Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lipid Extraction from Schizochytrium sp. by Pressurized Liquids Compared to the Soxhlet Method
2.2. Characterization of Schizochytrium sp. Oils
2.3. Enzymatic Ethanolysis of Schizochytrium Oil
2.4. Open-Column Chromatography
3. Materials and Methods
3.1. Materials
3.2. Traditional Lipid Extraction by Soxhlet Method
3.3. Pressurized Liquid Extraction of Microalgal Biomass
3.4. Scale-up of Pressurized Liquid Extraction
3.5. Characterization of Schizochytrium sp. Oils by GC-MS
3.6. Enzymatic Ethanolysis of Schizochytrium sp. Oil
3.7. Analysis by HPLC-ELSD
3.8. Fractionation of Fatty Acid Ethyl Esters by Open-Column Chromatography
3.9. Purification of an Enriched Dha Fraction by Open-Column Chromatography
3.10. Analysis of Fatty Acid Composition by GC-MS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Temperature (°C) | Time (min) | Solvent 1 | Extraction Yield (%) |
---|---|---|---|
80 | 10 | 0 | 21.85 ± 0.06 |
100 | 5 | 0 | 22.38 ± 0.34 |
100 | 15 | 0 | 22.62 ± 1.12 |
120 | 10 | 0 | 22.86 ± 0.45 |
80 | 5 | 50 | 26.11 ± 0.71 |
100 | 10 | 50 | 26.08 ± 0.13 |
100 | 10 | 50 | 25.87 ± 1.01 |
100 | 10 | 50 | 25.97 ± 1.23 |
80 | 15 | 50 | 25.71 ± 0.51 |
120 | 5 | 50 | 28.66 ± 0.78 |
120 | 15 | 50 | 29.06 ± 0.12 |
80 | 10 | 100 | 17.13 ± 1.17 |
100 | 5 | 100 | 21.41 ± 0.75 |
100 | 15 | 100 | 22.03 ± 1.85 |
120 | 10 | 100 | 24.81 ± 0.35 |
Appendix B
Appendix C
- −
- First, 25 mg of oil was mixed with 200 µL of hexane.
- −
- Next, 50 µL of 2N KOH in methanol (prepared daily) was added.
- −
- The mixture was shaken for 1 min in a vortex (Velp Scientifica ZX3).
- −
- The mixture is rested for 5 min before the reaction proceeds.
- −
- Then, 125 mg of sodium hydrogen sulfate monohydrate (NaHSO4 H2O) was added to stop the reaction and vortexed.
- −
- Finally, the mixture was centrifuged for 5 min at 50 rpm (Hettich zentrifugen Mikro 120): Supernatant = FAMEs
References
- Jin, J.; Jin, Q.; Wang, X.; Akoh, C.C. High Sn-2 Docosahexaenoic Acid Lipids for Brain Benefits, and Their Enzymatic Syntheses: A Review. Engineering 2020, 6, 424–431. [Google Scholar] [CrossRef]
- García, J.L.; de Vicente, M.; Galán, B. Microalgae, Old Sustainable Food and Fashion Nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, F.; Valenzuela, R.; Catalina Hernandez-Rodas, M.; Valenzuela, A. Docosahexaenoic Acid (DHA), a Fundamental Fatty Acid for the Brain: New Dietary Sources. Prostaglandins Leukot. Essent. Fat. Acids 2017, 124, 1–10. [Google Scholar] [CrossRef]
- Jayatunga, D.P.W.; Hone, E.; Fernando, W.M.A.D.B.; Garg, M.L.; Verdile, G.; Martins, R.N. A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 780602. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic Acid (DHA): An Essential Nutrient and a Nutraceutical for Brain Health and Diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef]
- Remize, M.; Brunel, Y.; Silva, J.L.; Berthon, J.-Y.; Filaire, E. Microalgae N-3 PUFAs Production and Use in Food and Feed Industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef]
- Harwood, J.L. Algae: Critical Sources of Very Long-Chain Polyunsaturated Fatty Acids. Biomolecules 2019, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.M.M.; de Lima, D.C.; Bastos, T.S.; de Oliveira, S.G.; Beirão, B.C.B.; Félix, A.P. Microalgae Schizochytrium Sp. as a Source of Docosahexaenoic Acid (DHA): Effects on Diet Digestibility, Oxidation and Palatability and on Immunity and Inflammatory Indices in Dogs. Anim. Sci. J. 2019, 90, 1567–1574. [Google Scholar] [CrossRef]
