Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases
Abstract
:1. Introduction
2. Polysaccharides
3. Peptides
3.1. In Vitro
3.2. In Vivo
4. Carotenoids
4.1. In Vitro
4.2. In Vivo
5. Lipids and Other Bioactive Extracts and Molecules
Clinical Studies
Microalgae | Activity Observed | Compound | Conc. | Model | Reference |
---|---|---|---|---|---|
Polysaccharides | |||||
Porphyridium sp. (Rhodophyta/Porphyridiophyceae) | Preserve endothelial function, anti-inflammatory | Polysaccharides | 50 μg/mL | In Vitro: Human coronary artery endothelial cells (HCAECs) | [27] |
Porphyridium sp. (Rhodophyta/Porphyridiophyceae) | Preserve endothelial function, anti-atherosclerosis | Polysaccharide | 500 mg/mL | In Vitro: Human coronary artery endothelial cells (HCAEC) | [28] |
Peptides | |||||
Spirulina maxima (Cyanobacteria/Cyanophyceae) | Anti-atherosclerosis | Peptic hydrolysates of Spirulina | 200 µM | In Vitro: EA.hy926 endothelial cell | [31] |
Isochrysis zhanjiangensis (Haptophyta/Coccolithophyceae) | Inhibit vascular injury and angiogenesis | Octapeptide (IEC; Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys) | 1, 10, 20, and 50 μM | In Vitro: Human umbilical vein endothelial cells (HUVECs) | [30] |
Isochrysis zhanjiangensis (Haptophyta/Coccolithophyceae) | Anti-hypertensive, angiotensin-converting enzyme (ACE) inhibitors | Peptide (PIZ; Phe-Glu-Ile-His-Cys-Cys) | IC50 = 61.38 μM | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [36] |
Chlamydomonas nivalis (Chlorophyta/Chlorophyceae), Porphyridium purpureum (Rhodophyta/Porphyridiophyceae), Chlorella vulgaris (Chlorophyta/Trebouxiophyceae), Nannochloropsis gaditana (Heterokontophyta/Eustigmatophyceae), and Scenedesmus sp. (Chlorophyta/Chlorophyceae) | Angiotensin-converting enzyme (ACE) inhibitors | - | 1 mg/mL | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [43] |
Chlorella vulgaris (Chlorophyta/Trebouxiophyceae) | Anti-hypertensive, angiotensin-converting enzyme (ACE) inhibitors | Water-soluble hydrolysates rich in proteins/peptides | IC50: 286 µg protein/mL | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [40] |
Nannochloropsis oculate (Heterokontophyta/Eustigmatophyceae) | Angiotensin-converting enzyme (ACE) inhibitors | Peptides: Gly-Met-Asn-Asn-Leu-Thr-Pro (GMNNLTP; MW, 728 Da) and Leu-Glu-Gln (LEQ; MW, 369 Da), | IC50: 123 IC50 = 173 μM, respectively | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [37] |
Nitzschia laevis (Heterokontophyta/Bacillariophyceae) | Angiotensin-converting enzyme (ACE) inhibitors | - | IC50 = 1.63 ± 0.01 mg/mL | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [42] |
Isochrysis galbana (Haptophyta/Coccolithophyceae) | Angiotensin-converting enzyme (ACE) inhibitors | Peptide: (Tyr-Met-Gly-Leu-Asp-Leu-Lys) | IC50 = 36.1 μM | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [38] |
Marine Spirulina sp. (Cyanobacteria/Cyanophyceae) | Anti-hypertensive, angiotensin-converting enzyme (ACE) inhibitors | Peptide (Thr-Met-Glu-Pro-Gly-Lys-Pro) | IC50 = 0.3 mg/mL | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [39] |
Isochrysis zhanjiangensis (Haptophyta/Coccolithophyceae) | Anti-atherosclerosis, anti-apoptosis and anti-inflammation | Nonapeptide named ETT (Glu-Met-Phe-Gly-Thr-Ser-SerGlu-Thr) | IC50 = 15.08 μM | In Vitro: Hippuryl-His-Leu (HHL) HHL assay | [41] |
