Chitin Extracted from the Shell of Blue Swimming Crabs (Portunus pelagicus Linn.) Inhibits NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats
Abstract
:1. Introduction
2. Results
2.1. The Taxonomy Identification of the Crab Shells and the Physicochemical Properties of the Crab Shell Powder and the Chitin Extract
2.2. Effect of Chitin Extract, Commercial Chitin, and Shell Powder on the % Relative Organ Weight and % Ulcer Index
2.3. Effect of Different Doses of Chitin Extract, Commercial Chitin, and Shell Powder on the Hemorrhagic Severity of the Gastric Mucosa in Ethanol-Induced Gastric Ulceration Rats
2.4. Effect of Different Doses of Chitin Extract, Commercial Chitin, and Shell Powder on the Expression of NF-kappaB p65 in Western Blot Analysis
3. Discussion
4. Materials and Methods
4.1. Chemicals and Antibodies
4.2. Crab Shells
4.3. Extraction of Chitin and Analysis of the Physicochemical Properties
4.4. Animals and Ethical Considerations
4.5. Animal Preparation and Treatment Groups
- Group 1: positive control, treated with sucralfate (1080 mg/kg BW);
- Group 2: negative control or placebo, treated with CMC 1% suspension;
- Group 3: normal control, without any treatment;
- Group 4: treated with chitin extract (dose of 150 mg/kg BW);
- Group 5: treated with chitin extract (dose of 300 mg/kg BW);
- Group 6: treated with chitin extract (dose of 600 mg/kg BW);
- Group 7: treated with commercial chitin (dose of 150 mg/kg BW);
- Group 8: treated with commercial chitin (dose of 300 mg/kg BW);
- Group 9: treated with commercial chitin (dose of 600 mg/kg BW);
- Group 10: treated with crab shell powder (dose of 500 mg/kg BW);
- Group 11: treated with crab shell powder (dose of 1000 mg/kg BW).
4.6. Induction of Ulcer
4.7. Relative Organ Weight
4.8. Histopathological Examination of the Stomach
4.9. Effect of Chitin towards the Infiltration of Inflammatory Cells
4.10. Effect of Chitin towards NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoesel, B.; Schmid, J.A. The Complexity of NF-κB Signaling in Inflammation and Cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Koff, J.L.; Moffitt, A.B.; Cinar, M.; Ramachandiran, S.; Chen, Z.; Switchenko, J.M.; Mosunjac, M.; Neill, S.G.; Mann, K.P.; et al. Molecular Impact of Selective NFKB1 and NFKB2 Signaling on DLBCL Phenotype. Oncogene 2017, 36, 4224–4232. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Ghosh, S. The NF-kappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Spehlmann, M.E.; Eckmann, L. Nuclear Factor-kappa B in Intestinal Protection and Destruction. Curr. Opin. Gastroenterol. 2009, 25, 92–99. [Google Scholar] [CrossRef]
- Takahashi, S.; Fujita, T.; Yamamoto, A. Role of Nuclear Factor-kappaB in Gastric Ulcer Healing in Rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G1296–G1304. [Google Scholar] [CrossRef] [PubMed]
- Marta, Ż.-N.; Agnieszka, W.; Jacek, P.; Jeleń, A.; Adrian, K.; Dagmara, S.; Sałagacka-Kubiak, A.; Balcerczak, E. NFKB2 Gene Expression in Patients with Peptic Ulcer Diseases and Gastric Cancer. Mol. Biol. Rep. 2020, 47, 2015–2021. [Google Scholar] [CrossRef]
- Lim, S.C.; Lee, K.M.; Kang, T.J. Chitin from Cuttlebone Activates Inflammatory Cells to Enhance the Cell Migration. Biomol. Ther. 2015, 23, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Amelia, R.; Indawati, I.; Saptarini, N.M.; Sumiwi, S.A.; Levita, J. The Proximate Analysis and Spectral Profile of Chitin Extracted from the Shell of Portunus pelagicus Originated from Cirebon, Indonesia. Rasayan J. Chem. 2021, 14, 1755–1760. [Google Scholar] [CrossRef]
