A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed
Abstract
:1. Introduction
2. Bioprocessing for Fucoidan Production
3. Literature Landscape of This Review
- Process properties: yield and purity. Yield was defined as the percentage of crude fucoidan extract collected per unit mass of starting seaweed material. This is a practical definition of yield, as the literature commonly uses total seaweed weight as a reference for this calculation. However, future efforts should be made to define yield relative to an accurately measured fucoidan content in the seaweed source. Fucoidan purity was defined as the mass of fucose obtained over the mass of the total sugar extracted.
- Extract properties: sugar, fucose and sulfate content (per unit mass of extract) and molecular weight (standardized in kDa).
- Extract impurities: uronic acid and phenolic content (per unit mass of extract).
4. Traditional Extraction Techniques
5. Alternative Extraction Techniques
5.1. Enzyme-Assisted Extraction
Reference | Seaweed Type | Extraction Conditions | Process Properties | Extract Characteristics | Extract Impurities | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Family | Species | T | pH | t | vSL | Solvent | Enzyme | [E] | Yield | Purity | Sugar | Fucose | Sulfate | MW | Uronics | Phenolics | |
(°C) | (h) | (g/mL) | (mg/mL) | (%) | (%) | (%) | (%) | (%) | (kDa) | (%) | (%) | |||||||
Lee et al. (2024) [80] | Dictyotales | Dictyotaceae | Padina arborescens | 50 | 4.5 | 24 | 100 | DI H2O | Cellulase | 10 | 26.0 | 41.6 | 38.9 | 16.2 | 5.4 | N.D. | N.D. | 1.2 |
Jayawardena et al. (2020) [81] | Dictyotales | Dictyotaceae | Padina boryana | 50 | 4.5 | 24 | N.S. | DI H2O | Cellulase | N.S. | N.D. | 39.8 | 42.1 | 16.8 b | 4.6 | N.D. | N.D. | 1.3 |
Hans et al. (2023) [82] | Dictyotales | Dictyotaceae | Padina tetrastromatica | 50 | 4.5 | 24 | 50 | 0.1 M NaOAc | Cellulase | 50 | 3.6 | N.C. | N.D. | N.C. | 11.2 | N.D. | N.D. | 7.8 d |
Fernando et al. (2017) [83] | Ectocarpales | Scytosiphonaceae | Chnoospora minima | 50 | 4.5 | 24 | 10 | DI H2O | Cellulase | N.S. | N.D. | 61.7 | 68.4 e | 42.2 be | 28.3 | 77.5 | N.D. | 1.0 e |
Okolie et al. (2019) [84] | Fucales | Fucaceae | Ascophyllum nodosum | 50 | 4.5 | 24 | 10 | NaOAc | Cellulase | N.S. | 3.9 | N.C. | N.C. | 29.1 | 15.4 | 3.9–107.7 a | 0.4 | N.D. |
Deniaud-Bouët (2014) [85] | Fucales | Fucaceae | Ascophyllum nodosum | Stage 1: | ||||||||||||||
N.S. | 7 | 70 | N.S. | 0.1 M Tris-MES 0.1 M NaCl 20 mM MgCl2 | Alginate lyase | N.S. | 1.4 | N.C. | N.D. | N.C. | N.D. | N.D. | 15.3 | N.D. | ||||
Stage 2: | ||||||||||||||||||
60 | 6.5 | 24 | N.S. | 0.1 M NaOAc 5 mM EDTA 5 mM Cysteine | Protease | N.S. | 18.5 | N.C. | N.D. | N.C. | N.D. | N.D. | 16.7 | 1.9 | ||||
Stage 3: | ||||||||||||||||||
40 | N.S | 48 | N.S. | 0.2% NaN3 | Cellulase | N.S. | 19.2 | N.C. | N.D. | N.C. | N.D. | N.D. | 12.7 | 6.4 | ||||
Nguyen et al. (2020) [20] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | 40 | 6 | 24 | 20 | 0.1 M HCl | Cellulase | 20 | 9.9 c | N.C. | N.D. | 24.8 | 21.4 | N.D. | 72 | N.D. |
Alginate lyase | N.C. | |||||||||||||||||
Deniaud-Bouët (2014) [85] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | Stage 1: | ||||||||||||||
N.S. | 7 | 70 | N.S. | 0.1 M Tris-MES 0.1 M NaCl 20 mM MgCl2 | Alginate lyase | N.S. | 2.9 | N.C. | N.D. | N.C. | N.D. | N.D. | 12.1 | N.D. | ||||
Stage 2: | ||||||||||||||||||
60 | 6.5 | 24 | N.S. | 0.1 M NaOAc 5 mM EDTA 5 mM Cysteine | Protease | N.S. | 15.6 | N.C. | N.D. | N.C. | N.D. | N.D. | 17.0 | 10.7 | ||||
Stage 3: | ||||||||||||||||||
40 | N.S | 48 | N.S. | 0.2% NaN3 | Cellulase | N.S. | 21.4 | N.C. | N.D. | N.C. | N.D. | N.D. | 25.0 | 10.7 | ||||
Deniaud-Bouët (2014) [85] | Fucales | Fucaceae | Fucus serratus | Stage 1: | ||||||||||||||
N.S. | 7 | 70 | N.S. | 0.1 M Tris-MES 0.1 M NaCl 20 mM MgCl2 | Alginate lyase | N.S. | 3.2 | N.C. | N.D. | N.C. | N.D. | N.D. | 12.2 | N.D. | ||||
Stage 2: | ||||||||||||||||||
60 | 6.5 | 24 | N.S. | 0.1 M NaOAc 5 mM EDTA 5 mM Cysteine | Protease | N.S. | 19.4 | N.C. | N.D. | N.C. | N.D. | N.D. | 18.4 | 2.9 | ||||
Stage 3: | ||||||||||||||||||
40 | N.S | 48 | N.S. | 0.2% NaN3 | Cellulase | N.S. | 31.7 | N.C. | N.D. | N.C. | N.D. | N.D. | 12.7 | 34.0 | ||||
Deniaud-Bouët (2014) [85] | Fucales | Fucaceae | Pelvetia canaliculata | Stage 1: | ||||||||||||||
N.S. | 7 | 70 | N.S. | 0.1 M Tris-MES 0.1 M NaCl 20 mM MgCl2 | Alginate lyase | N.S. | 1.6 | N.C. | N.D. | N.C. | N.D. | N.D. | 7.8 | N.D. | ||||
Stage 2: | ||||||||||||||||||
60 | 6.5 | 24 | N.S. | 0.1 M NaOAc 5 mM EDTA 5 mM Cysteine | Protease | N.S. | 17.4 | N.C. | N.D. | N.C. | N.D. | N.D. | 11.8 | 1.7 | ||||
Stage 3: | ||||||||||||||||||
40 | N.S | 48 | N.S. | 0.2% NaN3 | Cellulase | N.S. | 15.6 | N.C. | N.D. | N.C. | N.D. | N.D. | 15.0 | 7.5 | ||||
Deniaud-Bouët (2014) [85] | Fucales | Himanthaliaceae | Himanthalia elongata | Stage 1: | ||||||||||||||
N.S. | 7 | 70 | N.S. | 0.1 M Tris-MES 0.1 M NaCl 20 mM MgCl2 | Alginate lyase | N.S. | 9.9 | N.C. | N.D. | N.C. | N.D. | N.D. | 16.2 | N.D. | ||||
Stage 2: | ||||||||||||||||||
60 | 6.5 | 24 | N.S. | 0.1 M NaOAc 5 mM EDTA 5 mM Cysteine | Protease | N.S. | 4.9 | N.C. | N.D. | N.C. | N.D. | N.D. | 17.0 | 6.4 | ||||
Stage 3: | ||||||||||||||||||
40 | N.S. | 48 | N.S. | 0.2% NaN3 | Cellulase | N.S. | 21.9 | N.C. | N.D. | N.C. | N.D. | N.D. | N.D. | N.D. | ||||
Alboofetileh et al. (2019) [86] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 50 | 8 | 24 | N.S. | N.S. | Alcalase | N.S. | 5.6 | 32.9 | 34.7 | 11.5 | 20.1 | 158.9 a | 5.7 | N.D. |
50 | 7 | 24 | N.S. | N.S. | Flavourzyme | N.S. | 4.4 | 37.1 | 36.2 | 13.4 | 15.0 | 127.6 a | 13.2 | N.D. | ||||
50 | 4.5 | 24 | N.S. | N.S. | Cellulase | N.S. | 4.8 | 46.8 | 22.3 | 10.5 | 13.6 | 144.9 a | 12.7 | N.D. | ||||
50 | 4.5 | 24 | N.S. | N.S. | Viscozyme | N.S. | 4.3 | 52.1 | 20.0 | 10.4 | 16.4 | 120.3 a | 12.4 | N.D. | ||||
Alboofetileh et al. (2019) [87] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 50 | 7 | 24 | N.S. | DI H2O | Alcalase | N.S. | 5.6 | 30.8 | 53.6 | 16.5 | 29.6 | 642.5 a | 0.4 | N.D. |
Alboofetileh et al. (2019) [88] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 50 | 8 | 24 | N.S. | N.S. | Alcalase | N.S. | 5.6 | 32.9 | 34.8 | 11.5 | 20.1 | 158.9 a | 5.7 | N.D. |
50 | 7 | 24 | N.S. | N.S. | Flavourzyme | N.S. | 4.4 | 37.1 | 36.2 | 13.4 | 15.0 | 127.6 a | 13.2 | N.D. | ||||
50 | 4.5 | 24 | N.S. | N.S. | Cellulase | N.S. | 4.8 | 46.8 | 22.3 | 10.5 | 13.6 | 144.9 a | 12.7 | N.D. | ||||
50 | 4.5 | 24 | N.S. | N.S. | Viscozyme | N.S. | 4.3 | 52.1 | 20.0 | 10.4 | 16.4 | 120.3 a | 12.4 | N.D. | ||||
Liyanage et al. (2022) [89] | Fucales | Sargassaceae | Sargassum coreanum | 50 | 5 | 8 | N.S. | DI H2O | Cellulase | 5 | 12.3–1.2 * | N.C. | 64.7–46.0 * | N.D. | 7.90–20.0 * | 50.0–500.0 * | N.D. | 0.6–1.4 * |
Fernando et al. (2021) [90] | Fucales | Sargassaceae | Sargassum coreanum | 50 | 5 | 8 | N.S. | DI H2O | Cellulase | 5 | 12.3–1.2 * | N.C. | 64.7–46.0 * | N.D. | 7.90–20.0 * | 50.0–500.0 * | N.D. | 0.6–1.4 * |
Sanjeewa et al. (2019) [91] | Fucales | Sargassaceae | Sargassum horneri | 50 | 4.5 | 24 | 50 | DI H2O | Cellulase | N.S. | N.D. | 36.9 | 65.0 | 24.0 b | 12.5 | N.C. | N.D. | 3.9 |
Sanjeewa et al. (2017) [92] | Fucales | Sargassaceae | Sargassum horneri | 60 | 4.5 | 24 | 1:50 | DI H2O | Amyloglucosidase | N.S. | 16.0 | N.C. | 71.6 | N.D. | 11.5 | N.D. | 4.6 | N.D. |
50 | 4.5 | 24 | 1:50 | DI H2O | Cellulase | N.S. | 20.2 | N.C. | 88.7 | N.D. | 12.0 | N.D. | 3.9 | N.D. | ||||
50 | 4.5 | 24 | 1:50 | DI H2O | Viscozyme | N.S. | 21.0 | N.C. | 74.7 | N.D. | 11.3 | N.D. | 3.7 | N.D. | ||||
50 | 8 | 24 | 1:50 | DI H2O | Alcalase | N.S. | 22.2 | N.C. | 81.3 | N.D. | 2.2 | N.D. | 3.4 | N.D. | ||||
Fernando et al. (2020) [93] | Fucales | Sargassaceae | Sargassum polycystum | 50 | 4.5 | 24 | N.S. | DI H2O | Cellulase | N.S. | N.D. | 47.2 | 70.2 e | 33.2 e | 23.3 e | N.D. | N.D. | 0.4 e |