- Yalagala, P.C.R.; Sugasini, D.; Zaldua, S.B.; Tai, L.M.; Subbaiah, P.V. Lipase Treatment of Dietary Krill Oil, but Not Fish Oil, Enables Enrichment of Brain Eicosapentaenoic Acid and Docosahexaenoic Acid. Mol. Nutr. Food Res. 2020, 64, 2000059. [Google Scholar] [CrossRef]
- Lupette, J.; Benning, C. Human Health Benefits of Very-Long-Chain Polyunsaturated Fatty Acids from Microalgae. Biochimie 2020, 178, 15–25. [Google Scholar] [CrossRef]
- Medipally, S.R.; Yusoff, F.M.; Banerjee, S.; Shariff, M. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production. BioMed Res. Int. 2015, 2015, 519513. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Cultivation Method Effect on Schizochytrium Sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon. Energies 2021, 14, 2952. [Google Scholar] [CrossRef]
- Rodríguez-España, M.; Mendoza-Sánchez, L.G.; Magallón-Servín, P.; Salgado-Cervantes, M.A.; Acosta-Osorio, A.A.; García, H.S. Supercritical Fluid Extraction of Lipids Rich in DHA from Schizochytrium Sp. J. Supercrit. Fluids 2022, 179, 105391. [Google Scholar] [CrossRef]
- Sahin, D.; Tas, E.; Altindag, U.H. Enhancement of Docosahexaenoic Acid (DHA) Production from Schizochytrium Sp. S31 Using Different Growth Medium Conditions. AMB Express 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, D.; Zhu, Y.; Xie, S.; Pan, Y.; Chen, D.; Tao, Y.; Yuan, Z. Establishment of Pressurized Liquid Extraction Followed by HPLC–MS/MS Method for the Screening of Adrenergic Drugs, Steroids, Sedatives, Colorants and Antioxidants in Swine Feed. J. Sep. Sci. 2019, 42, 1915–1929. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615. [Google Scholar] [CrossRef]
- Blanco-Llamero, C.; Señoráns, F.J. Biobased Solvents for Pressurized Liquid Extraction of Nannochloropsis Gaditana Omega-3 Lipids. Mar. Drugs 2021, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Señoráns, M.; Castejón, N.; Señoráns, F.J. Advanced Extraction of Lipids with DHA from Isochrysis galbana with Enzymatic Pre-Treatment Combined with Pressurized Liquids and Ultrasound Assisted Extractions. Molecules 2020, 25, 3310. [Google Scholar] [CrossRef]
- He, Y.; Huang, Z.; Zhong, C.; Guo, Z.; Chen, B. Pressurized Liquid Extraction with Ethanol as a Green and Efficient Technology to Lipid Extraction of Isochrysis Biomass. Bioresour. Technol. 2019, 293, 122049. [Google Scholar] [CrossRef]
- Waseem, R.; Low, K.H. Advanced Analytical Techniques for the Extraction and Characterization of Plant-Derived Essential Oils by Gas Chromatography with Mass Spectrometry. J. Sparation Sci. 2015, 38, 483–501. [Google Scholar] [CrossRef]
- Sousa, S.C.; Freitas, A.C.; Gomes, A.M.; Carvalho, A.P. Extraction of Nannochloropsis Fatty Acids Using Different Green Technologies: The Current Path. Mar. Drugs 2023, 21, 365. [Google Scholar] [CrossRef] [PubMed]
- Bornscheuer, U.T. Enzymes in Lipid Modification: An Overview. In Lipid Modification by Enzymes and Engineered Microbes; AOCS Press: Champaign, IL, USA, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Fernandez-Lafuente, R. Lipase from Rhizomucor Miehei as a Biocatalyst in Fats and Oils Modification. J. Mol. Catal. B Enzym. 2010, 66, 15–32. [Google Scholar] [CrossRef]