- Badwan, A.A.; Rashid, I.; Omari, M.M.H.A.; Darras, F.H. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications. Mar. Drugs 2015, 13, 1519–1547. [Google Scholar] [CrossRef]
- Da Silva, C.A.; Chalouni, C.; Williams, A.; Hartl, D.; Lee, C.G.; Elias, J.A. Chitin is a Size-dependent Regulator of Macrophage TNF and IL-10 Production. J. Immunol. 2009, 182, 3573–3582. [Google Scholar] [CrossRef]
- Dhanjal, C.R.; Lingamsetty, R.; Pareddy, A.; Kim, S.-K.; Raval, R. Dual Role of Chitin as the Double-edged Sword in Controlling the NLRP3 Inflammasome Driven Gastrointestinal and Gynaecological Tumours. Mar. Drugs 2022, 20, 452. [Google Scholar] [CrossRef] [PubMed]
- Mohyuddin, S.G.; Qamar, A.; Hu, C.Y.; Chen, S.W.; Wen, J.Y.; Liu, X.X.; Ma, X.B.; Yu, Z.C.; Yong, Y.H.; Wu, L.Y.; et al. Effect of Chitosan on Blood Profile, Inflammatory Cytokines by Activating TLR4/NF-κB Signaling Pathway in Intestine of Heat-Stressed Mice. Sci. Rep. 2021, 11, 20608. [Google Scholar] [CrossRef] [PubMed]
- Limam, Z.; Selmi, S.; Sadok, S.; El Abed, A. Extraction and Characterization of Chitin and Chitosan from Crustacean By-products: Biological and Physicochemical Properties. Afr. J. Biotechnol. 2011, 10, 640–647. [Google Scholar]
- Poore, G.C.B. Marine Decapod Crustacea of Southern Australia a Guide to Identification with a Chapter on Stomatopoda by Shane Ahyong; CSIRO Publishing: Clayton, Australia, 2004; pp. 215–240. [Google Scholar]
- Lai, J.C.Y.; Ng, P.K.L.; Davie, P.J.F. A revision of the Portunus pelagicus (Linnaeus, 1758) species complex (Crustacea: Brachyura: Portunidae), with the recognition of four species. Raffles Bull. Zool. 2010, 58, 199–237. [Google Scholar]
- Strate, L.L.; Singh, P.; Boylan, M.R.; Piawah, S.; Cao, Y.; Chan, A.T. A Prospective Study of Alcohol Consumption and Smoking and the Risk of Major Gastrointestinal Bleeding in Men. PLoS ONE 2016, 11, e0165278. [Google Scholar] [CrossRef]
- Kang, J.W.; Lee, J.S.; Bae, K.M. Correlation between Peptic Ulcer Disease and Risk Factors. Korean J. Fam. Pract. 2016, 6, 479–483. [Google Scholar] [CrossRef]
- Lee, S.P.; Sung, I.-K.; Kim, J.H.; Lee, S.-Y.; Park, H.S.; Shim, C.S. Risk Factors for the Presence of Symptoms in Peptic Ulcer Disease. Clin. Endosc. 2017, 50, 578–584. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Tan, Y.N.; Lee, P.P.; Chen, W.N. Microbial Extraction of Chitin from Seafood Waste Using Sugars Derived from Fruit Waste-Stream. AMB Express 2020, 10, 17. [Google Scholar] [CrossRef]
- Percot, A.; Viton, C.; Domard, A. Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules 2003, 4, 12–18. [Google Scholar] [CrossRef]
- Xie, J.; Xie, W.; Yu, J.; Xin, R.; Shi, Z.; Song, L.; Yang, X. Extraction of Chitin from Shrimp Shell by Successive Two-step Fermentation of Exiguobacterium profundum and Lactobacillus acidophilus. Front. Microbiol. 2021, 12, 677126. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Vo, T.P.K.; Nguyen, A.D.; Wang, S.-L. Chitin Extraction from Shrimp Waste by Liquid Fermentation Using an Alkaline Protease-Producing Strain, Brevibacillus parabrevis. Int. J. Biol. Macromol. 2019, 131, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012, 29, 48–56. [Google Scholar] [CrossRef]