Hans et al. (2023) [82] | Fucales | Sargassaceae | Turbinaria conoides | 50 | 4.5 | 24 | 50 | 0.1 M NaOAc | Hemicellulase | 50 | 3.0 | N.C. | N.D. | N.C. | 14.4 | N.D. | N.D. | 7.5 d |
Jayawardena et al. (2019) [94] | Fucales | Sargassaceae | Turbinaria conoides | 50 | 4.5 | 24 | 10 | 1 M HCl | Cellulase | N.S. | N.D. | 59.0 | 71.1 e | 42.3 e | 23.9 e | N.D. | N.D. | 0.3 e |
Rhein-Knudsen et al. (2023) [73] | Laminariales | Alariaceae | Alaria esculenta | 55 | 5.6 | 24 | 10 | 0.025 M NaOAc | Alginate lyase | N.S. | N.C. | N.C. | N.D. | 35.0–15.0 d | 20.0–42.0 d | N.D. | N.D. | N.D. |
Oh et al. (2020) [95] | Laminariales | Alariaceae | Undaria pinnatifida | 50 | N.S. | 24 | 20 | DI H2O | Cellulase | N.S. | 6.2 | 52.3 | 66.8 | 34.9 | 30.4 | N.D. | N.D. | N.D. |
Tang et al. (2022) [96] | Laminariales | Laminariaceae | Kjellmaniella crassifolia | 50 | 4.8 | 10 | 50 | N.S. | Cellulase | 4.29 | 4.7 | 62.5 | 76.7 | 47.9 b | 22.8 | N.D. | N.D. | N.D. |
Rhein-Knudsen et al. (2023) [73] | Laminariales | Laminariaceae | Saccharina latissima | 55 | 5.6 | 24 | 10 | 0.025 M NaOAc | Cellulase | N.S. | N.C. | N.C. | N.D. | 39.0–21.0 d | 20.0–45.0 d | N.D. | N.D. | N.D. |
Nguyen et al. (2020) [20] | Laminariales | Laminariaceae | Saccharina latissima | 40 | 6 | 24 | 20 | 0.1 M HCl | Cellulase | 20 | 3.7 c | N.C. | N.D. | 12.6 | 15.5 | N.D. | 79.5 | N.D. |
Alginate lyase | N.C. | |||||||||||||||||
Mabate and Pletschke (2024) [97] | Laminariales | Lessoniaceae | Ecklonia maxima | 50 | 5 | 48 | 30 | 0.05 M Citrate | Cellulase | N.S. | 17.6 | N.C. | 41.3 | N.D. | 4.1 | 5.7 | 1.2 | 0.7 |
5.2. Ultrasound-Assisted Extraction
Reference | Seaweed Type | Extraction Conditions | Process Properties | Extract Characteristics | Extract Impurities | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Family | Species | T | pH | t | vSL | Solvent | P | tu | I | A | ƒ | Yield | Purity | Sugar | Fucose | Sulfate | MW | Uronics | Phenolics | |
(°C) | (-) | (Hour) | (g/mL) | (W) | (min) | (A) | (%) | (kHz) | (%) | (%) | (%) | (%) | (%) | (kDa) | (%) | (%) | |||||
Hans et al. (2023) [82] | Dictyotales | Dictyotaceae | Padina tetrastromatica | N.S. | N.S. | N.S. | 25 | DI H2O | N.S. | 30 | N.S. | 50 | N.S. | 6.2 | N.C. | N.D. | N.C. | 11.3 | N.D. | N.D. | 1.0 c |
Obluchinskaya and Pozharitskaya (2024) [116] | Fucales | Fucaceae | Ascophyllum nodosum | 25 | 4 | N.S. | 30 | 5% EtOH | N.S. | N.S. | N.S. | N.S. | 22 | 16.1 | N.C. | N.D. | 38.1 | 18.8 | 364.1 d | 0.1102 | N.D. |
Garcia-Vaquero et al. (2020) [117] | Fucales | Fucaceae | Ascophyllum nodosum | N.S. | 1 | N.S. | 10 | 0.1 M HCl | 500 | 2 or 5 | N.S. | 20–100 | 20 | N.C. | 7.6 | 2.6 | 19.5 | N.D. | N.D. | N.D. | 2.3 |
Okolie et al. (2019) [90] | Fucales | Fucaceae | Ascophyllum nodosum | N.S. | N.S. | N.S. | 10 | 0.01 M HCl | N.S. | 35 | N.S. | N.S. | 20 | 4.6 | N.C. | N.C. | 27.1 | 17.3 | 2.6–128.7 a | 0.5 | N.D. |
Obluchinskaya and Pozharitskaya (2024) [116] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | 25 | 4 | N.S. | 30 | 5% EtOH | N.S. | N.S. | N.S. | N.S. | 22 | 17.9 | N.C. | N.D. | 40.5 | 22.4 | 357.0 d | 3.6 | N.D. |
Obluchinskaya and Pozharitskaya (2024) [116] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | 25 | 4 | N.S. | 30 | 5% EtOH | N.S. | N.S. | N.S. | N.S. | 22 | 21.6 | N.C. | N.D. | 43.2 | 24.7 | 321.2 d | 8.6 | N.D. |
Hmelkov et al. (2018) [118] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | N.S. | N.S. | N.S. | 20 | H2O | 150 | 5–30 | N.S. | N.S. | 35 | 1.0–3.4 | N.C. | N.D. | N.C. | 18.1–25.0 d | 280.0 | N.D. | N.D. |
Obluchinskaya and Pozharitskaya (2024) [116] | Fucales | Fucaceae | Fucus serratus | 25 | 4 | N.S. | 30 | 5% EtOH | N.S. | N.S. | N.S. | N.S. | 22 | 15.5 | N.C. | N.D. | 36.7 | 0.189 | 470.9 d | 0.0443 | N.D. |
Dobrinčić et al. (2022) [109] | Fucales | Fucaceae | Fucus virsoides | N.S. | N.S. | N.S. | N.S. | 0.1 M HCl 0.1 M H2SO4 | 200 | 30 | N.S. | 100 | 26 | 12.1 | 14.8 | 1.2 | 0.17 b | 83.4 | 817.0 a | 1.8 | N.D. |
Dobrinčić et al. (2022) [109] | Fucales | Sargassaceae | Gongolaria barbata | N.S. | N.S. | N.S. | N.S. | 0.1 M HCl 0.1 M H2SO4 | 200 | 30 | N.S. | 100 | 26 | 11.8 | 31.7 | 0.1 | 3.8 b | 90.4 | 1133.9 a | 1.2 | N.D. |
Alboofetileh et al. (2019) [107] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 70 | N.S. | N.S. | 80 | DI H2O | 196 | 58 | N.S. | N.S. | N.S. | 3.5 | N.C. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Alboofetileh et al. (2019) [87] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 70 | N.S. | N.S. | N.S. | DI H2O | 196 | 59 | N.S. | N.S. | 20 | 3.6 | 32.3 | 58.7 | 19.0 b | 23.0 | 913.5 a | 0.1 | N.D. |
Alboofetileh et al. (2019) [88] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 55 | N.S. | N.S. | N.S. | N.S. | 200 | 20 x2 | N.S. | N.S. | 20 | 3.6 | 32.3 | 58.7 | 19.0 b | 23.0 | 913.5 a | 0.1 | N.D. |
Laeliocattleya et al. (2023) [119] | Fucales | Sargassaceae | Sargassum aquifolium | 40–60 | N.S. | N.S. | 20 | DI H2O | 350 | 10–20 | N.S. | N.S. | 40 | 2.8–3.9 | N.C. | N.C. | 17.2–63.2 | 5.5–6.2 | N.D. | 19.1–35.3 | 1.5–7.8 |
Thao My et al. (2020) [120] | Fucales | Sargassaceae | Sargassum mcclurei | 50–56 | N.S. | N.S. | 24 | EtOH | 240–480 | 40–60 | N.S. | N.S. | N.S. | 33.0 | N.C. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Vaamonde-García et al. (2022) [121] | Fucales | Sargassaceae | Sargassum muticum | 25 | N.S. | N.S. | N.S. | H2O | 150 | 25 | 1.5 | N.S. | 0.04 | N.D. | 38.3 | 23.0 | 8.8 | 3.8 | N.C | N.D. | 0.2 |
Del Río et al. (2021) [122] | Fucales | Sargassaceae | Sargassum muticum | N.S. | N.S. | N.S. | 20 | DI H2O | 150 | 30 | N.S. | N.S. | 0.04 | N.D. | N.C. | N.D. | 5.8 | 3.6 | N.D. | N.D. | 2.2 |
Flórez- Fernández et al. (2017) [115] | Fucales | Sargassaceae | Sargassum muticum | 25 | N.S. | N.S. | 20 | N.S. | 150 | 5–30 | N.S. | N.S. | 0.04 | N.D. | N.C. | N.D. | N.D. | 4.0 | N.D. | N.D. | 2.5 |
Lin et al. (2022) [123] | Fucales | Sargassaceae | Sargassum piluliferum | Stage 1: | 6.3 | 19.3 | 28.0 | 5.4 b | 11.5 | 567.7 | 14.5 | N.D. | |||||||||
60 | 6 | N.S. | 30 | DI H2O | 350 | 45 | N.S. | N.S. | N.S. | ||||||||||||
Stage 2: | |||||||||||||||||||||
80 | N.S. | 3.5 | N.S. | DI H2O | N.S. | N.S. | N.S. | N.S. | N.S. | ||||||||||||
Wang et al. (2021) [51] | Fucales | Sargassaceae | Sargassum siliquosum | N.S. | N.S. | N.S. | 10 | N.S. | 50–200 | 10–20 | N.S. | N.S. | N.S. | N.D. | 46.6 | 4.8 | 2.2 | N.D. | N.D. | N.D. | N.D. |
Hanjabam et al. (2019) [66] | Fucales | Sargassaceae | Sargassum wightii | Stage 1: | 14.6 | N.C. | N.D. | 23.7 | 17.6 | N.D. | N.D. | 2.0 | |||||||||
N.S. | 1–2 | N.S. | 25 | 1 M HCl | N.S. | 30 | N.S. | 50 | N.S. | ||||||||||||
Stage 2: | |||||||||||||||||||||
85 | 1–2 | 2 | 25 | 1 M HCl | N.S. | N.S. | N.S. | N.S. | N.S. | ||||||||||||
Hans et al. (2023) [82] | Fucales | Sargassaceae | Turbinaria conoides | N.S. | N.S. | N.S. | 25 | DI H2O | N.S. | 30 | N.S. | 50 | N.S. | 8.1 | N.C. | N.D. | N.C. | 16.4 | N.D. | N.D. | N.C. |
5.3. Microwave-Assisted Extraction
Reference | Seaweed Type | Extraction Conditions | Process Properties | Extract Characteristics | Extract Impurities | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Family | Species | T | tm | P | vSL | Solvent | Yield | Purity | Sugar | Fucose | Sulfate | MW | Uronics | Phenolics | |
(°C) | (min) | (W) | (g/mL) | (%) | (%) | (%) | (%) | (%) | (kDa) | (%) | (%) | |||||
James et al. (2024) [130] | Fucales | Fucaceae | Ascophyllum nodosum | 90 | 15 | N.S. | 20 | ChCl-Gly | 17.5–22.5 | N.C. | N.C. | N.C. | 0.7–1.1 c | N.C. | N.C. | 0.6–1.0 |
Garcia-Vaquero et al. (2020) [117] | Fucales | Fucaceae | Ascophyllum nodosum | N.S. | 2–5 | 250–1000 | N.S. | 0.1 M HCl | N.C. | 51.2 | 3.3 | 1.7 | N.D. | N.D. | N.D. | 0.1 |