Chlorella ellipsoidea (Chlorophyta/Trebouxiophyceae) | Anti-hypertensive, angiotensin-converting enzyme (ACE) inhibitors | Peptide (Val–Glu–Gly–Tyr) | In Vitro: IC50 = 128.4 μM In Vivo: 10 mg/kg of body weight | In Vitro: Hippuryl-His-Leu (HHL) HHL assay In Vivo: Rats | [44] |
Bellerochea malleus (Heterokontophyta/Mediophyceae) | Anti-hypertensive, ACE-inhibitory activities, | Papain hydrolysates | In Vitro: 2 mg m/L; In Vivo: the dose of 400 mg/kg body weight | In Vitro: Hippuryl-His-Leu (HHL) HHL assay In Vivo: Rats | [45] |
Porphyridium sp. (Rhodophyta/Porphyridiophyceae) | Anti-hypertensive | Peptide: GVDYVRFF, AIPAAPAAPAGPKLY, and LIHADPPGVGL | - | In Vivo: Rats | [46] |
Carotenoids | |||||
Dunaliella salina (Chlorophyta/Chlorophyceae) | Ameliorate age-associated cardiac dysfunction | Zeaxanthin heneicosylate (ZH) | 250 μg/kg | In Vivo: Rats | [49] |
Dunaliella salina (Chlorophyta/Chlorophyceae) | Improve cardiac tissue fibrosis and congestion in the myocardial blood vessels | Carotenoid rich fraction | 150 mg/kg body weight | In Vivo: Rats | [50] |
Haematococcus pluvialis | Antioxidant | Astaxanthin | 10 μg/mL | In Vitro: Human endothelial cells (HUVECs) | [48] |
Dunaliella salina | Protective potentials against cardiac dysfunction Antioxidant | β-carotene rich Dunaliella salina carotenoid fraction | 250 mg/kg | In Vivo: Rats | [53] |
Dunaliella salina (Chlorophyta/Chlorophyceae) | Improve Myocardial ischemia-reperfusion injury (MIRI), improve left ventricle function and reduce the rate of malignant arrhythmia | - | 500 mg/kg | Langendorff perfused heart model in mice | [51] |
Chlorella sp. (Chlorophyta/Trebouxiophyceae) | Anti-hypertensive | - | 20 mg | Clinical trials | [64] |
Spirulina platensis (Cyanobacteria/Cyanophyceae) | Anti-hypertensive | - | 2 g | Clinical trials | [65] |
Lipids and other bioactive extracts and molecules | |||||
Nannochloropsis sp. (Heterokontophyta/Eustigmatophyceae) | Anti-atherosclerosis | Lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS) | 1.43 mg/mL | In Vivo: Mice | [54] |
A Mixture of Schizochytrium sp. and Extra Virgin Olive Oils (not found in algaebase, but found in wikipedia) | Attenuate aging-induced endothelial dysfunction | 2.5 mL/kg of a mixture of 75% of EVOO (Cornicabra variety; 80% oleic acid and 63.49 mg/g of secoiridoids) and 25% of Algae oil (Schizochytrium spp.: 35% DHA, 20% EPA and 5% Docosapentaenoic (DPA)) | Omega-3 polyunsaturated fatty acids (ω-3 PUFA) | In Vivo: Male Wistar rats | [55] |
Freeze-dried Odontella aurita (Heterokontophyta/Mediophyceae) | Anti-atherosclerosis, reduced insulinemia, serum lipid levels, platelet aggregation and oxidative status | Marine omega-3 | 12% (w/w) of freeze-dried O. aurita | In Vivo: Male Wistar rats | [56] |
Spirulina sp. Cyanobacteria/Cyanophyceae) | Anti-atherosclerosis | Dietary silicon-enriched Spirulina (SES) | Hamster on a high-fat diet were treated with Spirulina or SES at a dose 57 mg/kg body weight daily, | In Vivo: Hamster | [57,58] |
Spirulina platensis, Ganoderma lucidum and Moringa oleifera | Reduction in NLRP3 and p65/NF-kB levels in human cardiomyocytes. Reduction in fibrosis and hypertrophy in the myocardial tissues of mice | Singo (Spirulina platensis, Ganoderma lucidum and Moringa oleifera) | In Vitro: 10, 15 and 50 µg/mL In Vivo: 12 mg/kg | In Vitro: Human cardiomyocyte. In Vivo: Mice | [59] |
Dunaliella salina | Cardioprotective effects against myocardial ischemia/reperfusion (I/R) injury | Dunaliella salina extract | 0.1 mg/kg | In Vivo: Rats | [61] |
