine collagen) incorporated in a finished cosmetic formulation at three concentrations (0.10%, 0.25%, and 0.50%), obtained by the addition of a 5% w/v marine collagen solution, previously prepared in 0.5 M acetic acid, at 2.0%, 5.0%, and 10.0% w/w, respectively.
- (II)
- a cosmetic placebo formulation, corresponding to the same finished cosmetic formulation without the active ingredient and used as negative control;
- (III)
- deionized water (type II), used as another negative control;
- (IV)
- aqueous solution of glycerin at 85%, used as positive control.
Investigational and Comparator Products | Product Codification |
---|---|
Cosmetic placebo hydrogel | F1 |
Cosmetic hydrogel with 0.50% marine collagen | F2 |
Cosmetic hydrogel with 0.25% marine collagen | F3 |
Cosmetic hydrogel with 0.10% marine collagen | F4 |
85% glycerine aqueous solution as positive control | CTR+ |
Type II water as negative control | CTR- |
Mode of Application—Test Area
In Vivo Skin Hydration
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.-R.; Wang, B.; Chi, C.-F.; Zhang, Q.-H.; Gong, Y.-D.; Tang, J.-J.; Luo, H.-Y.; Ding, G.-F. Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocoll. 2013, 31, 103–113. [Google Scholar] [CrossRef]
- Wong, D.W. Mechanism and Theory in Food Chemistry; Springer: Berlin/Heidelberg, Germany, 1989; Volume 115. [Google Scholar]
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M. The collagen suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater. 2019, 31, 1801651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulevsky, A.; Shcheniavsky, I. Collagen: Structure, metabolism, production and industrial application. Biotechnol. Acta 2020, 13, 42–61. [Google Scholar] [CrossRef]
- Mienaltowski, M.J.; Birk, D.E. Structure, physiology, and biochemistry of collagens. In Progress in Heritable Soft Connective Tissue Diseases; Springer: Berlin/Heidelberg, Germany, 2014; pp. 5–29. [Google Scholar]
- Salvatore, L.; Gallo, N.; Natali, M.L.; Campa, L.; Lunetti, P.; Madaghiele, M.; Blasi, F.S.; Corallo, A.; Capobianco, L.; Sannino, A. Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. J Mater. Sci. Eng. C 2020, 113, 110963. [Google Scholar] [CrossRef]
- Martins, E.; Diogo, G.S.; Pires, R.; Reis, R.L.; Silva, T.H. 3D Biocomposites Comprising Marine Collagen and Silica-Based Materials Inspired on the Composition of Marine Sponge Skeletons Envisaging Bone Tissue Regeneration. Mar. Drugs 2022, 20, 718. [Google Scholar] [CrossRef]
- Shavandi, A.; Hou, Y.; Carne, A.; McConnell, M.; Bekhit, A.E.-d.A. Marine waste utilization as a source of functional and health compounds. Adv. Food Nutr. Res. 2019, 87, 187–254. [Google Scholar]
- Lim, Y.-S.; Ok, Y.-J.; Hwang, S.-Y.; Kwak, J.-Y.; Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 2019, 17, 467. [Google Scholar] [CrossRef] [Green Version]
- Silvipriya, K.; Kumar, K.K.; Bhat, A.; Kumar, B.D.; John, A.; Lakshmanan, P. Collagen: Animal sources and biomedical application. Appl. Pharm. Sci 2015, 5, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Veeruraj, A.; Arumugam, M.; Balasubramanian, T. Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura). Process Biochem. 2013, 48, 1592–1602. [Google Scholar] [CrossRef]
- Geahchan, S.; Baharlouei, P.; Rahman, A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Mar. Drugs 2022, 20, 61. [Google Scholar] [CrossRef]
- Benayahu, D.; Pomeraniec, L.; Shemesh, S.; Heller, S.; Rosenthal, Y.; Rath-Wolfson, L.; Benayahu, Y. Biocompatibility of a marine collagen-based scaffold in vitro and in vivo. Mar. Drugs 2020, 18, 420. [Google Scholar] [CrossRef]