Okolie et al. (2019) [84] | Fucales | Fucaceae | Ascophyllum nodosum | 90 | 15 | N.S. | 10 | 0.01 M H2SO4 | 5.7 | 65.8 | 56.2 | 3.7 | 18.8 | 81.2 | 3.6 | N.D. |
Yuan and Macquarrie (2015) [126] | Fucales | Fucaceae | Ascophyllum nodosum | 90–150 | 5–30 | N.S. | N.S. | 0.1 M HCl 0.01 M H2SO4 | 6.5–16.1 | N.C. | N.C. | N.C. | 6.1–28.6 | 1.3–37.5 | N.C. | N.C. |
Zayed et al. (2023) [127] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | N.S. | 1–2 | 240– 560 | 10–25 | 0.1 M HCl | 0.9–12.3 | 83.3 | 78.0 | 65.0 | 48.8 d | 16.5 | N.D. | N.D. |
Ptak et al. (2019) [37] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | 80–120 | 30 | N.S. | N.S. | 0.1 M HCl 0.01 M H2SO4 | 3.4–7.8 | N.C. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Ptak et al. (2019) [37] | Fucales | Fucaceae | Fucus serratus | 80–120 | 30 | N.S. | N.S. | 0.1 M HCl 0.01 M H2SO4 | 4.2–9.5 | N.C. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Zayed et al. (2023) [127] | Fucales | Fucaceae | Fucus spiralis | N.S. | 1–2 | 240– 560 | 10–25 | 0.1 M HCl | N.D. | 81.3 | 64.0 | 52.0 | 38.0 c | 15.9 | N.D. | 43.0 |
Ptak et al. (2019) [37] | Fucales | Fucaceae | Fucus vesiculosus | 80–120 | 30 | N.S. | N.S. | 0.1 M HCl 0.01 M H2SO4 | 6.5–11.1 | N.C. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Dobrinčić et al. (2021) [124] | Fucales | Fucaceae | Fucus virsoides | 60–100 | N.S. | N.S. | 30 | 0.1 M HCl 0.1 M H2SO4 | 20.4 | 48.5 | 15.7 | 7.6 c | 37.1 | 611.7 a | 15.9 | N.D. |
Dobrinčić et al. (2021) [124] | Fucales | Sargassaceae | Gongolaria barbata | 60–100 | N.S. | N.S. | 30 | 0.1 M HCl 0.1 M H2SO4 | 15.3 | 26.6 | 7.1 | 1.9 b | 45.6 | 966.8 a | 12.5 | N.D. |
Alboofetileh et al. (2019) [88] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 90 | N.S. | 700 | N.S. | N.S. | 6.2 | 36.3 | 51.3 | 18.6 c | 24.1 | 913.9 a | 0.7 | N.D. |
Wang et al. (2021) [51] | Fucales | Sargassaceae | Sargassum siliquosum | N.S. | N.S. | 750 | 5–25 | N.S. | 6.9 | 47.3 | 33.3 | 15.8 b | 12.2 | 107.3 * | 21.9 | 6.9 |
Sasaki et al. (2024) [131] | Laminariales | Alariaceae | Undaria pinnatifida | 150–170 | N.S. | N.S. | 67 | DI H2O | 8.8–13.7 | N.C. | N.D. | N.C. | 6.9–19.2 | N.D. | N.D. | N.D. |
Vaamonde-García et al. (2022) [121] | Laminariales | Alariaceae | Undaria pinnatifida | 160 | N.S. | N.S. | 30 | N.S. | N.D. | 44.3 | 25.8 | 11.4 | 1.7 | N.C. | N.D. | 0.4 |
Zayed et al. (2023) [127] | Laminariales | Laminariaceae | Saccharina latissima | N.S. | N.S. | 240– 560 | 10–25 | 0.1 M HCl | N.D. | 16.1 | 56.0 | 9.0 | 1.2 | 18.4 | N.D. | 11.0 |
5.4. Pressurized Liquid Extraction
Reference | Seaweed Type | Extraction Conditions | Process Properties | Extract Characteristics | Extract Impurities | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Family | Species | T | pH | vSL | Solvent | Pi | tp | ncycles | Yield | Purity | Sugar | Fucose | Sulfate | MW | Uronics | Phenolics | |
(°C) | (g/mL) | (Bar) | (min) | (-) | (%) | (%) | (%) | (%) | (%) | (kDa) | (%) | (%) | ||||||
Hans et al. (2023) [82] | Dictyotales | Dictyotaceae | Padina tetrastromatica | 150 | N.S. | 40 | DI H2O | 50 | N.S. | N.S. | 12.8 | N.C. | N.D. | N.C. | 13.5 | N.D. | N.D. | 1.8 f |
Getachew et al. (2022) [139] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | 120–200 | N.S. | 10 | N.S. | N.S. | 5 | N.S. | 4.8–26.0 | N.C. | N.D. | 2.4–12.5 c | N.D. | N.D. | N.D. | 12.1 f |
Rodríguez-Jasso et al. (2012) [1] | Fucales | Fucaceae | Fucus distichus subsp. evanescens (formerly F.evanescens) | 160–200 | N.S. | 25 | DI H2O | N.S. | 10–30 | N.S. | 16.5 | N.C. | N.D. | N.C. | 18.5–30.8 | N.D. | N.D. | 3.2–5.4 |
Dobrinčić et al. (2021) [124] | Fucales | Fucaceae | Fucus viroides | 60–140 | N.S. | N.S. | 0.1 M H2SO4 | 103.42 | 10–15 | 1–2 | 24.2 | 60.1 | 18.2 | 11.0 b | 51.8 | 335.7 a | 5.3 | N.D. |
Dobrinčić et al. (2021) [124] | Fucales | Sargassaceae | Gongolaria barbata | 60–140 | N.S. | N.S. | 0.1 M H2SO4 | 103.42 | 10–15 | 1–2 | 18.8 | 28.0 | 4.4 | 1.2 b | 57.6 | 723.8 | 7.2 | N.D. |
Cernadas et al. (2019) [140] | Fucales | Himanthaliaceae | Himanthalia elongata | 120–200 | 4.46–5.3 | 30 | H2O | N.S. | N.S. | N.S. | 70.7–63.2 | 23.3 | 38.9 | 9.1 | 2.3–18.3 | N.D. | N.D. | 0.4–4.6 |
Alboofetileh et al. (2019) [88] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 150 | N.S. | N.S. | N.S. | N.S. | 10 | 2 | 13.2 | 41.7 | 54.6 | 22.8 b | 11.6 | 523.2 a | 1.9 | N.D. |
Alboofetileh et al. (2019) [141] | Fucales | Sargassaceae | Nizamuddinia zanardinii | 90–150 | N.S. | N.S. | DI H2O | 7.5 | N.S. | 10–30 | 26.0 | 34.1 | 50.5 | 17.2 b | 13.4 | 694 | 2.1 | N.D. |
Huang et al. (2022) [142] | Fucales | Sargassaceae | Sargassum glaucescens | 130–180 | N.S. | 5–15 | DI H2O | 20–70 | 15–30 | N.S. | N.D. | 36.2 | 1.83 | 0.066 | N.D. | N.D. | N.D. | N.D. |
Vaamonde-García et al. (2022) [121] | Fucales | Sargassaceae | Sargassum muticum | 170 | N.S. | 30 | DI H2O | N.S. | N.S. | N.S. | N.D. | 45.8 | 64.9 | 29.7 | 3.3 | N.C. | 7.1 | 3.2 |
Hans et al. (2023) [82] | Fucales | Sargassaceae | Turbinaria conoides | 150 | N.S. | 40 | DI H2O | 50 | N.S. | N.S. | 150 | N.S. | N.S. | 40 | DI H2O | 50 | N.S. | N.S. |
Ferreira-Anta et al. (2023) [143] | Laminariales | Alariaceae | Undaria pinnatifida | 160–220 | N.S. | 30 | DI H2O | 7.6 | N.S. | N.S. | N.D. | N.C. | N.D. | N.C. | 1.0–5.0 | N.D. | N.C. | 0.3–2.5 c |
Gan and Baroutian (2022) [144] | Laminariales | Alariaceae | Undaria pinnatifida | 120–210 | N.S. | 10–30 | H2O | 30 | 5–30 | N.S. | N.D. | N.C. | N.D. | 9.0–46.0 c | N.D. | N.D. | N.D. | N.D. |
Flórez- Fernández et al. (2019) [145] | Laminariales | Laminariaceae | Laminaria ochroleuca | 120–200 | N.S. | 30 | H2O | 7.6 | N.S. | N.S. | N.D. | N.C. | N.D. | 2.8–17.5 c | 26.0–44.0 c | N.D. | N.D. | 0.5–2.1 c |
Saravana et al. (2018) [146] | Laminariales | Laminariaceae | Saccharina japonica | 100–150 | N.S. | 30–50 | H2O | 10–15 | N.S. | N.S. | 5.1–15.7 | 43.0 | 43.5 | 18.7 b | 25.7 | 416.8 | 15.8 | 4.8 |
Saravana et al. (2018) [136] | Laminariales | Laminariaceae | Saccharina japonica | 100–180 | N.S. | 11–25 | 0.1% NaOH | 20–80 | 5–15 | N.S. | 13.6 | N.C. | N.D. | 48.5 | 28.6 | 152.5 | 14.6 | 3.5 |
Saravana et al. (2016) [135] | Laminariales | Laminariaceae | Saccharinajaponica | 80–200 | N.S. | 17 | 0.1% NaOH 0.1% HCOOH 50–70% EtOH | 5–100 | 5 | N.S. | 0.1–8.5 c | 13.2–100 | 1.0–31.0 c | 1.0–4.1 c | 8.0–29.0 c | 83.4–216.9 | 1.5–13.8 c | 0.5–3.8 c |
6. Comparisons Across Alternative Extraction Techniques
6.1. Comparison of Extract Quality Attributes
- Process Scale: The amount of fucoidan product to be produced must be considered. This is dependent on the amount of raw seaweed material available, as well as the usage of the final product. Traditional methods easily lend themselves to large scales using traditional stirred-tank reactors. However, EAE methods may become more challenging at scale due to a larger demand for enzymes.
- Operational Mode: It is also important to consider if a batch, semi-continuous or continuous process is most suitable for the production of fucoidan. The use of a continuous process increases production rates and reduces labor costs but does not lend itself to process customization or quality control monitoring between stages like a batch process. As already established, PLE methods have the flexibility to operate in all three of these process types, while EAE methods are limited to batch or semi-batch processes due to their long processing times (~24 h).
- Economics: Both the capital (CAPEX) and operating (OPEX) expenses associated with the extraction and downstream requirements must be quantified as part of a technoeconomic assessment during process design and selection. Models of the energy and solvent requirements of each extraction technique at different production scales need to be developed in future.