Euglena gracilis | Improvement in cardiac function | - | Euglena gracilis 2% | In Vivo: Mice | [66] |
Chlorella pyrenoidosa | Ameliorative effects on CVDs factors | - | 15 g for 14 days | Clinical trials | [63] |
Microchloropsis salina | Improvement in fatty acid distribution in plasma lipids | - | 15 g for 14 days | Clinical trials | [63] |
Chlorella pyrenoidosa | Anti-hypertensive | - | 40 mg/Kg | In Vivo: Rats | [62] |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Montuori, E.; Capalbo, A.; Lauritano, C. Marine Compounds for Melanoma Treatment and Prevention. Int. J. Mol. Sci. 2022, 23, 10284. [Google Scholar] [CrossRef] [PubMed]
- Montuori, E.; Hyde, C.A.C.; Crea, F.; Golding, J.; Lauritano, C. Marine Natural Products with Activities against Prostate Cancer: Recent Discoveries. Int. J. Mol. Sci. 2023, 24, 1435. [Google Scholar] [CrossRef]
- Saide, A.; Martínez, K.A.; Ianora, A.; Lauritano, C. Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 4383. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine N−3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of Omega-3 Fatty Acids on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. eClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, S.C.R.; Libby, P.; Budoff, M.J.; Bhatt, D.L.; Mason, R.P. Role of Omega-3 Fatty Acids in Cardiovascular Disease: The Debate Continues. Curr. Atheroscler. Rep. 2023, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda, J.; Villaño, D.; Cerdá, B.; Pilar Zafrilla, M. Cardiovascular Disease and Nutrition. In Nutrition in Health and Disease—Our Challenges Now and Forthcoming Time; Mózsik, G., Figler, M., Eds.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-007-0. [Google Scholar]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 Fatty Acids in Obesity and Metabolic Syndrome: A Mechanistic Update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- Lauritano, C.; Montuori, E.; De Falco, G.; Carrella, S. In Silico Methodologies to Improve Antioxidants’ Characterization from Marine Organisms. Antioxidants 2023, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Lees, K.; Spence, J.D. Nutrition and Stroke Prevention. Stroke 2006, 37, 2430–2435. [Google Scholar] [CrossRef]
- Raposo, M.F.D.J.; De Morais, A.M.M.B. Microalgae for the Prevention of Cardiovascular Disease and Stroke. Life Sci. 2015, 125, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Plotnick, G.D.; Corretti, M.C.; Vogel, R.A. Effect of Antioxidant Vitamins on the Transient Impairment of Endothelium-Dependent Brachial Artery Vasoactivity Following a Single High-Fat Meal. JAMA 1997, 278, 1682–1686. [Google Scholar] [CrossRef]
- Prince, M.J.; Wu, F.; Guo, Y.; Gutierrez Robledo, L.M.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The Burden of Disease in Older People and Implications for Health Policy and Practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Lakatta, E.G. Age-Associated Cardiovascular Changes in Health: Impact on Cardiovascular Disease in Older Persons. Heart Fail. Rev. 2002, 7, 29–49. [Google Scholar] [CrossRef]
- Sleeman, K.E.; De Brito, M.; Etkind, S.; Nkhoma, K.; Guo, P.; Higginson, I.J.; Gomes, B.; Harding, R. The Escalating Global Burden of Serious Health-Related Suffering: Projections to 2060 by World Regions, Age Groups, and Health Conditions. Lancet Glob. Health 2019, 7, e883–e892. [Google Scholar] [CrossRef] [PubMed]
