Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species
Abstract
:1. Introduction
2. Results
2.1. Screening of Antioxidant, Antiviral, and Anti-Inflammatory Activities of TEE
2.2. Anti-Inflammatory Effects of TEE on the Expression of iNOS and COX-2 Protein and Production of Proinflammatory Cytokines in LPS-Stimulated RAW 264.7 Cells
2.3. Effect of TEE on MAPKs and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Cells
2.4. Effect of TEE on Cell Death and Production of NO in LPS-Treated Zebrafish
2.5. Identification of Lutein from TEE
3. Discussion
4. Materials and Methods
4.1. Algal Cultivation and Extraction
4.2. Proximate Composition of Tetraselmis sp.
4.3. Determination of Antioxidant Activity
DPPH Radical and Hydrogen Peroxide Scavenging Assay
4.4. Determination of Antiviral Activity
Plaque Assay
4.5. Determination of Anti-Inflammatory Activity
4.5.1. MTT and NO Production Assay
4.5.2. PGE2 and Proinflammatory Cytokines Production Assay
4.5.3. Western Blots
4.5.4. Breeding of Zebrafish and NO Production Assay
4.6. HPLC Chromatogram Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Custódio, L.; Soares, F.; Pereira, H.; Barreira, L.; Vizetto-Duarte, C.; Rodrigues, M.J.; Rauter, A.P.; Alberício, F.; Varela, J. Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: Possible application in the pharmaceutical and functional food industries. J. Appl. Phycol. 2014, 26, 151–161. [Google Scholar] [CrossRef]
- Farahin, A.; Yusoff, F.; Nagao, N.; Basri, M.; Shariff, M. Phenolic content and antioxidant activity of Tetraselmis tetrathele (West) Butcher 1959 cultured in annular photobioreactor. J. Environ. Biol. 2016, 37, 631. [Google Scholar] [PubMed]
- Pereira, H.; Silva, J.; Santos, T.; Gangadhar, K.N.; Raposo, A.; Nunes, C.; Coimbra, M.A.; Gouveia, L.; Barreira, L.; Varela, J.J. Nutritional potential and toxicological evaluation of Tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors. Molecues 2019, 24, 3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, W.S.; Choi, Y.J.; Kim, H.J.; Nam, B.H.; Hong, S.H.; Lee, G.A.; Lee, S.W.; Seo, S.Y.; Jeong, M. Anti-inflammatory effect of microalgal extracts from Tetraselmis suecica. Food Sci. Biotechnol. 2010, 19, 1519–1528. [Google Scholar] [CrossRef]
- Widowati, I.; Zainuri, M.; Kusumaningrum, H.P.; Susilowati, R.; Hardivillier, Y.; Leignel, V.; Bourgougnon, N.; Mouget, J.-L. Antioxidant Activity of Three Microalgae Dunaliella Salina, Tetraselmis Chuii and Isochrysis Galbana Clone Tahiti; IOP Conference Series: Earth and Environmental Science 2017; IOP Publishing: Bristol, UK, 2017; p. 012067. [Google Scholar]
- Cardoso, C.; Pereira, H.; Franca, J.; Matos, J.; Monteiro, I.; Pousão-Ferreira, P.; Gomes, A.; Barreira, L.; Varela, J.; Neng, N. Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.). Aquac. Int. 2020, 28, 711–727. [Google Scholar] [CrossRef]
- Kim, Z.-H.; Park, H.; Lee, C.-G. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J. Microbiol. Biotechnol. 2016, 26, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Choi, W.-S.; Park, G.-H.; Kim, T.-H.; Oh, C.; Heo, S.-J.; Kang, D.-H. Flocculation Effect of Alkaline Electrolyzed Water (AEW) on Harvesting of Marine Microalga Tetraselmis sp. J. Microbiol. Biotechnol. 2018, 28, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-K.; Ryu, Y.-K.; Choi, W.-Y.; Kim, T.; Park, A.; Lee, Y.-J.; Jeong, Y.; Lee, C.-G.; Kang, D.-H. Year-round cultivation of Tetraselmis sp. for essential lipid production in a semi-open raceway system. Marine Drugs 2021, 19, 314. [Google Scholar] [CrossRef]
- Matharasi, A.; Kumar, R.D.; Prabakaran, G.; Kumar, P.S. Phytochemical screening and antimicrobial activity of marine microalgae Tetraselmis sp. Int. J. Pharm. Biol. Sci. 2018, 8, 85–90. [Google Scholar]
- Coulombier, N.; Nicolau, E.; Le Déan, L.; Antheaume, C.; Jauffrais, T.; Lebouvier, N.J. Impact of light intensity on antioxidant activity of tropical microalgae. Mar. Drugs 2020, 18, 122. [Google Scholar] [CrossRef] [Green Version]