- Environmental Friendliness and Sustainability: The waste streams present in the process and the impact of their disposal routes should be examined closely. Wherever possible, waste streams from fucoidan production should be valorized and a zero-waste biorefinery approach applied.
- Regulatory and Safety Constraints: Each extraction method has its own unique regulatory requirements. For example, EAE methods may be constrained regarding the use of enzymes, and PLE methods will require additional controls for safe operation.
6.2. Comparison of Extract Bioactivities
Reference | Seaweed Species | Microbe(s) Used | Extraction/Preparation Method | Assay | Key Results |
---|---|---|---|---|---|
Antiviral | |||||
Mandal et al. (2007) [150] | Polycladia indica (formerly Cystoseira indica) | Vero cells Herpes simplex viruses (HSV1 and HSV2) |
|
|
|
Thuy et al. (2014) [151] | Sargassum mcclurei Sargassum polycystum Turbinaria ornata | U373-CD4-CXCR4 cellsHIV-1 |
|
|
|
Alboofetileh et al. (2019) [88] | Nizamuddinia zanardinii | Vero cells Herpes simplex virus (HSV2) |
|
|
|
Krylova et al. (2021) [148] | Fucus distichus subsp. evanescens (formerly F. evanescens) | Vero cells Amur virus |
|
|
|
Antioxidant | |||||
Yuan and Macquarrie (2015) [126] | Ascophyllum nodosum | N/A |
|
|
|
Chen et al. (2021) [31] | Sargassum siliquosum | N/A |
|
|
|
Dobrinčić et al. (2021) [124] | Gongolaria barbata Fucus virsoides | N/A |
|
|
|
Wang et al. (2022) [149] | Ascophyllum nodosum | RAW264.7 cells |
|
|
|
Husni et al. (2022) [152] | Sargassum hystrix | N/A |
|
|
|
Antibacterial | |||||
Alboofetileh et al. (2019) [88] | Nizamuddinia zanardinii | Escherichia coli Pseudomonas aeruginosa Listeria monocytogenes Staphylococcus aureus |
|
|
|
Anti-inflammatory | |||||
Chen et al. (2021) [31] | Sargassum siliquosum | RAW264.7 cells |
|
|
|
Wang et al. (2022) [149] | Ascophyllum nodosum | RAW264.7 cells |
|
|
|
Prebiotic | |||||
Okolie et al. (2019) [84] | Ascophyllum nodosum | Lactobacillus delbruecki subsp. bulgaricus Lactobacillus casei |
|
|
|
Anti-lipogenesis | |||||
Chen et al. (2021) [31] | Sargassum siliquosum | HepG2 cells |
|
|
|
6.3. Future Standardization Recommendations
7. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USD | United States dollar |
MAE | Microwave-assisted extraction |
UAE | Ultrasound-assisted extraction |
EAE | Enzyme-assisted extraction |
PLE | Pressurized liquid extraction |
HPAEC-PAD | High-performance anion-exchange chromatography with pulsed amperometric detection |
T | Extraction temperature |
t | Extraction time |
vSL | Solid-to-liquid ratio |
[E] | Enzyme concentration |
P | Microwave/ultrasound power |
Tu | Ultrasound extraction time |
I | Ultrasound extraction current |
A | Ultrasound extraction amplitude |
ƒ | Ultrasound extraction frequency |
tm | Microwave extraction time |
Pi | Pressurized liquid extraction pressure |
tp | Pressurized extraction time |
ncycles MW | Number of pressurized liquid extraction cycles Extract molecular weight |
DI H2O | Deionized water |
H2O | Water |
NaOAc | Sodium acetate buffer |
HCl | Hydrochloric acid |
Tris-MES | Tris(hydroxymethyl)aminomethane (2-(N-morpholino)ethanesulfonic acid buffer |
MgCl2 | Magnesium chloride |
EDTA | Ethylenediaminetetraacetic acid |
ChCl-Gly | Choline Chloride-Glycerol |
NaN3 | Sodium azide |
H2SO4 | Sulfuric acid |
NaOH | Sodium hydroxide |
HCOOH | Methanoic acid |
EtOH | Ethanol |
References
- Rodríguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Extraction of Sulfated Polysaccharides by Autohydrolysis of Brown Seaweed Fucus Vesiculosus. J. Appl. Phycol. 2013, 25, 31–39. [Google Scholar] [CrossRef]
- Fletcher, H.R.; Biller, P.; Ross, A.B.; Adams, J.M.M. The Seasonal Variation of Fucoidan within Three Species of Brown Macroalgae. Algal Res. 2017, 22, 79–86. [Google Scholar] [CrossRef]
- Bruhn, A.; Janicek, T.; Manns, D.; Nielsen, M.M.; Balsby, T.J.S.; Meyer, A.S.; Rasmussen, M.B.; Hou, X.; Saake, B.; Göke, C.; et al. Crude Fucoidan Content in Two North Atlantic Kelp Species, Saccharina Latissima and Laminaria Digitata—Seasonal Variation and Impact of Environmental Factors. J. Appl. Phycol. 2017, 29, 3121–3137. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.; Khalid, S.; Usman, A.; Hussain, Z.; Wang, Y. Chapter 5—Algal Polysaccharides, Novel Application, and Outlook. In Algae Based Polymers, Blends, and Composites; Zia, K.M., Zuber, M., Ali, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 115–153. ISBN 978-0-12-812360-7. [Google Scholar]
- Chi, S.; Liu, T.; Wang, X.; Wang, R.; Wang, S.; Wang, G.; Shan, G.; Liu, C. Functional Genomics Analysis Reveals the Biosynthesis Pathways of Important Cellular Components (Alginate and Fucoidan) of Saccharina. Curr. Genet. 2018, 64, 259–273. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Behera, P.K.; Mandal, A.K.; Behera, C.; Ki, J.-S.; Adhikary, S.P.; MubarakAli, D.; et al. A State-of-the-Art Review on Fucoidan as an Antiviral Agent to Combat Viral Infections. Carbohydr. Polym. 2022, 291, 119551. [Google Scholar] [CrossRef]
- Phull, A.R.; Kim, S.J. Fucoidan as Bio-Functional Molecule: Insights into the Anti-Inflammatory Potential and Associated Molecular Mechanisms. J. Funct. Foods 2017, 38, 415–426. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Hwang, P.-A. Clinical Applications of Fucoidan in Translational Medicine for Adjuvant Cancer Therapy. Clin. Transl. Med. 2019, 8, e15. [Google Scholar] [CrossRef] [PubMed]
- Irhimeh, M.R.; Fitton, J.H.; Lowenthal, R.M. Pilot Clinical Study to Evaluate the Anticoagulant Activity of Fucoidan. Blood Coagul. Fibrinolysis 2009, 20, 607. [Google Scholar] [CrossRef]
- Fitton, J.H.; Stringer, D.N.; Park, A.Y.; Karpiniec, S.S. Therapies from Fucoidan: New Developments. Mar. Drugs 2019, 17, 571. [Google Scholar] [CrossRef] [PubMed]
- Aswathi Mohan, A.; Robert Antony, A.; Greeshma, K.; Yun, J.-H.; Ramanan, R.; Kim, H.-S. Algal Biopolymers as Sustainable Resources for a Net-Zero Carbon Bioeconomy. Bioresour. Technol. 2022, 344, 126397. [Google Scholar] [CrossRef]
- Zayed, A.; Ulber, R. Fucoidans: Downstream Processes and Recent Applications. Mar. Drugs 2020, 18, 170. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Arain, M.A.; Ali Fazlani, S.; Marghazani, I.B.; Umar, M.; Soomro, J.; Bhutto, Z.A.; Soomro, F.; Noreldin, A.E.; Abd El-Hack, M.E.; et al. A Comprehensive Review on the Health Benefits and Nutritional Significance of Fucoidan Polysaccharide Derived from Brown Seaweeds in Human, Animals and Aquatic Organisms. Aquac. Nutr. 2021, 27, 633–654. [Google Scholar] [CrossRef]
- Lim, S.J.; Wan Aida, W.M. Chapter 3—Extraction of Sulfated Polysaccharides (Fucoidan) from Brown Seaweed. In Seaweed Polysaccharides; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–46. ISBN 978-0-12-809816-5. [Google Scholar]
- Anisha, G.S.; Padmakumari, S.; Patel, A.K.; Pandey, A.; Singhania, R.R. Fucoidan from Marine Macroalgae: Biological Actions and Applications in Regenerative Medicine, Drug Delivery Systems and Food Industry. Bioengineering 2022, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Berteau, O.; Mulloy, B. Sulfated Fucans, Fresh Perspectives: Structures, Functions, and Biological Properties of Sulfated Fucans and an Overview of Enzymes Active toward This Class of Polysaccharide. Glycobiology 2003, 13, 29R–40R. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Huang, C.-Y.; Chen, C.-Y.; Chang, C.-C.; Huang, C.-Y.; Dong, C.-D.; Chang, J.-S. Structure and Biological Activity Analysis of Fucoidan Isolated from Sargassum siliquosum. ACS Omega 2020, 5, 32447–32455. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar. Drugs 2021, 19, 620. [Google Scholar] [CrossRef]