- Contesini, F.J.; Davanço, M.G.; Borin, G.P.; Vanegas, K.G.; Cirino, J.P.G.; de Melo, R.R.; Mortensen, U.H.; Hildén, K.; Campos, D.R.; Carvalho, P. de O. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020, 10, 1032. [Google Scholar] [CrossRef]
- Moreno-Perez, S.; Turati, D.F.M.; Borges, J.P.; Luna, P.; Señorans, F.J.; Guisan, J.M.; Fernandez-Lorente, G. Critical Role of Different Immobilized Biocatalysts of a given Lipase in the Selective Ethanolysis of Sardine Oil. J. Agric. Food Chem. 2017, 65, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kuan, D.; Dai, L.; Liu, D.; Liu, H.; Du, W. Efficient Biodiesel Conversion from Microalgae Oil of Schizochytrium Sp. Catalysts 2019, 9, 341. [Google Scholar] [CrossRef]
- Moreno-Perez, S.; Luna, P.; Señorans, F.J.; Guisan, J.M.; Fernandez-Lorente, G. Enzymatic Synthesis of Triacylglycerols of Docosahexaenoic Acid: Transesterification of Its Ethyl Esters with Glycerol. Food Chem. 2015, 187, 225–229. [Google Scholar] [CrossRef]
- Tian, X.; Dai, L.; Liu, M.; Liu, D.; Du, W.; Wu, H. Lipase-Catalyzed Methanolysis of Microalgae Oil for Biodiesel Production and PUFAs Concentration. Catal. Commun. 2016, 84, 44–47. [Google Scholar] [CrossRef]
- Kuan, D.; Dai, L.; Liu, D.; Du, W.; Liu, H. A Novel Clean Process for the Combined Production of Fatty Acid Ethyl Esters (FAEEs) and the Ethyl Ester of Polyunsaturated Fatty Acids (PUFAs) from Microalgae Oils. Renew. Energy 2019, 143, 772–778. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Zhang, Y.; Guo, Z.; Jiang, Y.; Chen, F. Enzymatic Ethanolysis Subjected to Schizochytrium Biomass: Sequential Processing for DHA Enrichment and Biodiesel Production. Energy Convers. Manag. 2019, 184, 159–171. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Wang, W.; Jin, Q.; Wang, X. Synthesis of Docosapentaenoic Acid-Enriched Diacylglycerols by Enzymatic Glycerolysis of Schizochytrium Sp. Oil. Bioresour. Technol. 2018, 262, 278–283. [Google Scholar] [CrossRef]
- Prasad, S.; Roy, I. Converting Enzymes into Tools of Industrial Importance. Recent Pat. Biotechnol. 2017, 12, 33–56. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lorente, G.; Filice, M.; Lopez-Vela, D.; Pizarro, C.; Wilson, L.; Betancor, L.; Avila, Y.; Guisan, J.M. Cross-Linking of Lipases Adsorbed on Hydrophobic Supports: Highly Selective Hydrolysis of Fish Oil Catalyzed by RML. JAOCS J. Am. Oil Chem. Soc. 2011, 88, 801–807. [Google Scholar] [CrossRef]
- Orrego, A.H.; Ghobadi, R.; Moreno-Perez, S.; Mendoza, A.; Fernandez-Lorente, G.; Guisan, J.M.; Rocha-Martin, J. Stabilization of Immobilized Lipases by Intense Intramolecular Cross-Linking of Their Surfaces by Using Aldehyde-Dextran Polymers. Int. J. Mol. Sci. 2018, 19, 553. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, D.; Qu, M.; Durrani, R.; Yang, B.; Wang, Y. Immobilized MAS1 Lipase Showed High Esterification Activity in the Production of Triacylglycerols with N-3 Polyunsaturated Fatty Acids. Food Chem. 2017, 216, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Bolivar, J.M.; Godoy, C.A.; Rocha-Martin, J.; Pessela, B.C.; Curiel, J.A.; Muñoz, R.; Guisan, J.M.; Fernández-Lorente, G. Improvement of Enzyme Properties with a Two-Step Immobilizaton Process on Novel Heterofunctional Supports. Biomacromolecules 2010, 11, 3112–3117. [Google Scholar] [CrossRef]