- Widdowson, J.P.; Picton, A.J.; Vince, V.; Wright, C.J.; Mearns-Spragg, A. In vivo comparison of jellyfish and bovine collagen sponges as prototype medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1524–1533. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Guillén, M.; Giménez, B.; López-Caballero, M.a.; Montero, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Im, D.; Lee, K.-H.; Yoon, S.; Ham, Y.B. Cytokine-Related Effect of Buccal-Delivered Collagen Peptide Incorporated in Mucoadhesive Films to Improve Female Skin Conditions. Appl. Sci. 2021, 11, 7486. [Google Scholar] [CrossRef]
- Seixas, M.J.; Martins, E.; Reis, R.L.; Silva, T.H. Extraction and characterization of collagen from elasmobranch byproducts for potential biomaterial use. Mar. Drugs 2020, 18, 617. [Google Scholar] [CrossRef]
- Sousa, R.O.; Alves, A.L.; Carvalho, D.N.; Martins, E.; Oliveira, C.; Silva, T.H.; Reis, R.L. Acid and enzymatic extraction of collagen from Atlantic cod (Gadus Morhua) swim bladders envisaging health-related applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 20–37. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D.J. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M.M.; Kishimura, H.; Benjakul, S. Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus Jullieni) as affected by ultrasonication. Process Biochem. 2018, 66, 237–244. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Yi, R.; Bai, K.; Wang, G.; Tan, R.; Sun, S.; Xu, N. Electrodialysis extraction of pufferfish skin (Takifugu flavidus): A promising source of collagen. Mar. Drugs 2019, 17, 25. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.O.; Martins, E.; Carvalho, D.N.; Alves, A.L.; Oliveira, C.; Duarte, A.R.C.; Silva, T.H.; Reis, R.L.J. Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. J. Polym. Res. 2020, 27, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Melotti, L.; Martinello, T.; Perazzi, A.; Iacopetti, I.; Ferrario, C.; Sugni, M.; Sacchetto, R.; Patruno, M. A prototype skin substitute, made of recycled marine collagen, improves the skin regeneration of sheep. Animals 2021, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Reilly, D.M.; Lozano, J. Skin collagen through the lifestages: Importance for skin health and beauty. Plast. Aesthetic Res. 2021, 8, 2. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raines, R.T. Collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mearns-Spragg, A.; Tilman, J.; Tams, D.; Barnes, A. The biological evaluation of jellyfish collagen as a new research tool for the growth and culture of iPSC derived microglia. Front. Mar. Sci. 2020, 7, 689. [Google Scholar] [CrossRef]
- Cheng, X.; Shao, Z.; Li, C.; Yu, L.; Raja, M.A.; Liu, C. Isolation, characterization and evaluation of collagen from jellyfish Rhopilema esculentum Kishinouye for use in hemostatic applications. PLoS ONE 2017, 12, e0169731. [Google Scholar] [CrossRef] [Green Version]
- Jridi, M.; Bardaa, S.; Moalla, D.; Rebaii, T.; Souissi, N.; Sahnoun, Z.; Nasri, M. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. Int. J. Biol. Macromol. 2015, 77, 369–374. [Google Scholar] [CrossRef]
- Patino, M.G.; Neiders, M.E.; Andreana, S.; Noble, B.; Cohen, R.E. Collagen as an implantable material in medicine and dentistry. J. Oral Implantol. 2002, 28, 220–225. [Google Scholar] [CrossRef]
- Xhauflaire-Uhoda, E.; Fontaine, K.; Pierard, G. Kinetics of moisturizing and firming effects of cosmetic formulations. Int. J. Cosmet. Sci. 2008, 30, 131–138. [Google Scholar] [CrossRef]
- Guillerme, J.-B.; Couteau, C.; Coiffard, L. Applications for marine resources in cosmetics. Cosmetics 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef]
- Udhayakumar, S.; Shankar, K.G.; Sowndarya, S.; Rose, C. Novel fibrous collagen-based cream accelerates fibroblast growth for wound healing applications: In vitro and in vivo evaluation. Biomater. Sci. 2017, 5, 1868–1883. [Google Scholar] [CrossRef]