- Mabate, B.; Daub, C.D.; Malgas, S.; Edkins, A.L.; Pletschke, B.I. Fucoidan Structure and Its Impact on Glucose Metabolism: Implications for Diabetes and Cancer Therapy. Mar. Drugs 2021, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Mikkelsen, M.D.; Tran, V.H.N.; Trang, V.T.D.; Rhein-Knudsen, N.; Holck, J.; Rasin, A.B.; Cao, H.T.T.; Van, T.T.T.; Meyer, A.S. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus Distichus Subsp. Evanescens and Saccharina Latissima. Mar. Drugs 2020, 18, 296. [Google Scholar] [CrossRef] [PubMed]
- Luthuli, S.; Wu, S.; Cheng, Y.; Zheng, X.; Wu, M.; Tong, H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar. Drugs 2019, 17, 487. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.-R.S.; Ulber, R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef]
- Cabral, E.M.; Mondala, J.R.M.; Oliveira, M.; Przyborska, J.; Fitzpatrick, S.; Rai, D.K.; Sivagnanam, S.P.; Garcia-Vaquero, M.; O’Shea, D.; Devereux, M.; et al. Influence of Molecular Weight Fractionation on the Antimicrobial and Anticancer Properties of a Fucoidan Rich-Extract from the Macroalgae Fucus Vesiculosus. Int. J. Biol. Macromol. 2021, 186, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xing, M.; Cao, Q.; Ji, A.; Liang, H.; Song, S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar. Drugs 2019, 17, 183. [Google Scholar] [CrossRef]
- Wang, L.; Oliveira, C.; Li, Q.; Ferreira, A.S.; Nunes, C.; Coimbra, M.A.; Reis, R.L.; Martins, A.; Wang, C.; Silva, T.H.; et al. Fucoidan from Fucus Vesiculosus Inhibits Inflammatory Response, Both In Vitro and In Vivo. Mar. Drugs 2023, 21, 302. [Google Scholar] [CrossRef] [PubMed]
- Usov, A.I.; Bilan, M.I.; Ustyuzhanina, N.E.; Nifantiev, N.E. Fucoidans of Brown Algae: Comparison of Sulfated Polysaccharides from Fucus Vesiculosus and Ascophyllum Nodosum. Mar. Drugs 2022, 20, 638. [Google Scholar] [CrossRef] [PubMed]
- Mensah, E.O.; Kanwugu, O.N.; Panda, P.K.; Adadi, P. Marine Fucoidans: Structural, Extraction, Biological Activities and Their Applications in the Food Industry. Food Hydrocoll. 2023, 142, 108784. [Google Scholar] [CrossRef]
- Atashrazm, F.; Lowenthal, R.; Woods, G.; Holloway, A.; Dickinson, J. Fucoidan and Cancer: A Multifunctional Molecule with Anti-Tumor Potential. Mar. Drugs 2015, 13, 2327–2346. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Ferreira, A.S.; Novoa-Carballal, R.; Nunes, C.; Pashkuleva, I.; Neves, N.M.; Coimbra, M.A.; Reis, R.L.; Martins, A.; Silva, T.H. The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromol. Biosci. 2017, 17, 1600340. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Wang, S.-H.; Huang, C.-Y.; Dong, C.-D.; Huang, C.-Y.; Chang, C.-C.; Chang, J.-S. Effect of Molecular Mass and Sulfate Content of Fucoidan from Sargassum siliquosum on Antioxidant, Anti-Lipogenesis, and Anti-Inflammatory Activity. J. Biosci. Bioeng. 2021, 132, 359–364. [Google Scholar] [CrossRef]
- Rajauria, G.; Ravindran, R.; Garcia-Vaquero, M.; Rai, D.K.; Sweeney, T.; O’Doherty, J. Purification and Molecular Characterization of Fucoidan Isolated from Ascophyllum Nodosum Brown Seaweed Grown in Ireland. Mar. Drugs 2023, 21, 315. [Google Scholar] [CrossRef]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef]
- Ale, M.T.; Meyer, A.S. Fucoidans from Brown Seaweeds: An Update on Structures, Extraction Techniques and Use of Enzymes as Tools for Structural Elucidation. RSC Adv. 2013, 3, 8131–8141. [Google Scholar] [CrossRef]
- Ponce, N.M.A.; Stortz, C.A. A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae. Front. Plant Sci. 2020, 11, 556312. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Duan, D. The Cell Wall Polysaccharides Biosynthesis in Seaweeds: A Molecular Perspective. Front. Plant Sci. 2022, 13, 902823. [Google Scholar] [CrossRef]
- Ptak, S.H.; Hjuler, A.L.; Ditlevsen, S.I.; Fretté, X.; Errico, M.; Christensen, K.V. The Effect of Seasonality and Geographic Location on Sulphated Polysaccharides from Brown Algae. Aquac. Res. 2021, 52, 6235–6243. [Google Scholar] [CrossRef]
- Ptaka, S.H.; Christensena, K.V.; Meichßnerb, R.; Frettéa, X. Improving Fucoidan Yield from Fucus Brown Algae by Microwave Extraction. Chem. Eng. Trans. 2019, 74, 109–114. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Nagahawatta, D.P.; Fernando, I.P.S.; Kim, Y.-T.; Kim, J.-S.; Kim, W.-S.; Lee, J.S.; Jeon, Y.-J. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar. Drugs 2022, 20, 755. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Lu, X.; Zhao, H.; Yuan, Y.; Meng, L.; Zhang, C.; Li, Y. Polysaccharides Derived from the Brown Algae Lessonia Nigrescens Enhance Salt Stress Tolerance to Wheat Seedlings by Enhancing the Antioxidant System and Modulating Intracellular Ion Concentration. Front. Plant Sci. 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Spicer, S.E.; Adams, J.M.M.; Thomas, D.S.; Gallagher, J.A.; Winters, A.L. Novel Rapid Method for the Characterisation of Polymeric Sugars from Macroalgae. J. Appl. Phycol. 2017, 29, 1507–1513. [Google Scholar] [CrossRef]
- Chollet, L.; Saboural, P.; Chauvierre, C.; Villemin, J.-N.; Letourneur, D.; Chaubet, F. Fucoidans in Nanomedicine. Mar. Drugs 2016, 14, 145. [Google Scholar] [CrossRef]
- Bojorges, H.; Martínez-Abad, A.; Martínez-Sanz, M.; Rodrigo, M.D.; Vilaplana, F.; López-Rubio, A.; Fabra, M.J. Structural and Functional Properties of Alginate Obtained by Means of High Hydrostatic Pressure-Assisted Extraction. Carbohydr. Polym. 2023, 299, 120175. [Google Scholar] [CrossRef]
- An, Y.-E.; Ahn, S.-C.; Yang, D.-C.; Park, S.-J.; Kim, B.-Y.; Baik, M.-Y. Chemical Conversion of Ginsenosides in Puffed Red Ginseng. LWT Food Sci. Technol. 2011, 44, 370–374. [Google Scholar] [CrossRef]
- Torres, M.R.; Sousa, A.P.A.; Silva Filho, E.A.T.; Melo, D.F.; Feitosa, J.P.A.; De Paula, R.C.M.; Lima, M.G.S. Extraction and Physicochemical Characterization of Sargassum vulgare Alginate from Brazil. Carbohydr. Res. 2007, 342, 2067–2074. [Google Scholar] [CrossRef]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef] [PubMed]
- Saji, S.; Hebden, A.; Goswami, P.; Du, C. A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. Sustainability 2022, 14, 5181. [Google Scholar] [CrossRef]
- Rinaudo, M. Seaweed Polysaccharides. In Comprehensive Glycoscience; Elsevier: Amsterdam, The Netherlands, 2007; pp. 691–735. ISBN 978-0-444-51967-2. [Google Scholar]
- Ayrapetyan, O.N.; Obluchinskaya, E.D.; Zhurishkina, E.V.; Skorik, Y.A.; Lebedev, D.V.; Kulminskaya, A.A.; Lapina, I.M. Antibacterial Properties of Fucoidans from the Brown Algae Fucus Vesiculosus L. of the Barents Sea. Biology 2021, 10, 67. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, C.-Y.; Chen, C.-Y.; Chang, C.-C.; Huang, C.-Y.; Dong, C.-D.; Chang, J.-S. Isolation and Purification of Brown Algae Fucoidan from Sargassum siliquosum and the Analysis of Anti-Lipogenesis Activity. Biochem. Eng. J. 2021, 165, 107798. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Vaamonde-García, C.; Torres, M.D.; Buján, M.; Muíños, A.; Muiños, A.; Lamas-Vázquez, M.J.; Meijide-Faílde, R.; Blanco, F.J.; Domínguez, H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023, 15, 808. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.K.H.M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Jeon, Y.-J.; Ahn, G. Step Gradient Alcohol Precipitation for the Purification of Low Molecular Weight Fucoidan from Sargassum siliquastrum and Its UVB Protective Effects. Int. J. Biol. Macromol. 2020, 163, 26–35. [Google Scholar] [CrossRef]
- Ummat, V.; Sivagnanam, S.P.; Rameshkumar, S.; Pednekar, M.; Fitzpatrick, S.; Rai, D.K.; Padamati, R.B.; O’Donnell, C.; Tiwari, B.K. Sequential Extraction of Fucoidan, Laminarin, Mannitol, Alginate and Protein from Brown Macroalgae Ascophyllum Nodosum and Fucus Vesiculosus. Int. J. Biol. Macromol. 2024, 256, 128195. [Google Scholar] [CrossRef] [PubMed]