- Di Cosimo, R.; Mc Auliffe, J.; Poulose, A.J.; Bohlmann, G. Industrial Use of Immobilized Enzymes. Chem. Soc. Rev. 2013, 42, 6437–6474. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Guisan, J.M. Immobilization of Enzymes and Cells IN Series Editor; Springer Science+Business Media: New York, NY, USA, 2013; Volume 1051, ISBN 9781627035491. [Google Scholar] [CrossRef]
- Kuo, C.H.; Huang, C.Y.; Lee, C.L.; Kuo, W.C.; Hsieh, S.L.; Shieh, C.J. Synthesis of Dha/Epa Ethyl Esters via Lipase-Catalyzed Acidolysis Using Novozym® 435: A Kinetic Study. Catalysts 2020, 10, 565. [Google Scholar] [CrossRef]
- Urrutia, P.; Arrieta, R.; Alvarez, L.; Cardenas, C.; Mesa, M.; Wilson, L. Immobilization of Lipases in Hydrophobic Chitosan for Selective Hydrolysis of Fish Oil: The Impact of Support Functionalization on Lipase Activity, Selectivity and Stability. Int. J. Biol. Macromol. 2018, 108, 674–686. [Google Scholar] [CrossRef]
- Lagarde, M.; Hachem, M.; Bernoud-Hubac, N.; Picq, M.; Véricel, E.; Guichardant, M. Biological Properties of a DHA-Containing Structured Phospholipid (AceDoPC) to Target the Brain. Prostaglandins Leukot. Essent. Fat. Acids 2015, 92, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Hachem, M.; Géloën, A.; Lo Van, A.; Foumaux, B.; Fenart, L.; Gosselet, F.; Da Silva, P.; Breton, G.; Lagarde, M.; Picq, M.; et al. Efficient Docosahexaenoic Acid Uptake by the Brain from a Structured Phospholipid. Mol. Neurobiol. 2016, 53, 3205–3215. [Google Scholar] [CrossRef]
- Castejón, N.; Señoráns, F.J. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oil, Algae and Other New Omega-3 Sources: A Review. New Biotechnol. 2020, 57, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Yalagala, P.C.R.; Sugasini, D.; Dasarathi, S.; Pahan, K.; Subbaiah, P.V. Dietary Lysophosphatidylcholine-EPA Enriches Both EPA and DHA in the Brain: Potential Treatment for Depression. J. Lipid Res. 2019, 60, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, A.; Gładkowski, W.; Grudniewska, A. Lipase-Catalyzed Transesterification of Egg-Yolk Phophatidylcholine with Concentrate of n-3 Polyunsaturated Fatty Acids from Cod Liver Oil. Molecules 2017, 22, 1771. [Google Scholar] [CrossRef] [PubMed]
- Ang, X.; Chen, H.; Xiang, J.Q.; Wei, F.; Quek, S.Y. Preparation and Functionality of Lipase-Catalysed Structured Phospholipid—A Review. Trends Food Sci. Technol. 2019, 88, 373–383. [Google Scholar] [CrossRef]
- Xu, X. Production of Specific-Structured Triacylglycerols by Lipase-Catalyzed Reactions: A Review. Eur. J. Lipid Sci. Technol. 2000, 102, 287–303. [Google Scholar] [CrossRef]
- Abed, S.M.; Wei, W.; Ali, A.H.; Korma, S.A.; Mousa, A.H.; Hassan, H.M.; Jin, Q.; Wang, X. Synthesis of Structured Lipids Enriched with Medium-Chain Fatty Acids via Solvent-Free Acidolysis of Microbial Oil Catalyzed by Rhizomucor Miehei Lipase. LWT 2018, 93, 306–315. [Google Scholar] [CrossRef]
- Castejón, N.; Señoráns, F.J. Simultaneous Extraction and Fractionation of Omega-3 Acylglycerols and Glycolipids from Wet Microalgal Biomass of Nannochloropsis Gaditana Using Pressurized Liquids. Algal Res. 2019, 37, 74–82. [Google Scholar] [CrossRef]