- Huang, W.C.; Zhao, D.; Xue, C.; Mao, X. An Efficient Method for Chitin Production from Crab Shells by a Natural Deep Eutectic Solvent. Mar. Life Sci. Technol. 2022, 4, 384–388. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Karaarslan, M. A New Method for Fast Chitin Extraction from Shells of Crab, Crayfish and Shrimp. Nat. Prod. Res. 2015, 29, 1477–1480. [Google Scholar] [CrossRef]
- Gachhi, D.B.; Hungund, B.S. Two-phase Extraction, Characterization, and Biological Evaluation of Chitin and Chitosan from Rhizopus oryzae. J. Appl. Pharm. Sci. 2018, 8, 116–122. [Google Scholar] [CrossRef]
- Narudin, N.A.H.; Rosman, N.A.; Shahrin, E.W.E.S.; Sofyan, N.; Mahadi, A.H.; Kusrini, E.; Hobley, J.; Usman, A. Extraction, Characterization, and Kinetics of N-deacetylation of Chitin Obtained from Mud Crab Shells. Polym. Polym. Compos. 2022, 30. [Google Scholar] [CrossRef]
- Nadarajah, K. Isolation and Characterization of Fungal Chitosan from Malaysian Isolates. J. Pure Appl. Micobiol. 2009, 3, 33–38. [Google Scholar]
- Kumari, S.; Rath, P.; Kumar, A.S.H.; Tiwari, T.N. Extraction and Characterization of Chitin and Chitosan from Fishery Waste by Chemical Method. Environ. Technol. Innov. 2015, 3, 77–85. [Google Scholar] [CrossRef]
- Al-Hassan, A.A. Utilization of Waste: Extraction and Characterization of Chitosan from Shrimp Byproducts. Civ. Environ. Res. 2016, 8, 117–123. [Google Scholar]
- Phase I/IIa Study on Chitin Microparticles in Subjects Suffering from Allergic Rhinitis. Available online: https://clinicaltrials.gov/ct2/show/NCT00443495 (accessed on 8 September 2023).
- Lee, C.G.; Da Silva, C.A.; Lee, J.-Y.; Hartl, D.; Elias, J.A. Chitin Regulation of Immune Responses: An Old Molecule with New Roles. Curr. Opin. Immunol. 2008, 20, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, A.; Esteban, M.A.; Meseguer, J. In Vitro Effect of Chitin Particles on the Innate Cellular Immune System of Gilthead Seabream (Sparus aurata L.). Fish Shellfish Immunol. 2003, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kadry, M.O.; Abdel-Megeed, R.M.; El-Meliegy, E.; Abdel-Hamid, A.-H.Z. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α Signaling Pathways Play an Ambitious Role in Chitosan Nanoparticles Cancer Therapy. Toxicol. Rep. 2018, 5, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Liu, G.; Chen, S.; Guan, G.; Tan, J.; Al-Dhabi, N.A.; Wang, H.; Duraipandiyan, V.; Fang, J. Chitosan Modulates Inflammatory Responses in Rats Infected with Enterotoxigenic Escherichia coli. Mediat. Inflamm. 2016, 2016, 7432845. [Google Scholar] [CrossRef]
- Choi, E.H.; Yang, H.P.; Chun, H.S. Chitooligosaccharide Ameliorates Diet-Induced Obesity in Mice and Affects Adipose Gene Expression Involved in Adipogenesis and Inflammation. Nutr. Res. 2012, 32, 218–228. [Google Scholar] [CrossRef]
- Wang, Z.F.; Wang, M.Y.; Yu, D.H.; Zhao, Y.; Xu, H.M.; Zhong, S.; Sun, W.Y.; He, Y.F.; Niu, J.Q.; Gao, P.J.; et al. Therapeutic Effect of Chitosan on CCl4-induced Hepatic Fibrosis in Rats. Mol. Med. Rep. 2018, 18, 3211–3218. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, D.; Guo, N.; Xue, C.; Mao, X. Green and Facile Production of Chitin from Crustacean Shells Using a Natural Deep Eutectic Solvent. Agric. Environ. Chem. 2018, 66, 11897–11901. [Google Scholar] [CrossRef]
- Komi, D.E.A.; Sharma, L.; Dela Cruz, C.S. Chitin and Its Effects on Inflammatory and Immune Responses. Clin. Rev. Allergy Immunol. 2018, 54, 213–223. [Google Scholar] [CrossRef]
- The Indonesian Standardization Agency (1992) Methods for Analyzing Food and Beverages (SNI 01-2891-1992). Available online: https://legalcentric.com/content/view/151630 (accessed on 8 September 2023).