- Chauvierre, C.; Aid-Launais, R.; Aerts, J.; Chaubet, F.; Maire, M.; Chollet, L.; Rolland, L.; Bonafé, R.; Rossi, S.; Bussi, S.; et al. Pharmaceutical Development and Safety Evaluation of a GMP-Grade Fucoidan for Molecular Diagnosis of Cardiovascular Diseases. Mar. Drugs 2019, 17, 699. [Google Scholar] [CrossRef] [PubMed]
- Sichert, A.; Le Gall, S.; Klau, L.J.; Laillet, B.; Rogniaux, H.; Aachmann, F.L.; Hehemann, J.-H. Ion-Exchange Purification and Structural Characterization of Five Sulfated Fucoidans from Brown Algae. Glycobiology 2021, 31, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.; Rosa da Costa, A.M.; Lourenço, J.P.; Buttini, F.; Grenha, A. Spray-Dried Fucoidan Microparticles for Pulmonary Delivery of Antitubercular Drugs. J. Microencapsul. 2018, 35, 392–405. [Google Scholar] [CrossRef]
- Balboa, E.M.; Rivas, S.; Moure, A.; Domínguez, H.; Parajó, J.C. Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Mar. Drugs 2013, 11, 4612–4627. [Google Scholar] [CrossRef] [PubMed]
- Borazjani, N.J.; Tabarsa, M.; You, S.; Rezaei, M. Improved Immunomodulatory and Antioxidant Properties of Unrefined Fucoidans from Sargassum angustifolium by Hydrolysis. J. Food Sci. Technol. 2017, 54, 4016–4025. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.; Wang, S.K.; Liu, T.; Hamid, N.; Li, Y.; Lu, J.; White, W.L. Anti-Proliferation Potential and Content of Fucoidan Extracted from Sporophyll of New Zealand Undaria Pinnatifida. Front. Nutr. 2014, 1, 9. [Google Scholar] [CrossRef]
- Manns, D.; Deutschle, A.L.; Saake, B.; Meyer, A.S. Methodology for Quantitative Determination of the Carbohydrate Composition of Brown Seaweeds (Laminariaceae). RSC Adv. 2014, 4, 25736–25746. [Google Scholar] [CrossRef]
- Mišurcová, L.; Škrovánková, S.; Samek, D.; Ambrožová, J.; Machů, L. Health Benefits of Algal Polysaccharides in Human Nutrition. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2012; Volume 66, pp. 75–145. ISBN 978-0-12-394597-6. [Google Scholar]
- Catarino, M.D.; Pires, S.M.G.; Silva, S.; Costa, F.; Braga, S.S.; Pinto, D.C.G.A.; Silva, A.M.S.; Cardoso, S.M. Overview of Phlorotannins’ Constituents in Fucales. Mar. Drugs 2022, 20, 754. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, X.; Huang, R.; Ren, B.; Chen, B.; Liu, Y.; Zhang, H. Diversified Chemical Structures and Bioactivities of the Chemical Constituents Found in the Brown Algae Family Sargassaceae. Mar. Drugs 2024, 22, 59. [Google Scholar] [CrossRef]
- Bolton, J.J. The Biogeography of Kelps (Laminariales, Phaeophyceae): A Global Analysis with New Insights from Recent Advances in Molecular Phylogenetics. Helgol. Mar. Res. 2010, 64, 263–279. [Google Scholar] [CrossRef]
- Hanjabam, M.D.; Kumar, A.; Tejpal, C.S.; Krishnamoorthy, E.; Kishore, P.; Ashok Kumar, K. Isolation of Crude Fucoidan from Sargassum wightii Using Conventional and Ultra-Sonication Extraction Methods. Bioact. Carbohydr. Diet. Fibre 2019, 20, 100200. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Balboa, E.M.; Domínguez, H. Extraction and Purification of Fucoidan from Marine Sources. In Encyclopedia of Marine Biotechnology; Kim, S., Ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1093–1125. ISBN 978-1-119-14377-2. [Google Scholar]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; Tiwari, B. Conventional Extraction Techniques: Solvent Extraction. In Sustainable Seaweed Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 171–189. ISBN 978-0-12-817943-7. [Google Scholar]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Potential of Intensification Techniques for the Extraction and Depolymerization of Fucoidan. Algal Res. 2018, 30, 128–148. [Google Scholar] [CrossRef]
- Hahn, T.; Lang, S.; Ulber, R.; Muffler, K. Novel Procedures for the Extraction of Fucoidan from Brown Algae. Process Biochem. 2012, 47, 1691–1698. [Google Scholar] [CrossRef]
- Du, B.; Zhao, Q.; Cheng, C.; Wang, H.; Liu, Y.; Zhu, F.; Yang, Y. A Critical Review on Extraction, Characteristics, Physicochemical Activities, Potential Health Benefits, and Industrial Applications of Fucoidan. eFood 2022, 3, e19. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Reyes-Weiss, D.; Horn, S.J. Extraction of High Purity Fucoidans from Brown Seaweeds Using Cellulases and Alginate Lyases. Int. J. Biol. Macromol. 2023, 229, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Alboofetileh, M.; Rezaei, M.; Hamzeh, A.; Tabarsa, M.; Cravotto, G. Cellular Antioxidant and Emulsifying Activities of Fucoidan Extracted from Nizamuddinia zanardinii Using Different Green Extraction Methods. Food Process. Preserv. 2022, 46, e17238. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Lee, J.-S.; Kim, W.-S.; Jeon, Y.-J. The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, A.J.; Rajendran, K. Comparative Study on the Extraction Methods, Characterization, and Bioactivity of Crude Fucoidan, a Polysaccharide Derived from Sargassum ilicifolium. Biochem. Eng. J. 2024, 209, 109398. [Google Scholar] [CrossRef]
- Heo, S.; Park, E.; Lee, K.; Jeon, Y. Antioxidant Activities of Enzymatic Extracts from Brown Seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Hammed, A.M.; Jaswir, I.; Amid, A.; Alam, Z.; Asiyanbi-H, T.T.; Ramli, N. Enzymatic Hydrolysis of Plants and Algae for Extraction of Bioactive Compounds. Food Rev. Int. 2013, 29, 352–370. [Google Scholar] [CrossRef]
- Lee, H.-G.; Liyanage, N.M.; Yang, F.; Kim, Y.-S.; Lee, S.-H.; Ko, S.-C.; Yang, H.-W.; Jeon, Y.-J. Investigation of Physical Characteristics and In Vitro Anti-Inflammatory Effects of Fucoidan from Padina arborescens: A Comprehensive Assessment against Lipopolysaccharide-Induced Inflammation. Mar. Drugs 2024, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Wang, L.; Sanjeewa, K.K.A.; Kang, S.I.; Lee, J.-S.; Jeon, Y.-J. Antioxidant Potential of Sulfated Polysaccharides from Padina Boryana; Protective Effect against Oxidative Stress in In Vitro and In Vivo Zebrafish Model. Mar. Drugs 2020, 18, 212. [Google Scholar] [CrossRef] [PubMed]
- Hans, N.; Pattnaik, F.; Malik, A.; Naik, S. Comparison of Different Green Extraction Techniques and Their Influence on Chemical Characteristics of Sulfated Polysaccharide (Fucoidan) from Padina tetrastromatica and Turbinaria conoides. Algal Res. 2023, 74, 103199. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.-S.; Kang, N.; Ranasinghe, P.; Lee, H.-S.; Jeon, Y.-J. A Fucoidan Fraction Purified from Chnoospora minima; a Potential Inhibitor of LPS-Induced Inflammatory Responses. Int. J. Biol. Macromol. 2017, 104, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. The Comparative Influence of Novel Extraction Technologies on in Vitro Prebiotic-Inducing Chemical Properties of Fucoidan Extracts from Ascophyllum nodosum. Food Hydrocoll. 2019, 90, 462–471. [Google Scholar] [CrossRef]
- Deniaud-Bouët, E.; Kervarec, N.; Michel, G.; Tonon, T.; Kloareg, B.; Hervé, C. Chemical and Enzymatic Fractionation of Cell Walls from Fucales: Insights into the Structure of the Extracellular Matrix of Brown Algae. Ann. Bot. 2014, 114, 1203–1216. [Google Scholar] [CrossRef] [PubMed]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M. Enzyme-Assisted Extraction of Nizamuddinia zanardinii for the Recovery of Sulfated Polysaccharides with Anticancer and Immune-Enhancing Activities. J. Appl. Phycol. 2019, 31, 1391–1402. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S. Bioactivities of Nizamuddinia zanardinii Sulfated Polysaccharides Extracted by Enzyme, Ultrasound and Enzyme-Ultrasound Methods. J. Food Sci. Technol. 2019, 56, 1212–1220. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.; Lembo, D.; Cravotto, G. Effect of Different Non-Conventional Extraction Methods on the Antibacterial and Antiviral Activity of Fucoidans Extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 124, 131–137. [Google Scholar] [CrossRef]
