Extraction of Omega-3 Fatty Acids from Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Using Supercritical Carbon Dioxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. ScCO2 Extraction of C. frondosa Viscera
2.1.1. Effects of Process Variables on FA Yields
2.1.2. Optimization of FA Yields
2.2. Comparison between Conventional and ScCO2 Methods
2.3. Effects of Pre-Treatments on FA Yields
2.3.1. Effects of Different Drying Methods
2.3.2. Effects of Ethanol-Soaking
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Methods
3.2.1. Sample Preparation
3.2.2. Moisture Content Determination
3.2.3. The Bligh and Dyer Method
3.2.4. ScCO2 Extraction
3.2.5. Transesterification after Extraction
3.2.6. In Situ Transesterification
3.2.7. FA Profiles in GC
3.2.8. Morphological Imaging
3.2.9. Experimental Design and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahrami, Y.; Zhang, W.; Franco, C. Discovery of Novel Saponins from the Viscera of the Sea Cucumber Holothuria lessoni. Mar. Drugs 2014, 12, 2633–2667. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.R.; Freitas, A.C.; Rocha-Santos, T.A.; Duarte, A.C. Bioactive Compounds Derived from Echinoderms. RSC Adv. 2014, 4, 29365–29382. [Google Scholar] [CrossRef]
- Hossain, A.; Dave, D.; Shahidi, F. Northern Sea Cucumber (Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar. Drugs 2020, 18, 274. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, S.; Anwar, F.; Saari, N. High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review. Mar. Drugs 2011, 9, 1761–1805. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.J.; MacDonald, B.A.; Robinson, S.M.C. A Review of the Northern Sea Cucumber Cucumaria frondosa (Gunnerus, 1767) as a Potential Aquaculture Species. Rev. Fish. Sci. 2012, 20, 212–219. [Google Scholar] [CrossRef]
- Mamelona, J.; Saint-Louis, R.; Pelletier, É. Proximate Composition and Nutritional Profile of By-Products from Green Urchin and Atlantic Sea Cucumber Processing Plants. Int. J. Food Sci. Technol. 2010, 45, 2119–2126. [Google Scholar] [CrossRef]
- Zhong, Y.; Khan, M.A.; Shahidi, F. Compositional Characteristics and Antioxidant Properties of Fresh and Processed Sea Cucumber (Cucumaria frondosa). J. Agric. Food Chem. 2007, 55, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Camargo, A.P.; Martinez-Correa, H.A.; Paviani, L.C.; Cabral, F.A. Supercritical CO2 Extraction of Lipids and Astaxanthin from Brazilian Redspotted Shrimp Waste (Farfantepenaeus paulensis). J. Supercrit. Fluids 2011, 56, 164–173. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Meireles, M.Â.A.; Ferreira, A.L.K.; Saito, E.; Cabral, F.A. Extraction of ω-3 Fatty Acids and Astaxanthin from Brazilian Redspotted Shrimp Waste Using Supercritical CO2+ethanol Mixtures. J. Supercrit. Fluids 2012, 61, 71–77. [Google Scholar] [CrossRef]
- Treyvaud Amiguet, V.; Kramp, K.L.; Mao, J.; McRae, C.; Goulah, A.; Kimpe, L.E.; Blais, J.M.; Arnason, J.T. Supercritical Carbon Dioxide Extraction of Polyunsaturated Fatty Acids from Northern Shrimp (Pandalus borealis kreyer) Processing by-Products. Food Chem. 2012, 130, 853–858. [Google Scholar] [CrossRef]
- Félix-Valenzuela, L.; Higuera-Ciapara, I.; Goycoolea-Valencia, F.; Argüelles-Monal, W. Supercritical CO2/Ethanol Extraction of Astaxanthin from Blue Crab (Callinectes sapidus) Shell Waste. J. Food Process. Eng. 2001, 24, 101–112. [Google Scholar] [CrossRef]