- Coulombier, N.; Blanchier, P.; Le Dean, L.; Barthelemy, V.; Lebouvier, N.; Jauffrais, T.J. The effects of CO2-induced acidification on Tetraselmis biomass production, photophysiology and antioxidant activity: A comparison using batch and continuous culture. J. Biotechnol. 2021, 325, 312–324. [Google Scholar] [CrossRef]
- Kim, E.-A.; Kang, N.; Kim, J.; Yang, H.-W.; Ahn, G.; Heo, S.-J. Anti-Inflammatory Effect of Turbo cornutus Viscera Ethanolic Extract against Lipopolysaccharide-Stimulated Inflammatory Response via the Regulation of the JNK/NF-kB Signaling Pathway in Murine Macrophage RAW 264.7 Cells and a Zebrafish Model: A Preliminary Study. Foods 2022, 11, 364. [Google Scholar]
- Wang, L.; Oh, J.-Y.; Yang, H.-W.; Fu, X.; Kim, J.-I.; Jeon, Y.-J. Fucoidan isolated from the popular edible brown seaweed Sargassum fusiforme suppresses lipopolysaccharide-induced inflammation by blocking NF-κB signal pathway. J. Appl. Phycol. 2021, 33, 1845–1852. [Google Scholar] [CrossRef]
- Lu, C.-C.; Yen, G.-C. Antioxidative and anti-inflammatory activity of functional foods. Curr. Opin. Food Sci. 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.; Biswas, M.; Khurshid Alam, A.J. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Meshram, S.; Chandrika, P.M.; Architha, I.; Bhagya, K.; Deeksha, A.; Rauth, D.; Divya, J. Synthesis characterization antioxidant activity of paradimethylamino benzaldehyde derivatives. Int. J. Adv. Res. Med. Pharm. Sci. 2022, 7, 23–28. [Google Scholar]
- Oh, J.-Y.; Kim, J.-S.; Lee, J.-S.; Jeon, Y.-J. Antioxidant activity of olive flounder (Paralichthya olivaceus) surimi digest in in vitro and in vivo. J. Food Sci. Technol. 2022, 59, 2071–2079. [Google Scholar] [CrossRef]
- Shchelkunov, S.N.; Yakubitskiy, S.N.; Sergeev, A.A.; Starostina, E.V.; Titova, K.A.; Pyankov, S.A.; Shchelkunova, G.A.; Borgoyakova, M.B.; Zadorozhny, A.M.; Orlova, L.A. Enhancing the immunogenicity of vaccinia virus. Viruses 2022, 14, 1453. [Google Scholar] [CrossRef]
- Prasansuklab, A.; Theerasri, A.; Rangsinth, P.; Sillapachaiyaporn, C.; Chuchawankul, S.; Tencomnao, T.J. Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. J. Tradit. Complement. Med. 2021, 11, 144–157. [Google Scholar] [CrossRef]
- Kang, N.; Heo, S.-Y.; Cha, S.-H.; Ahn, G.; Heo, S.-J. In Silico Virtual Screening of Marine Aldehyde Derivatives from Seaweeds against SARS-CoV-2. Mar. Drugs 2022, 20, 399. [Google Scholar] [CrossRef]
- Radonić, A.; Thulke, S.; Achenbach, J.; Kurth, A.; Vreemann, A.; König, T.; Walter, C.; Possinger, K.; Nitsche, A. Anionic Polysaccharides from Phototrophic Microorganisms Exhibit Antiviral Activities to Vaccinia Virus; Robert Koch Institute: Berlin, Germany, 2011. [Google Scholar]
- Matthew, C.; Kyle, L.; Mary, G.; Rex, C.; Scott, B.; Merritt, A.; Jiping, Z.; Paul, R.; Marc, D.; Jillybeth, B.J. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharm. Biol. 2017, 55, 2297. [Google Scholar]
- Ahmed, F.; Fanning, K.; Netzel, M.; Schenk, P.M. Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation. Appl. Microbiol. Biotechnol. 2015, 99, 9407–9416. [Google Scholar] [CrossRef] [PubMed]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S.J.B. Microalgae: A promising source of valuable bioproducts. Biomolecues 2020, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.S.; Yang, K.M.; Park, H.S.; Kim, G.Y.; Nam, B.H.; Jeong, M.H.; Choi, Y.J. Effect of microalgal extracts of Tetraselmis suecica against UVB-induced photoaging in human skin fibroblasts. Toxicol. Res. 2012, 28, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 8198. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.A.; Pellone, P.; Lubritto, C.; Ciniglia, C. Evaluation of microalgae antiviral activity and their bioactive compounds. Antibiotics 2021, 10, 746. [Google Scholar] [CrossRef]
- Panggabean, J.A.; Adiguna, S.b.P.; Rahmawati, S.I.; Ahmadi, P.; Zainuddin, E.N.; Bayu, A.; Putra, M.Y. Antiviral activities of algal-based sulfated polysaccharides. Molecues 2022, 27, 1178. [Google Scholar] [CrossRef]
- Santoyo, S.; Jaime, L.; Plaza, M.; Herrero, M.; Rodriguez-Meizoso, I.; Ibañez, E.; Reglero, G. Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J. Appl. Phycol. 2012, 24, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Li, Q.; Shen, X.; Yao, Y.; Li, L.; Ma, H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264. 7 macrophages. Mol. Immunol. 2021, 131, 97–111. [Google Scholar] [CrossRef]