- Liyanage, N.M.; Lee, H.-G.; Nagahawatta, D.P.; Jayawardhana, H.H.A.C.K.; Ryu, B.; Jeon, Y.-J. Characterization and Therapeutic Effect of Sargassum coreanum Fucoidan That Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages by Blocking NF-ΚB Signaling. Int. J. Biol. Macromol. 2022, 223, 500–510. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.K.H.M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Heo, S.-J.; Ahn, G. Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes. Antioxidants 2021, 10, 347. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Jayawardena, T.U.; Kim, S.-Y.; Kim, H.-S.; Ahn, G.; Kim, J.; Jeon, Y.-J. Fucoidan Isolated from Invasive Sargassum horneri Inhibit LPS-Induced Inflammation via Blocking NF-ΚB and MAPK Pathways. Algal Res. 2019, 41, 101561. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Kim, E.-A.; Ahn, G.; Jee, Y.; Jeon, Y.-J. Anti-Inflammatory Activity of a Sulfated Polysaccharide Isolated from an Enzymatic Digest of Brown Seaweed Sargassum horneri in RAW 264.7 Cells. Nutr. Res. Pract. 2017, 11, 3. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Lee, H.G.; Kim, H.-S.; Vaas, A.P.J.P.; De Silva, H.I.C.; Nanayakkara, C.M.; Abeytunga, D.T.U.; Lee, D.-S.; Lee, J.-S.; et al. Fucoidan Purified from Sargassum polycystum Induces Apoptosis through Mitochondria-Mediated Pathway in HL-60 and MCF-7 Cells. Mar. Drugs 2020, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Fernando, I.P.S.; Lee, W.W.; Sanjeewa, K.K.A.; Kim, H.-S.; Lee, D.-S.; Jeon, Y.-J. Isolation and Purification of Fucoidan Fraction in Turbinaria ornata from the Maldives; Inflammation Inhibitory Potential under LPS Stimulated Conditions in In-Vitro and In-Vivo Models. Int. J. Biol. Macromol. 2019, 131, 614–623. [Google Scholar] [CrossRef]
- Oh, J.-Y.; Kim, E.-A.; Kang, S.I.; Yang, H.-W.; Ryu, B.; Wang, L.; Lee, J.-S.; Jeon, Y.-J. Protective Effects of Fucoidan Isolated from Celluclast-Assisted Extract of Undaria pinnatifida Sporophylls against AAPH-Induced Oxidative Stress In Vitro and In Vivo Zebrafish Model. Molecules 2020, 25, 2361. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ma, Y.; Dong, X.; Zhou, H.; He, Y.; Ren, D.; Wang, Q.; Yang, H.; Liu, S.; Wu, L. Enzyme-Assisted Extraction of Fucoidan from Kjellmaniella crassifolia Based on Kinetic Study of Enzymatic Hydrolysis of Algal Cellulose. Algal Res. 2022, 66, 102795. [Google Scholar] [CrossRef]
- Mabate, B.; Pletschke, B.I. Sequential and Enzyme-Assisted Extraction of Algal Bioproducts from Ecklonia maxima. Enzym. Microb. Technol. 2024, 173, 110364. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Wijesinghe, W.A.J.P.; Kim, S. Enzyme-assisted Extraction and Recovery of Bioactive Components from Seaweeds. In Handbook of Marine Macroalgae; Kim, S., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 221–228. ISBN 978-0-470-97918-1. [Google Scholar]
- Du, R.; Su, R.; Zhang, M.; Qi, W.; He, Z. Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob. Front. Energy Res. 2014, 2, 24. [Google Scholar] [CrossRef]
- Chen, Y.; Zicari, S.; Zhang, R. Economic Analysis of Enzyme Recycling during Enzymatic Hydrolysis of Sugar Beets for Soluble Sugars Production. Food Bioeng. 2023, 2, 200–211. [Google Scholar] [CrossRef]
- Sóti, V.; Lenaerts, S.; Cornet, I. Of Enzyme Use in Cost-Effective High Solid Simultaneous Saccharification and Fermentation Processes. J. Biotechnol. 2018, 270, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, M. The Characterization of Acoustic Cavitation Bubbles—An Overview. Ultrason. Sonochemistry 2011, 18, 864–872. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of Ultrasound Assisted Extraction of Bioactive Components from Brown Seaweed Ascophyllum Nodosum Using Response Surface Methodology. Ultrason. Sonochemistry 2015, 23, 308–316. [Google Scholar] [CrossRef]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vaquero, M.; Rajauria, G.; Tiwari, B.; Sweeney, T.; O’Doherty, J. Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria Digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction. Mar. Drugs 2018, 16, 257. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S. Ultrasound-assisted Extraction of Sulfated Polysaccharide from Nizamuddinia zanardinii: Process Optimization, Structural Characterization, and Biological Properties. J. Food Process Eng. 2019, 42, e12979. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Dobrinčić, A.; Zorić, Z.; Pedisić, S.; Repajić, M.; Roje, M.; Herceg, Z.; Čož-Rakovac, R.; Dragović-Uzelac, V. Application of Ultrasound-Assisted Extraction and Non-Thermal Plasma for Fucus Virsoides and Cystoseira Barbata Polysaccharides Pre-Treatment and Extraction. Processes 2022, 10, 433. [Google Scholar] [CrossRef]
- Louie, K.B.; Kosina, S.M.; Hu, Y.; Otani, H.; De Raad, M.; Kuftin, A.N.; Mouncey, N.J.; Bowen, B.P.; Northen, T.R. Mass Spectrometry for Natural Product Discovery. In Comprehensive Natural Products III; Elsevier: Amsterdam, The Netherlands, 2020; pp. 263–306. ISBN 978-0-08-102691-5. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Linares, G.; Rojas, M.L. Ultrasound-Assisted Extraction of Natural Pigments from Food Processing By-Products: A Review. Front. Nutr. 2022, 9, 891462. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, V.; Anna, J.L.; Vijayeeswarri, J.; Swaminathan, G. Ultrasound Assisted Enhancement in Natural Dye Extraction from Beetroot for Industrial Applications and Natural Dyeing of Leather. Ultrason. Sonochemistry 2009, 16, 782–789. [Google Scholar] [CrossRef]
- Moorthy, I.G.; Maran, J.P.; Surya, S.M.; Naganyashree, S.; Shivamathi, C.S. Response Surface Optimization of Ultrasound Assisted Extraction of Pectin from Pomegranate Peel. Int. J. Biol. Macromol. 2015, 72, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Fernández, N.; López-García, M.; González-Muñoz, M.J.; Vilariño, J.M.L.; Domínguez, H. Ultrasound-Assisted Extraction of Fucoidan from Sargassum muticum. J. Appl. Phycol. 2017, 29, 1553–1561. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N. The Efficacy of Two Methods for Extracting Fucoidan from Frozen Arctic Algae Thalli: Chemical Composition, Kinetic Study and Process Optimization. J. Appl. Phycol. 2024, 36, 1413–1432. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Hmelkov, A.B.; Zvyagintseva, T.N.; Shevchenko, N.M.; Rasin, A.B.; Ermakova, S.P. Ultrasound-Assisted Extraction of Polysaccharides from Brown Alga Fucus Evanescens. Structure and Biological Activity of the New Fucoidan Fractions. J. Appl. Phycol. 2018, 30, 2039–2046. [Google Scholar] [CrossRef]
- Laeliocattleya, R.A.; Yunianta, Y.; Risjani, Y.; Wulan, S.N. Characterization of ‘Novel Fucoidan’ Extracted from Brown Seaweed (Sargassum echinocarpum J. Ag.) Using Ultrasound-Assisted Extraction (UAE) and Its Potential Antioxidant Activity. Nat. Product Res. 2023, 19, 1–13. [Google Scholar] [CrossRef]
- Thao My, P.L.; Sung, V.V.; Dat, T.D.; Nam, H.M.; Phong, M.T.; Hieu, N.H. Ultrasound-Assisted Extraction of Fucoidan from Vietnamese Brown Seaweed Sargassum mcclurei and Testing Bioactivities of the Extract. ChemistrySelect 2020, 5, 4371–4380. [Google Scholar] [CrossRef]
- Vaamonde-García, C.; Capelo-Mera, E.; Flórez-Fernández, N.; Torres, M.D.; Rivas-Murias, B.; Mejide-Faílde, R.; Blanco, F.J.; Domínguez, H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int. J. Mol. Sci. 2022, 23, 14236. [Google Scholar] [CrossRef]
- Del Río, P.G.; Flórez-Fernández, N.; Álvarez-Viñas, M.; Torres, M.D.; Romaní, A.; Domínguez, H.; Garrote, G. Evaluation of Sustainable Technologies for the Processing of Sargassum muticum: Cascade Biorefinery Schemes. Green Chem. 2021, 23, 7001–7015. [Google Scholar] [CrossRef]
- Lin, P.; Chen, S.; Liao, M.; Wang, W. Physicochemical Characterization of Fucoidans from Sargassum henslowianum C. Agardh and Their Antithrombotic Activity In Vitro. Mar. Drugs 2022, 20, 300. [Google Scholar] [CrossRef] [PubMed]