- Haq, M.; Ahmed, R.; Cho, Y.-J.; Chun, B.-S. Quality Properties and Bio-Potentiality of Edible Oils from Atlantic Salmon By-Products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass Valor. 2017, 8, 1953–1967. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; de Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical Fluid Extraction of Fish Oil from Fish By-Products: A Comparison with Other Extraction Methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAO Yearbook: Fishery and Aquaculture Statistics, 2015; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dave, D.; Trenholm, S.; Ramakrishnan, V.V.; Murphy, W. Effect of Drying on Nutritional Composition of Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Derived from Newfoundland Fisheries. Processes 2021, 9, 703. [Google Scholar] [CrossRef]
- Abuzaytoun, R.; Budge, S.M.; Xia, W.; MacKinnon, S. Unusual Ether Lipids and Branched Chain Fatty Acids in Sea Cucumber (Cucumaria frondosa) Viscera and Their Seasonal Variation. Mar. Drugs 2022, 20, 435. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Kim, Y.-K.; Moon, H.S.; Kim, K.-D.; Kim, G.-G.; Cho, H.-A.; Yoon, N.Y.; Sim, K.B.; Park, H.-Y.; Lee, D.-S.; et al. Comparison on Proximate Composition and Nutritional Profile of Red and Black Sea Cucumbers (Apostichopus japonicus) from Ulleungdo (Island) and Dokdo (Island), Korea. Food Sci. Biotechnol. 2012, 21, 1285–1291. [Google Scholar] [CrossRef]
- Budzinski, P.; Maimeun, M.; Mutrakulcharoen, P.; Wonganu, B.; Sriariyanun, M. Profiling Analysis of Fatty Acids and Collagens Obtained from Sea Cucumbers. E3S Web Conf. 2020, 141. [Google Scholar] [CrossRef]
- Mendiola, J.A.; Herrero, M.; Castro-Puyana, M.; Ibáñez, E. Supercritical Fluid Extraction. In Natural Product Extraction: Principles and Applications; Rostagno, M.A., Prado, J.M., Eds.; The Royal Society of Chemistry: London, UK, 2013; ISBN 978-1-84973-606-0. [Google Scholar]
- Jiao, G.; Kermanshahi pour, A. Extraction of Anthocyanins from Haskap Berry Pulp Using Supercritical Carbon Dioxide: Influence of Co-Solvent Composition and Pretreatment. LWT 2018, 98, 237–244. [Google Scholar] [CrossRef]
- Cheung, P.C.K.; Leung, A.Y.H.; Ang, P.O. Comparison of Supercritical Carbon Dioxide and Soxhlet Extraction of Lipids from a Brown Seaweed, Sargassum hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 1998, 46, 4228–4232. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Du, T.-B.; Pi, H.-C.; Jang, S.-M.; Lin, Y.-H.; Lee, H.-T. Comparative Study of Lipid Extraction from Microalgae by Organic Solvent and Supercritical CO2. Bioresour. Technol. 2011, 102, 10151–10153. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, Q.; Li, W. An Extraction Process for Sea Cucumber Oil. China Patent CN106479663A, 8 March 2017. [Google Scholar]
- Shao, J.; Jiao, J. Methods for Sea Cucumber Oil Product Preparation. China Patent CN101530127A, 16 September 2009. [Google Scholar]
- Sun, J.; Xu, Z.; Dai, X.; Sun, Z.; Mou, J.; Liu, Y.; Ma, Y. A Supercritical Fluid Extraction Method for a Group of Glycosphingolipids (Cerebrosides) in Sea Cucumbers. China Patent CN106977562A, 25 July 2017. [Google Scholar]
- Sun, Y.; Ju, W.; Tang, W.; Tang, X. A Method for Lipids Extraction from the Internal Organs of Sea Cucumbers. China Patent CN107418708A, 1 December 2017. [Google Scholar]