- Li, Y.; Ghasemi Naghdi, F.; Garg, S.; Adarme-Vega, T.C.; Thurecht, K.J.; Ghafor, W.A.; Tannock, S.; Schenk, P.M. A Comparative Study: The Impact of Different Lipid Extraction Methods on Current Microalgal Lipid Research. Microb. Cell Factories 2014, 13, 14. [Google Scholar] [CrossRef]
- Martins, D.; Custódio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K. Alternative Sources of N-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae. Mar. Drugs 2013, 11, 2259–2281. [Google Scholar] [CrossRef]
- Ferreira de Mello, B.T.; Stevanato, N.; Filho, L.C.; da Silva, C. Pressurized Liquid Extraction of Radish Seed Oil Using Ethanol as Solvent: Effect of Pretreatment on Seeds and Process Variables. J. Supercrit. Fluids 2021, 176, 105307. [Google Scholar] [CrossRef]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Jaime, L.; Rodríguez-Meizoso, I.; Cifuentes, A.; Santoyo, S.; Suarez, S.; Ibáñez, E.; Señorans, F.J. Pressurized Liquids as an Alternative Process to Antioxidant Carotenoids’ Extraction from Haematococcus Pluvialis Microalgae. LWT—Food Sci. Technol. 2010, 43, 105–112. [Google Scholar] [CrossRef]
- Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes. Dinglers Polytech. J 1879, 232, 461. [Google Scholar]
- Castejón, N.; Luna, P.; Señoráns, F.J. Alternative Oil Extraction Methods from Echium Plantagineum L. Seeds Using Advanced Techniques and Green Solvents. Food Chem. 2018, 244, 75–82. [Google Scholar] [CrossRef]
- Castejón, N.; Moreno-Pérez, S.; Abreu Silveira, E.; Fernández Lorente, G.; Guisán, J.M.; Señoráns, F.J. Synthesis of Omega-3 Ethyl Esters from Chia Oil Catalyzed by Polyethylene Glycol-Modified Lipases with Improved Stability. Food Chem. 2019, 271, 433–439. [Google Scholar] [CrossRef]
Commercial Oil | Microalgal Oil 1 | Microalgal Oil 2 | Soxhlet Extraction | |
---|---|---|---|---|
14:0 | - | 10.41 ± 0.19 | 9.96 ± 0.45 | 12.72 ± 0.18 |
16:0 | 20.67 ± 0.04 | 20.30 ± 3.89 | 19.34 ± 0.57 | 23.02 ± 0.07 |
18:0 | 0.99 ± 0.02 | 1.15 ± 0.55 | 0.53 ± 0.09 | 0.41 ± 0.05 |
18:1 n-9 | 0.33 ± 0.09 | 0.80 ± 0.05 | 0.63 ± 0.03 | 0.64 ± 0.05 |
18:2 n-6 | 0.41 ± 0.03 | 0.27 ± 0.02 | 0.20 ± 0.07 | 0.14 ± 0.01 |
20:4 | 0.46 ± 0.08 | 0.81 ± 0.06 | 0.77 ± 0.04 | 0.83 ± 0.25 |
20:5 n-3 (EPA) | 0.38 ± 0.02 | 0.98 ± 0.08 | 0.75 ± 0.04 | 0.83 ± 0.01 |
22:5 (DPA n-6) | 15.42 ± 0.12 | 14.61 ± 0.58 | 15.49 ± 0.09 | 14.12 ± 0.30 |
22:5 (DPA n-3) | 0.49± 0.04 | 0.36 ± 0.06 | 0.45 ± 0.03 | 0.33 ± 0.05 |
22:6 n-3 (DHA) | 60.85 ± 0.32 | 49.25 ± 4.72 | 51.15 ± 0.72 | 45.58 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzal, G.; García-García, P.; Señoráns, F.J. Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies. Mar. Drugs 2024, 22, 146. https://doi.org/10.3390/md22040146
Berzal G, García-García P, Señoráns FJ. Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies. Marine Drugs. 2024; 22(4):146. https://doi.org/10.3390/md22040146
Chicago/Turabian StyleBerzal, Gonzalo, Paz García-García, and Francisco Javier Señoráns. 2024. "Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies" Marine Drugs 22, no. 4: 146. https://doi.org/10.3390/md22040146
APA StyleBerzal, G., García-García, P., & Señoráns, F. J. (2024). Integrated Process for Schizochytrium Oil Extraction, Enzymatic Modification of Lipids and Concentration of DHA Fatty Acid Esters Using Alternative Methodologies. Marine Drugs, 22(4), 146. https://doi.org/10.3390/md22040146