- Orlova, S.Y.; Volkov, A.; Maznikova, O.; Chernova, N.; Glebov, I.; Orlov, A. Population status of Greenland halibut Reinhardtius hippoglossoides (Walbaum, 1793) of the Laptev Sea. In Doklady Biochemistry and Biophysics; Pleiades Publishing: New York, NY, USA, 2017; pp. 349–353. [Google Scholar]
- Ghinter, L.; Anderson, C.; Robert, D.; Winkler, G.; Bernatchez, L.; Audet, C. A first glimpse of larval ecology of halibut species in the Gulf of St. Lawrence, Canada. J. Fish Biol. 2023, accepted. [CrossRef]
- Martins, E.; Fernandes, R.; Alves, A.L.; Sousa, R.O.; Reis, R.L.; Silva, T.H. Skin Byproducts of Reinhardtius hippoglossoides (Greenland Halibut) as Ecosustainable Source of Marine Collagen. Appl. Sci. 2022, 12, 11282. [Google Scholar] [CrossRef]
- Trumble, R.J.; Kaimmer, S.M.; Williams, G.H. Estimation of discard mortality rates for Pacific halibut bycatch in groundfish longline fisheries. North Am. J. Fish. Manag. 2000, 20, 931–939. [Google Scholar] [CrossRef]
- Planas, J.V.; Rooper, C.N.; Kruse, G.H. Integrating biological research, fisheries science and management of Pacific halibut (Hippoglossus stenolepis) across the North Pacific Ocean. Fish. Res. 2023, 259, 106559. [Google Scholar] [CrossRef]
- Alves, A.L.; Marques, A.L.; Martins, E.; Silva, T.H.; Reis, R.L. Cosmetic potential of marine fish skin collagen. Cosmetics 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Schäfer-Korting, M.; Mehnert, W.; Korting, H.-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. 2007, 59, 427–443. [Google Scholar] [CrossRef]
- Lahmar, A.; Rjab, M.; Sioud, F.; Selmi, M.; Salek, A.; Kilani-Jaziri, S.; Chekir Ghedira, L. Design of 3D Hybrid Plant Extract/Marine and Bovine Collagen Matrixes as Potential Dermal Scaffolds for Skin Wound Healing. Sci. World J. 2022, 2022, 8788061. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- Kong, H.H. Skin microbiome: Genomics-based insights into the diversity and role of skin microbes. Trends Mol. Med. 2011, 17, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, M.; Goldberg, D.; Aiello, A.; Larson, E.; Foxman, B. Skin microbiota: Microbial community structure and its potential association with health and disease. Infect. Genet. Evol. 2011, 11, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Scharschmidt, T.C.; Fischbach, M.A. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov. Today Dis. Mech. 2013, 10, e83–e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardesca, E.; Loden, M.; Serup, J.; Masson, P.; Rodrigues, L.M. The revised EEMCO guidance for the in vivo measurement of water in the skin. Ski. Res. Technol. 2018, 24, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The use of skin models in drug development. Adv. Drug Deliv. Rev. 2014, 69, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Alanen, E.; Nuutinen, J.; Nicklén, K.; Lahtinen, T.; Mönkkönen, J. Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer. Ski. Res. Technol. 2004, 10, 32–37. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- Chahal, S.; Hussain, F.S.J.; Kumar, A.; Rasad, M.S.B.A.; Yusoff, M.M. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem. Eng. Sci. 2016, 144, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Kozlowska, J.; Stachowiak, N.; Sionkowska, A. The preparation and characterization of composite materials by incorporating microspheres into a collagen/hydroxyethyl cellulose matrix. Polym. Test. 2018, 69, 350–358. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Tabasum, S.; Khalid, S.; Shareef, R. A review on grafting of hydroxyethylcellulose for versatile applications. Int. J. Biol. Macromol. 2020, 150, 289–303. [Google Scholar] [CrossRef]
- Censi, R.; Vargas Peregrina, D.; Lacava, G.; Agas, D.; Lupidi, G.; Sabbieti, M.G.; Di Martino, P. Cosmetic formulation based on an açai extract. Cosmetics 2018, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Mahboubifar, M.; Sobhani, Z.; Dehghanzadeh, G.; Javidnia, K. A comparison between UV spectrophotometer and high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in food products. Food Anal. Methods 2011, 4, 150–154. [Google Scholar] [CrossRef]