- Mouahid, A.; Crampon, C.; Toudji, S.-A.A.; Badens, E. Effects of High Water Content and Drying Pre-Treatment on Supercritical CO2 Extraction from Dunaliella salina Microalgae: Experiments and Modelling. J. Supercrit. Fluids 2016, 116, 271–280. [Google Scholar] [CrossRef]
- Hădărugă, D.I.; Ünlüsayin, M.; Gruia, A.T.; Birău Mitroi, C.; Rusu, G.; Hădărugă, N.G. Thermal and Oxidative Stability of Atlantic Salmon Oil (Salmo salar L.) and Complexation with β-Cyclodextrin. Beilstein J. Org. Chem. 2016, 12, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Létisse, M.; Rozières, M.; Hiol, A.; Sergent, M.; Comeau, L. Enrichment of EPA and DHA from Sardine by Supercritical Fluid Extraction without Organic Modifier: I. Optimization of Extraction Conditions. J. Supercrit. Fluids 2006, 38, 27–36. [Google Scholar] [CrossRef]
- Cavonius, L.R.; Carlsson, N.-G.; Undeland, I. Quantification of Total Fatty Acids in Microalgae: Comparison of Extraction and Transesterification Methods. Anal. Bioanal. Chem. 2014, 406, 7313–7322. [Google Scholar] [CrossRef] [PubMed]
- Dickey, L.; Teter, B.; Sampugna, J.; III, L. Comparison of a Direct Transesterification Method and the Bligh and Dyer Method to Determine Fatty Acid Content in Striped Bass Tissues and Diet. N. Am. J. Aquac. 2002, 64, 158–163. [Google Scholar] [CrossRef]
- Collin, P.D.; Yang, P.; Newman, R. Methods and Compositions for Treating Lipoxygenase-Mediated Disease States. U.S. Patent 6541519, 1 April 2003. [Google Scholar]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L.; Sartaj, K.; Chandra, R. Chapter 2—Extraction of Lipids from Algae Using Supercritical Carbon Dioxide. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin Asiri, A.M., Isloor, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–39. ISBN 978-0-12-817388-6. [Google Scholar]
- Crampon, C.; Mouahid, A.; Toudji, S.-A.A.; Lépine, O.; Badens, E. Influence of Pretreatment on Supercritical CO2 Extraction from Nannochloropsis oculata. J. Supercrit. Fluids 2013, 79, 337–344. [Google Scholar] [CrossRef]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M.; Tariq, S. Supercritical Carbon Dioxide Extraction of Microalgae Lipid: Process Optimization and Laboratory Scale-Up. J. Supercrit. Fluids 2014, 86, 57–66. [Google Scholar] [CrossRef]
- Moayyedi, M.; Eskandari, M.H.; Rad, A.H.E.; Ziaee, E.; Khodaparast, M.H.H.; Golmakani, M.-T. Effect of Drying Methods (Electrospraying, Freeze Drying and Spray Drying) on Survival and Viability of Microencapsulated Lactobacillus rhamnosus ATCC 7469. J. Funct. Foods 2018, 40, 391–399. [Google Scholar] [CrossRef]
- Kermanshahi pour, A.; Mirmehrabi, M.; Brar, S.K. A Novel Process for Isolation and Purification of Polyunsaturated Fatty Acids from a Thraustochytrid. Algal Res. 2020, 46, 101806. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, H.; Zhang, Z.; Yuan, Y.; Dong, S.; Xu, Z. Effect of Ethanol Osmotic Dehydration on CO2 Puffing and Drying Mechanism of Potato. Food Chem. X 2023, 18, 100715. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- AOAC International (AOAC). Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburgs, MD, USA, 2006. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis: Isolation, Separation, Identification, and Structural Analysis of Lipids, 2nd ed.; Oily Press: Oxford, UK, 1982. [Google Scholar]