- Wang, H.; Roman, M. Effects of Chitosan Molecular Weight and Degree of Deacetylation on Chitosan−Cellulose Nanocrystal Complexes and Their Formation. Molecules 2023, 28, 1361. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 177, 3617–3624. [Google Scholar] [CrossRef]
- Almasaudi, S.B.; El-Shitany, N.A.; Abbas, A.T.; Abdel-Dayem, U.A.; Ali, S.S.; Al Jaouni, S.K.; Harakeh, S. Antioxidant, Anti-inflammatory, and Antiulcer Potential of Manuka Honey against Gastric Ulcer in Rats. Oxid. Med. Cell. Longev. 2016, 2016, 3643824. [Google Scholar] [CrossRef] [PubMed]
Rat Group | Stomach Index (%) ± SD | Ulcer Index (%) |
---|---|---|
Positive control group | 0.62 ± 0.03 | 0.17 ± 0.11 * |
Negative control group | 0.63 ± 0.09 | 14.55 ± 2.62 # |
Normal control group | 0.57 ± 0.04 | 0.06 ± 0.06 * |
Chitin extract 150 mg/kg BW | 0.54 ± 0.04 | 4.79 ± 4.37 * |
Chitin extract 300 mg/kg BW | 0.51 ± 0.02 | 1.08 ± 0.77 * |
Chitin extract 600 mg/kg BW | 0.49 ± 0.03 | 1.60 ± 0.44 * |
Commercial chitin 150 mg/kg BW | 0.72 ± 0.14 | 2.94 ± 1.74 * |
Commercial chitin 300 mg/kg BW | 0.62 ± 0.16 | 1.32 ± 0.44 * |
Commercial chitin 600 mg/kg BW | 0.59 ± 0.05 | 4.80 ± 0.66 * |
Crude shell powder 500 mg/kg BW | 0.59 ± 0.03 | 1.50 ± 1.17 * |
Crude shell powder 1000 mg/kg BW | 0.60 ± 0.07 | 1.42 ± 0.77 * |
Rat Group | Necrotic Cells | Normal Cells | Fat Degeneration |
---|---|---|---|
Positive control group | 57 | 883 | 22 |
Negative control group | 88 | 836 | 48 |
Normal control group | 43 | 911 | 20 |
Chitin extract 150 mg/kg BW | 47 | 888 | 20 |
Chitin extract 300 mg/kg BW | 67 | 864 | 26 |
Chitin extract 600 mg/kg BW | 63 | 861 | 24 |
Commercial chitin 150 mg/kg BW | 62 | 879 | 23 |
Commercial chitin 300 mg/kg BW | 55 | 880 | 21 |
Commercial chitin 600 mg/kg BW | 58 | 882 | 19 |
Crude shell powder 500 mg/kg BW | 67 | 851 | 25 |
Crude shell powder 1000 mg/kg BW | 77 | 848 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amelia, R.; Sumiwi, S.A.; Saptarini, N.M.; Levita, J. Chitin Extracted from the Shell of Blue Swimming Crabs (Portunus pelagicus Linn.) Inhibits NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats. Mar. Drugs 2023, 21, 488. https://doi.org/10.3390/md21090488
Amelia R, Sumiwi SA, Saptarini NM, Levita J. Chitin Extracted from the Shell of Blue Swimming Crabs (Portunus pelagicus Linn.) Inhibits NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats. Marine Drugs. 2023; 21(9):488. https://doi.org/10.3390/md21090488
Chicago/Turabian StyleAmelia, Renny, Sri Adi Sumiwi, Nyi Mekar Saptarini, and Jutti Levita. 2023. "Chitin Extracted from the Shell of Blue Swimming Crabs (Portunus pelagicus Linn.) Inhibits NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats" Marine Drugs 21, no. 9: 488. https://doi.org/10.3390/md21090488
APA StyleAmelia, R., Sumiwi, S. A., Saptarini, N. M., & Levita, J. (2023). Chitin Extracted from the Shell of Blue Swimming Crabs (Portunus pelagicus Linn.) Inhibits NF-kappaB p65 in Ethanol-Induced Gastric Ulcerative Wistar Rats. Marine Drugs, 21(9), 488. https://doi.org/10.3390/md21090488