- Lettino, M.; Mascherbauer, J.; Nordaby, M.; Ziegler, A.; Collet, J.P.; Derumeaux, G.; Hohnloser, S.H.; Leclercq, C.; O’Neill, D.E.; Visseren, F.; et al. Cardiovascular Disease in the Elderly: Proceedings of the European Society of Cardiology—Cardiovascular Round Table. Eur. J. Prev. Cardiol. 2022, 29, 1412–1424. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, D.; Barman, S.; Ranjan, R.; Stone, H. A Systematic Review of Major Cardiovascular Risk Factors: A Growing Global Health Concern. Cureus 2022, 14, e30119. [Google Scholar] [CrossRef] [PubMed]
- Izzo, C.; Carrizzo, A.; Alfano, A.; Virtuoso, N.; Capunzo, M.; Calabrese, M.; De Simone, E.; Sciarretta, S.; Frati, G.; Oliveti, M.; et al. The Impact of Aging on Cardio and Cerebrovascular Diseases. Int. J. Mol. Sci. 2018, 19, 481. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, Z.; Sun, A.; Deng, X. Gender Differences in Cardiovascular Disease. Med. Nov. Technol. Devices 2019, 4, 100025. [Google Scholar] [CrossRef]
- Nadeem, M.; Ahmed, S.S.; Mansoor, S.; Farooq, S. Risk Factors for Coronary Heart Disease in Patients below 45 Years of Age. Pak. J. Med. Sci. 2012, 29, 91–96. [Google Scholar] [CrossRef]
- Tuomilehto, J. Impact of Age on Cardiovascular Risk: Implications for Cardiovascular Disease Management. Atheroscler. Suppl. 2004, 5, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int. J. Environ. Res. Public Health 2021, 19, 207. [Google Scholar] [CrossRef] [PubMed]
- Singam, N.S.V.; Fine, C.; Fleg, J.L. Cardiac Changes Associated with Vascular Aging. Clin. Cardiol. 2020, 43, 92–98. [Google Scholar] [CrossRef] [PubMed]
- El Assar, M.; Angulo, J.; Vallejo, S.; Peiró, C.; Sánchez-Ferrer, C.F.; Rodríguez-Mañas, L. Mechanisms Involved in the Aging-Induced Vascular Dysfunction. Front. Physiol. 2012, 3, 132. [Google Scholar] [CrossRef] [PubMed]
- Levy-Ontman, O.; Huleihel, M.; Hamias, R.; Wolak, T.; Paran, E. An Anti-Inflammatory Effect of Red Microalga Polysaccharides in Coronary Artery Endothelial Cells. Atherosclerosis 2017, 264, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hamias, R.; Wolak, T.; Huleihel, M.; Paran, E.; Levy-Ontman, O. Red Alga Polysaccharides Attenuate Angiotensin II-Induced Inflammation in Coronary Endothelial Cells. Biochem. Biophys. Res. Commun. 2018, 500, 944–951. [Google Scholar] [CrossRef]
- Li, Y.; Lammi, C.; Boschin, G.; Arnoldi, A.; Aiello, G. Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. J. Agric. Food Chem. 2019, 67, 11825–11838. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; He, Y.-L.; Tang, Y.; Hong, P.; Zhou, C.; Sun, S.; Qian, Z.-J. Mechanism Analysis of Octapeptide from Microalgae, Isochrysis zhanjiangensis for Suppressing Vascular Injury and Angiogenesis in Human Umbilical Vein Endothelial Cell. Int. Immunopharmacol. 2022, 111, 109149. [Google Scholar] [CrossRef]
- Vo, T.-S.; Ryu, B.; Kim, S.-K. Purification of Novel Anti-Inflammatory Peptides from Enzymatic Hydrolysate of the Edible Microalgal Spirulina maxima. J. Funct. Foods 2013, 5, 1336–1346. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Q.; Zhang, T.; Liu, M.; Duan, S.; Sun, X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4068. [Google Scholar] [CrossRef] [PubMed]
- Giles, T.D.; Materson, B.J.; Cohn, J.N.; Kostis, J.B. Definition and Classification of Hypertension: An Update. J. Clin. Hypertens. 2009, 11, 611–614. [Google Scholar] [CrossRef]