Time Zero | Temperature Cycles | 1 Month | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Methods | Specifications | Room Temperature (22 ± 2 °C) | Room Temperature (22 ± 2 °C) | End of the 8th Cycle | Room Temperature (22 ± 2 °C) | Refrigerated Temperature (4 ± 2 °C) | High Temperature (40 ± 2 °C) | Sunlight Exposure | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||||||||
Hydrogel Formulation F1 (Placebo) | Organoleptic characteristic of the product | Aspect | Organoleptic evaluation | Limpid homogeneous gel | Conform | Conform | Conform | Conform | Conform | Conform | Conform | |||||||
Colour | Clear to pale yellow | Conform | Conform | Conform | Conform | Conform | Conform | Conform | ||||||||||
Odour | Odourless | Conform | Conform | Conform | Conform | Conform | Conform | Conform | ||||||||||
pH | T = 22 ± 1 °C | Procedure PE 01 (pH 1000 L phenomenal VWR) | - | 3.86 | 0.01 | 4.00 | 0.00 | 3.99 | 0.00 | 4.00 | 0.00 | 4.03 | 0.00 | 3.00 | 0.00 | 3.97 | 0.00 | |
- | - | - | - | - | - | - | ||||||||||||
Physical stress | - | 10 cycles of centrifuge at 3000 rpm, during 5 h (Centrifuge Compact Star CS4, VWR) | Without a change in the appearance | Conform | - | |||||||||||||
Hydrogel Formulation F2 (with marine collagen) | Organoleptic characteristic of the product | Aspect | Organoleptic evaluation | Semi-opaque homogeneous gel | Conform | Conform | Conform | Conform | Conform | Conform | Conform | |||||||
Colour | Off-white to pale beige | Conform | Conform | Conform (slightly more yellow) | Conform (slightly more yellow) | Conform | Non conform (more yellow) | Conform (slightly more yellow) | ||||||||||
Odour | Characteristic | Conform | Conform | Conform (very slightly more intense) | Conform (very slightly more intense) | Conform | Conform (slightly more intense) | Conform (very slightly more intense) | ||||||||||
pH | T = 22 ± 1 °C | Procedure PE 01 (pH 1000 L phenomenal VWR) | 4.0–4.5 | 4.27 | 0.00 | 4.41 | 0.00 | 4.41 | 0.01 | 4.41 | 0.00 | 4.45 | 0.01 | 4.39 | 0.00 | 4.40 | 0.00 | |
Conform | Conform | Conform | Conform | Conform | Conform | Conform | ||||||||||||
Physical stress | - | 10 cycles of centrifuge at 3000 rpm, during 5 h (Centrifuge Compact Star CS4, VWR) | Without changes in the appearance | Conform | - |
Log Reduction Values (Rx = lgN0-lgNX) Required a | ||||||||
---|---|---|---|---|---|---|---|---|
Microorganisms | Bacteria | C. albicans | A. brasiliensis | |||||
Sampling Time | T7 | T14 | T28 | T7 | T14 | T28 | T14 | T28 |
Criterion A | ≥3 | ≥3 And NI b | ≥3 And NI | ≥1 | ≥1 And NI | ≥1 And NI | ≥0 c | ≥1 |
Criterion B | - | ≥3 | ≥3 And NI | - | ≥1 | ≥1 And NI | ≥0 | ≥0 And NI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, E.; Reis, R.L.; Silva, T.H. In Vivo Skin Hydrating Efficacy of Fish Collagen from Greenland Halibut as a High-Value Active Ingredient for Cosmetic Applications. Mar. Drugs 2023, 21, 57. https://doi.org/10.3390/md21020057
Martins E, Reis RL, Silva TH. In Vivo Skin Hydrating Efficacy of Fish Collagen from Greenland Halibut as a High-Value Active Ingredient for Cosmetic Applications. Marine Drugs. 2023; 21(2):57. https://doi.org/10.3390/md21020057
Chicago/Turabian StyleMartins, Eva, Rui L. Reis, and Tiago H. Silva. 2023. "In Vivo Skin Hydrating Efficacy of Fish Collagen from Greenland Halibut as a High-Value Active Ingredient for Cosmetic Applications" Marine Drugs 21, no. 2: 57. https://doi.org/10.3390/md21020057
APA StyleMartins, E., Reis, R. L., & Silva, T. H. (2023). In Vivo Skin Hydrating Efficacy of Fish Collagen from Greenland Halibut as a High-Value Active Ingredient for Cosmetic Applications. Marine Drugs, 21(2), 57. https://doi.org/10.3390/md21020057