- Crompton, M.J.; Dunstan, R.H. Evaluation of In-Situ Fatty Acid Extraction Protocols for the Analysis of Staphylococcal Cell Membrane Associated Fatty Acids by Gas Chromatography. J. Chromatogr. B 2018, 1084, 80–88. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B.; Manikandan, S. Modeling and Optimization of Supercritical Fluid Extraction of Anthocyanin and Phenolic Compounds from Syzygium Cumini Fruit Pulp. J. Food Sci. Technol. 2014, 51, 1938–1946. [Google Scholar] [CrossRef]
Optimal Conditions | FA Yields | Selected Omega-3 FA Yields | |
---|---|---|---|
Temperature of 75 °C, pressure of 45 MPa, dynamic extraction time of 30 min, and co-solvent to feedstock mass ratio of 2:1 | Experimental value | 16.30 ± 0.66 a | 3.38 ± 0.20 a |
Predicted value | 18.06 | 3.47 | |
Predicted interval | (15.24, 20.87) | (2.67, 4.27) | |
Recovery % 1 | 73.55 | 81.67 | |
Temperature of 75 °C, pressure of 44 MPa, dynamic extraction time of 41 min, and co-solvent to feedstock mass ratio of 0:1 | Experimental value | 14.86 ± 0.08 b | 2.88 ± 0.03 b |
Predicted value | 16.92 | 3.14 | |
Predicted interval | (14.73, 19.11) | (2.52, 3.77) | |
Recovery % 1 | 67.04 | 69.71 |
Methods | FAs | Selected Omega-3 FAs |
---|---|---|
Bligh and Dyer | 9.02 ± 1.55 a | 2.22 ± 0.34 a |
Ultrasonic-assisted Bligh and Dyer | 13.59 ± 0.80 b | 3.16 ± 0.18 b |
In situ transesterification | 15.94 ± 0.35 c | 3.72 ± 0.15 cd |
Ultrasonic-assisted in situ transesterification | 17.43 ± 0.20 c | 3.92 ± 0.05 d |
scCO2 extraction | 16.30 ± 0.66 c | 3.38 ± 0.20 bc |
Pre-Treatment | FA Yields | Recovery % 1 | Selected Omega-3 Yields | Recovery % 1 |
---|---|---|---|---|
Fresh samples | 5.14 ± 0.48 a | 23.21 | 1.33 ± 0.18 a | 32.23 |
Hot air dry | 16.30 ± 0.66 b | 73.55 | 3.38 ± 0.20 b | 81.67 |
Freeze dry | 21.37 ± 1.06 c | 96.40 | 4.27 ± 0.29 c | ~100 |
Fresh + EtOH | 13.68 ± 0.64 d | 61.73 | 3.47 ± 0.09 b | 83.80 |
Hot air dry + EtOH | 16.56 ± 0.32 b | 74.72 | 3.69 ± 0.11 b | 89.19 |
Process Variables | Levels | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
Temperature (°C) | 35 | 45 | 55 | 65 | 75 |
Pressure (MPa) | 20 | 27.5 | 35 | 42.5 | 50 |
Dynamic extraction time (min) | 30 | 40 | 50 | 60 | 70 |
Ratio of co-solvent to feedstock (w/w) | 0 | 0.5 | 1 | 1.5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Jiao, G.; Brooks, M.S.-L.; Budge, S.M.; Kermanshahi-pour, A. Extraction of Omega-3 Fatty Acids from Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Using Supercritical Carbon Dioxide. Mar. Drugs 2024, 22, 366. https://doi.org/10.3390/md22080366
Lin J, Jiao G, Brooks MS-L, Budge SM, Kermanshahi-pour A. Extraction of Omega-3 Fatty Acids from Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Using Supercritical Carbon Dioxide. Marine Drugs. 2024; 22(8):366. https://doi.org/10.3390/md22080366
Chicago/Turabian StyleLin, Jianan, Guangling Jiao, Marianne Su-Ling Brooks, Suzanne M. Budge, and Azadeh Kermanshahi-pour. 2024. "Extraction of Omega-3 Fatty Acids from Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Using Supercritical Carbon Dioxide" Marine Drugs 22, no. 8: 366. https://doi.org/10.3390/md22080366
APA StyleLin, J., Jiao, G., Brooks, M. S. -L., Budge, S. M., & Kermanshahi-pour, A. (2024). Extraction of Omega-3 Fatty Acids from Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Using Supercritical Carbon Dioxide. Marine Drugs, 22(8), 366. https://doi.org/10.3390/md22080366