- Van Thiel, B.S.; Van Der Pluijm, I.; Te Riet, L.; Essers, J.; Danser, A.H.J. The Renin–Angiotensin System and Its Involvement in Vascular Disease. Eur. J. Pharmacol. 2015, 763, 3–14. [Google Scholar] [CrossRef]
- Li, E.C.; Heran, B.S.; Wright, J.M. Angiotensin Converting Enzyme (ACE) Inhibitors versus Angiotensin Receptor Blockers for Primary Hypertension. Cochrane Database Syst. Rev. 2014, 2014, CD009096. [Google Scholar] [CrossRef]
- Chen, L.; Giesy, J.P.; Adamovsky, O.; Svirčev, Z.; Meriluoto, J.; Codd, G.A.; Mijovic, B.; Shi, T.; Tuo, X.; Li, S.-C.; et al. Challenges of Using Blooms of Microcystis spp. in Animal Feeds: A Comprehensive Review of Nutritional, Toxicological and Microbial Health Evaluation. Sci. Total Environ. 2021, 764, 142319. [Google Scholar] [CrossRef]
- Samarakoon, K.W.; O-Nam, K.; Ko, J.-Y.; Lee, J.-H.; Kang, M.-C.; Kim, D.; Lee, J.B.; Lee, J.-S.; Jeon, Y.-J. Purification and Identification of Novel Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptides from Cultured Marine Microalgae (Nannochloropsis oculata) Protein Hydrolysate. J. Appl. Phycol. 2013, 25, 1595–1606. [Google Scholar] [CrossRef]
- Wu, H.; Xu, N.; Sun, X.; Yu, H.; Zhou, C. Hydrolysis and Purification of ACE Inhibitory Peptides from the Marine Microalga Isochrysis galbana. J. Appl. Phycol. 2015, 27, 351–361. [Google Scholar] [CrossRef]
- Heo, S.-J.; Yoon, W.-J.; Kim, K.-N.; Oh, C.; Choi, Y.-U.; Yoon, K.-T.; Kang, D.-H.; Qian, Z.-J.; Choi, I.-W.; Jung, W.-K. Anti-Inflammatory Effect of Fucoxanthin Derivatives Isolated from Sargassum siliquastrum in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage. Food Chem. Toxicol. 2012, 50, 3336–3342. [Google Scholar] [CrossRef]
- Cunha, S.A.; Coscueta, E.R.; Nova, P.; Silva, J.L.; Pintado, M.M. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef]
- Pei, Y.; Lui, Y.; Cai, S.; Zhou, C.; Hong, P.; Qian, Z.-J. A Novel Peptide Isolated from Microalgae Isochrysis zhanjiangensis Exhibits Anti-Apoptosis and Anti-Inflammation in Ox-LDL Induced HUVEC to Improve Atherosclerosis. Plant Foods Hum. Nutr. 2022, 77, 181–189. [Google Scholar] [CrossRef]
- Alzahrani, M.A.J. Proteins and Their Enzymatic Hydrolysates from the Marine Diatom Nitzschia laevis and Screening for Their In Vitro Antioxidant, Antihypertension, Anti-Inflammatory and Antimicrobial Activities. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2018. [Google Scholar] [CrossRef]
- Verspreet, J.; Soetemans, L.; Gargan, C.; Hayes, M.; Bastiaens, L. Nutritional Profiling and Preliminary Bioactivity Screening of Five Micro-Algae Strains Cultivated in Northwest Europe. Foods 2021, 10, 1516. [Google Scholar] [CrossRef]
- Ko, S.-C.; Kang, N.; Kim, E.-A.; Kang, M.C.; Lee, S.-H.; Kang, S.-M.; Lee, J.-B.; Jeon, B.-T.; Kim, S.-K.; Park, S.-J.; et al. A Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide from a Marine Chlorella ellipsoidea and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Process Biochem. 2012, 47, 2005–2011. [Google Scholar] [CrossRef]
- Barkia, I.; Al-Haj, L.; Abdul Hamid, A.; Zakaria, M.; Saari, N.; Zadjali, F. Indigenous Marine Diatoms as Novel Sources of Bioactive Peptides with Antihypertensive and Antioxidant Properties. Int. J. Food Sci. Technol. 2019, 54, 1514–1522. [Google Scholar] [CrossRef]