- Kim, E.-A.; Kim, S.-Y.; Kim, J.; Oh, J.-Y.; Kim, H.-S.; Yoon, W.-J.; Kang, D.-H.; Heo, S.-J. Tuberatolide B isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-κB signaling pathway in RAW264. 7 cells and zebrafish model. J. Funct. Foods 2019, 52, 109–115. [Google Scholar] [CrossRef]
- Paterson, S.; Gómez-Cortés, P.; de la Fuente, M.A.; Hernández-Ledesma, B. Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023, 15, 477. [Google Scholar] [CrossRef]
- Lee, K.; Jang, Y.; Kim, H.; Ki, J.; Yoo, H. Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules 2021, 11, 182. [Google Scholar] [CrossRef]
- Saha, S.K.; Ermis, H.; Murray, P.J. Marine microalgae for potential lutein production. Appl. Sci. 2020, 10, 6457. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, Y.; Jiang, W.; Zhang, X.; Ren, S.; Wang, H.; Zhang, X.; Zhang, Y. Enrichment of health-promoting lutein and zeaxanthin in tomato fruit through metabolic engineering. Synth. Syst. Biotechnol. 2022, 7, 1159–1166. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Li, S.; Nagarajan, D.; Varjani, S.; Lee, D.-J.; Chang, J.-S. Recent advances in lutein production from microalgae. Renew. Sustain. Energy Rev. 2022, 153, 111795. [Google Scholar] [CrossRef]
- Schüler, L.M.; Santos, T.; Pereira, H.; Duarte, P.; Katkam, N.G.; Florindo, C.; Schulze, P.S.; Barreira, L.; Varela, J.C. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Res. 2020, 45, 101732. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Kim, E.-A.; Luo, H.-M.; Jiang, Y.-F.; Oh, J.-Y.; Heo, S.-J.; Jeon, Y.-J. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus). J. Food Sci. Technol. 2020, 57, 2283–2292. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Müller, H.E. Detection of hydrogen peroxide produced by microorganisms on an ABTS peroxidase medium. Zent. Bakteriol. Mikrobiol. Hygiene. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1985, 259, 151–154. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Wang, L.; Sanjeewa, K.A.; Kang, S.I.; Lee, J.-S.; Jeon, Y.-J. Antioxidant potential of sulfated polysaccharides from Padina boryana; Protective effect against oxidative stress in in vitro and in vivo zebrafish model. Mar. Drugs 2020, 18, 212. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.-A.; Han, E.-J.; Kim, J.; Fernando, I.P.S.; Oh, J.-Y.; Kim, K.-N.; Ahn, G.; Heo, S.-J. Anti-Allergic Effect of 3, 4-Dihydroxybenzaldehyde Isolated from Polysiphonia morrowii in IgE/BSA-Stimulated Mast Cells and a Passive Cutaneous Anaphylaxis Mouse Model. Mar. Drugs 2022, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-A.; Lee, J.-H.; Heo, S.-J.; Jeon, Y.-J. Saringosterol acetate isolated from Hizikia fusiforme, an edible brown alga, suppressed hepatocellular carcinoma growth and metastasis in a zebrafish xenograft model. Chem. Biol. Interact. 2021, 335, 109362. [Google Scholar] [CrossRef] [PubMed]
Composition | Moisture | Carbohydrate | Crude Protein | Crude Lipid | Ash |
---|---|---|---|---|---|
Content (%) | 11.87 | 19.81 | 34.74 | 6.85 | 26.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.-A.; Kang, N.; Heo, S.-Y.; Oh, J.-Y.; Lee, S.-H.; Cha, S.-H.; Kim, W.-K.; Heo, S.-J. Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species. Mar. Drugs 2023, 21, 369. https://doi.org/10.3390/md21070369
Kim E-A, Kang N, Heo S-Y, Oh J-Y, Lee S-H, Cha S-H, Kim W-K, Heo S-J. Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species. Marine Drugs. 2023; 21(7):369. https://doi.org/10.3390/md21070369
Chicago/Turabian StyleKim, Eun-A, Nalae Kang, Seong-Young Heo, Jae-Young Oh, Seung-Hong Lee, Seon-Heui Cha, Won-Keun Kim, and Soo-Jin Heo. 2023. "Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species" Marine Drugs 21, no. 7: 369. https://doi.org/10.3390/md21070369
APA StyleKim, E. -A., Kang, N., Heo, S. -Y., Oh, J. -Y., Lee, S. -H., Cha, S. -H., Kim, W. -K., & Heo, S. -J. (2023). Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species. Marine Drugs, 21(7), 369. https://doi.org/10.3390/md21070369