- Hayes, M.; Aluko, R.E.; Aurino, E.; Mora, L. Generation of Bioactive Peptides from Porphyridium sp. and Assessment of Their Potential for Use in the Prevention of Hypertension, Inflammation and Pain. Mar. Drugs 2023, 21, 422. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, M.; Gueguen, V.; Letourneur, D.; Pavon-Djavid, G. Astaxanthin-Antioxidant Impact on Excessive Reactive Oxygen Species Generation Induced by Ischemia and Reperfusion Injury. Chem.-Biol. Interact. 2018, 279, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Cutrell, S.; Alhomoud, I.S.; Mehta, A.; Talasaz, A.H.; Van Tassell, B.; Dixon, D.L. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr. Hypertens. Rep. 2023, 25, 243–250. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, F.; Abdel Jaleel, G.; Saleh, D.; Hussein, R. Protective and Therapeutic Potentials of Dunaliella salina on Aging-Associated Cardiac Dysfunction in Rats. Asian Pac. J. Trop. Biomed. 2018, 8, 403. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Hussein, R.A.; Saleh, D.O.; Abdel Jaleel, G.A.R. Zeaxanthin Isolated from Dunaliella salina Microalgae Ameliorates Age Associated Cardiac Dysfunction in Rats through Stimulation of Retinoid Receptors. Mar. Drugs 2019, 17, 290. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, H.; Zhang, Y.; Wang, T.; Dong, Y.; Shui, H.; Du, J. Effect of Dunaliella salina on Myocardial Ischemia-Reperfusion Injury through KEAP1/NRF2 Pathway Activation and JAK2/STAT3 Pathway Inhibition. Gene Protein Dis. 2023, 2, 387. [Google Scholar] [CrossRef]
- Da Silva, F.; Jian Motamedi, F.; Weerasinghe Arachchige, L.C.; Tison, A.; Bradford, S.T.; Lefebvre, J.; Dolle, P.; Ghyselinck, N.B.; Wagner, K.D.; Schedl, A. Retinoic Acid Signaling Is Directly Activated in Cardiomyocytes and Protects Mouse Hearts from Apoptosis after Myocardial Infarction. eLife 2021, 10, e68280. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Aly, H.F.; Abd-Alla, H.I. The Ameliorating Effect of Carotenoid Rich Fraction Extracted from Dunaliella salina Microalga against Inflammation- Associated Cardiac Dysfunction in Obese Rats. Toxicol. Rep. 2020, 7, 118–124. [Google Scholar] [CrossRef]
- Dahli, L.; Atrahimovich, D.; Vaya, J.; Khatib, S. Lyso-DGTS Lipid Isolated from Microalgae Enhances PON1 Activities In Vitro and In Vivo, Increases PON1 Penetration into Macrophages and Decreases Cellular Lipid Accumulation. BioFactors 2018, 44, 299–310. [Google Scholar] [CrossRef] [PubMed]
- González-Hedström, D.; Amor, S.; De La Fuente-Fernández, M.; Tejera-Muñoz, A.; Priego, T.; Martín, A.I.; López-Calderón, A.; Inarejos-García, A.M.; García-Villalón, Á.L.; Granado, M. A Mixture of Algae and Extra Virgin Olive Oils Attenuates the Cardiometabolic Alterations Associated with Aging in Male Wistar Rats. Antioxidants 2020, 9, 483. [Google Scholar] [CrossRef]
- Haimeur, A.; Ulmann, L.; Mimouni, V.; Guéno, F.; Pineau-Vincent, F.; Meskini, N.; Tremblin, G. The Role of Odontella aurita, a Marine Diatom Rich in EPA, as a Dietary Supplement in Dyslipidemia, Platelet Function and Oxidative Stress in High-Fat Fed Rats. Lipids Health Dis. 2012, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Dudek, Ł.; Kochman, W.; Dziedzic, E. Silicon in Prevention of Atherosclerosis and Other Age-Related Diseases. Front. Cardiovasc. Med. 2024, 11, 1370536. [Google Scholar] [CrossRef] [PubMed]
- Vidé, J.; Virsolvy, A.; Romain, C.; Ramos, J.; Jouy, N.; Richard, S.; Cristol, J.-P.; Gaillet, S.; Rouanet, J.-M. Dietary Silicon-Enriched Spirulina Improves Early Atherosclerosis Markers in Hamsters on a High-Fat Diet. Nutrition 2015, 31, 1148–1154. [Google Scholar] [CrossRef]
- Quagliariello, V.; Basilicata, M.G.; Pepe, G.; De Anseris, R.; Di Mauro, A.; Scognamiglio, G.; Palma, G.; Vestuto, V.; Buccolo, S.; Luciano, A.; et al. Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J. Cardiovasc. Dev. Dis. 2022, 9, 423. [Google Scholar] [CrossRef]
- Umei, M.; Akazawa, H.; Saga-Kamo, A.; Yagi, H.; Liu, Q.; Matsuoka, R.; Kadowaki, H.; Shindo, A.; Nakashima, A.; Yasuda, K.; et al. Oral Administration of Euglena gracilis Z Alleviates Constipation and Cardiac Dysfunction in a Mouse Model of Isoproterenol-Induced Heart Failure. Circ. Rep. 2022, 4, 83–91. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Lin, H.-W.; Liao, J.-M.; Chen, K.-M.; Tsai, J.-W.; Chang, C.-S.; Chou, C.-Y.; Su, H.-H.; Liu, P.-H.; Chu, Y.-C.; et al. Dunaliella salina Alga Protects against Myocardial Ischemia/Reperfusion Injury by Attenuating TLR4 Signaling. Int. J. Mol. Sci. 2023, 24, 3871. [Google Scholar] [CrossRef]
- Yang, S.-C.; Yang, H.-Y.; Yang, Y.-C.; Peng, H.-C.; Ho, P.-Y. Chlorella pyrenoidosa Ameliorated L-NAME-Induced Hypertension and Cardiorenal Remodeling in Rats. Eur. J. Nutr. 2013, 52, 601–608. [Google Scholar] [CrossRef]
- Sandgruber, F.; Höger, A.-L.; Kunze, J.; Schenz, B.; Griehl, C.; Kiehntopf, M.; Kipp, K.; Kühn, J.; Stangl, G.I.; Lorkowski, S.; et al. Impact of Regular Intake of Microalgae on Nutrient Supply and Cardiovascular Risk Factors: Results from the NovAL Intervention Study. Nutrients 2023, 15, 1645. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Hasegawa, T.; Nishimura, C.; Kan, H.; Kanno, T.; Nakamura, T.; Matsubayashi, T. Anti-Hypertensive Effect of γ-Aminobutyric Acid (GABA)-Rich Chlorella on High-Normal Blood Pressure and Borderline Hypertension in Placebo-Controlled Double Blind Study. Clin. Exp. Hypertens. 2009, 31, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Ghaem Far, Z.; Babajafari, S.; Kojuri, J.; Mohammadi, S.; Nouri, M.; Rostamizadeh, P.; Rahmani, M.H.; Azadian, M.; Ashrafi-Dehkordi, E.; Zareifard, A.; et al. Antihypertensive and Antihyperlipemic of Spirulina (Arthrospira platensis) Sauce on Patients with Hypertension: A Randomized Triple-blind Placebo-controlled Clinical Trial. Phytother. Res. 2021, 35, 6181–6190. [Google Scholar] [CrossRef]
- AlKahtane, A.A.; Abushouk, A.I.; Mohammed, E.T.; ALNasser, M.; Alarifi, S.; Ali, D.; Alessia, M.S.; Almeer, R.S.; AlBasher, G.; Alkahtani, S.; et al. Fucoidan Alleviates Microcystin-LR-Induced Hepatic, Renal, and Cardiac Oxidative Stress and Inflammatory Injuries in Mice. Environ. Sci. Pollut. Res. 2020, 27, 2935–2944. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurika, N.; Montuori, E.; Lauritano, C. Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases. Mar. Drugs 2024, 22, 229. https://doi.org/10.3390/md22050229
Yurika N, Montuori E, Lauritano C. Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases. Marine Drugs. 2024; 22(5):229. https://doi.org/10.3390/md22050229
Chicago/Turabian StyleYurika, Nova, Eleonora Montuori, and Chiara Lauritano. 2024. "Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases" Marine Drugs 22, no. 5: 229. https://doi.org/10.3390/md22050229
APA StyleYurika, N., Montuori, E., & Lauritano, C. (2024). Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases. Marine Drugs, 22(5), 229. https://doi.org/10.3390/md22050229