- Dobrinčić, A.; Pedisić, S.; Zorić, Z.; Jurin, M.; Roje, M.; Čož-Rakovac, R.; Dragović-Uzelac, V. Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus Virsoides and Cystoseira Barbata. Foods 2021, 10, 1481. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Brown Seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D. Microwave Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Ascophyllum Nodosum and Its Antioxidant Activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Finkelmeier, D.; Hahn, T.; Rebers, L.; Shanmugam, A.; Burger-Kentischer, A.; Ulber, R. Characterization and Cytotoxic Activity of Microwave-Assisted Extracted Crude Fucoidans from Different Brown Seaweeds. Mar. Drugs 2023, 21, 48. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Moret, S.; Conchione, C.; Srbinovska, A.; Lucci, P. Microwave-Based Technique for Fast and Reliable Extraction of Organic Contaminants from Food, with a Special Focus on Hydrocarbon Contaminants. Foods 2019, 8, 503. [Google Scholar] [CrossRef]
- James, K.; Ramirez, J.; Barner, L.; Moghaddam, L. Technology Comparison for Sequential Extraction of Fucoidan and Sodium Alginate from Ascophyllum nodosum Using a Glycerol and Choline Chloride Solvent. Clean. Eng. Technol. 2024, 18, 100707. [Google Scholar] [CrossRef]
- Sasaki, C.; Tamura, S.; Suzuki, M.; Etomi, K.; Nii, N.; Hayashi, J.; Kanemaru, K. Continuous Microwave-Assisted Step-by-Step Extraction of Bioactive Water-Soluble Materials and Fucoidan from Brown Seaweed Undaria pinnatifida Waste. Biomass Conv. Bioref. 2024, 14, 7673–7682. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Geissler, P.L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Autoionization in Liquid Water. Science 2001, 291, 2121–2124. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction of Biomolecules from Seaweeds. In Seaweed Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 243–269. ISBN 978-0-12-418697-2. [Google Scholar]
- Saravana, P.S.; Cho, Y.-J.; Park, Y.-B.; Woo, H.-C.; Chun, B.-S. Structural, Antioxidant, and Emulsifying Activities of Fucoidan from Saccharina japonica Using Pressurized Liquid Extraction. Carbohydr. Polym. 2016, 153, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Saravana, P.S.; Tilahun, A.; Gerenew, C.; Tri, V.D.; Kim, N.H.; Kim, G.-D.; Woo, H.-C.; Chun, B.-S. Subcritical Water Extraction of Fucoidan from Saccharina japonica: Optimization, Characterization and Biological Studies. J. Appl. Phycol. 2018, 30, 579–590. [Google Scholar] [CrossRef]
- Khuwijitjaru, P. Utilization of Plant-Based Agricultural Waste by Subcritical Water Treatment. Jpn. J. Food Eng. 2016, 17, 33–39. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic Conversion of Lignocellulosic Biomass into Chemicals and Fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar] [CrossRef]
- Getachew, A.T.; Holdt, S.L.; Meyer, A.S.; Jacobsen, C. Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Mar. Drugs 2022, 20, 263. [Google Scholar] [CrossRef]
- Cernadas, H.; Flórez-Fernández, N.; González-Muñoz, M.J.; Domínguez, H.; Torres, M.D. Retrieving of High-Value Biomolecules from Edible Himanthalia Elongata Brown Seaweed Using Hydrothermal Processing. Food Bioprod. Process 2019, 117, 275–286. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.; Mariatti, F.; Cravotto, G. Subcritical Water Extraction as an Efficient Technique to Isolate Biologically-Active Fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 128, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Huang, C.-Y.; Yang, C.-C.; Lee, T.-M.; Chang, J.-S. Hair Growth-Promoting Effects of Sargassum glaucescens Oligosaccharides Extracts. J. Taiwan Inst. Chem. Eng. 2022, 134, 104307. [Google Scholar] [CrossRef]
- Ferreira-Anta, T.; Torres, M.D.; Dominguez, H.; Flórez-Fernández, N. Formulation of Polymeric Microparticles Using Eco-Friendly Extracted Crude Fucoidans from Edible Brown Seaweed Undaria pinnatifida. Foods 2023, 12, 1859. [Google Scholar] [CrossRef] [PubMed]
- Gan, A.; Baroutian, S. Subcritical Water Extraction for Recovery of Phenolics and Fucoidan from New Zealand Wakame (Undaria pinnatifida) Seaweed. J. Supercrit. Fluids 2022, 190, 105732. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Recovery of Bioactive and Gelling Extracts from Edible Brown Seaweed Laminaria ochroleuca by Non-Isothermal Autohydrolysis. Food Chem. 2019, 277, 353–361. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.-N.; Woo, H.-C.; Chun, B.-S. Green and Efficient Extraction of Polysaccharides from Brown Seaweed by Adding Deep Eutectic Solvent in Subcritical Water Hydrolysis. J. Clean. Prod. 2018, 198, 1474–1484. [Google Scholar] [CrossRef]
- Tan, J.; Song, Y.; Wang, J.; Wu, N.; Yue, Y.; Zhang, Q. Pharmacokinetics of Fucoidan and Low Molecular Weight Fucoidan from Saccharina japonica after Oral Administration to Mice. J. Ocean. Limnol. 2023, 41, 1900–1909. [Google Scholar] [CrossRef]
- Krylova, N.V.; Silchenko, A.S.; Pott, A.B.; Ermakova, S.P.; Iunikhina, O.V.; Rasin, A.B.; Kompanets, G.G.; Likhatskaya, G.N.; Shchelkanov, M.Y. In Vitro Anti-Orthohantavirus Activity of the High-and Low-Molecular-Weight Fractions of Fucoidan from the Brown Alga Fucus Evanescens. Mar. Drugs 2021, 19, 577. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Yan, C.; Ai, C.; Wen, C.; Guo, X.; Song, S. Two Ascophyllum Nodosum Fucoidans with Different Molecular Weights Inhibit Inflammation via Blocking of TLR/NF-ΚB Signaling Pathway Discriminately. Foods 2022, 11, 2381. [Google Scholar] [CrossRef]
- Mandal, P.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structural Features and Antiviral Activity of Sulphated Fucans from the Brown Seaweed Cystoseira Indica. Antivir. Chem. Chemother. 2007, 18, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.T.T.; Ly, B.M.; Van, T.T.T.; Van Quang, N.; Tu, H.C.; Zheng, Y.; Seguin-Devaux, C.; Mi, B.; Ai, U. Anti-HIV Activity of Fucoidans from Three Brown Seaweed Species. Carbohydr. Polym. 2015, 115, 122–128. [Google Scholar] [CrossRef]
- Husni, A.; Izmi, N.; Ayunani, F.Z.; Kartini, A.; Husnayain, N.; Isnansetyo, A. Characteristics and Antioxidant Activity of Fucoidan from Sargassum hystrix: Effect of Extraction Method. Int. J. Food Sci. 2022, 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.L.; Lee, B.-Y.; You, S.G. Relationship between Oversulfation and Conformation of Low and High Molecular Weight Fucoidans and Evaluation of Their in Vitro Anticancer Activity. Molecules 2010, 16, 291–297. [Google Scholar] [CrossRef]
- Tissot, B.; Salpin, J.-Y.; Martinez, M.; Gaigeot, M.-P.; Daniel, R. Differentiation of the Fucoidan Sulfated L-Fucose Isomers Constituents by CE-ESIMS and Molecular Modeling. Carbohydr. Res. 2006, 341, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Garcia-Vaquero, M.; Przyborska, J.; Sivagnanam, S.P.; Tiwari, B. The Development of Analytical Methods for the Purity Determination of Fucoidan Extracted from Brown Seaweed Species. Int. J. Biol. Macromol. 2021, 173, 90–98. [Google Scholar] [CrossRef] [PubMed]
Extract Contents | Polysaccharide Source | |||
---|---|---|---|---|
Fucoidan | Alginate | Laminarin | ||
Monosaccharides | Fucose | ✓ | ||
Galactose | ✓ | |||
Xylose | ✓ | |||
Mannose | ✓ | |||
Rhamnose | ✓ | |||
Glucose | ✓ | ✓ | ||
Mannitol | ✓ | |||
Uronic Acids | Glucuronic acid | ✓ | ||
Galacturonic acid | ✓ | |||
Guluronic acid | ✓ | |||
Mannuronic acid | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chadwick, M.; Carvalho, L.G.; Vanegas, C.; Dimartino, S. A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Mar. Drugs 2025, 23, 27. https://doi.org/10.3390/md23010027
Chadwick M, Carvalho LG, Vanegas C, Dimartino S. A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Marine Drugs. 2025; 23(1):27. https://doi.org/10.3390/md23010027
Chicago/Turabian StyleChadwick, Matthew, Loïc G. Carvalho, Carlos Vanegas, and Simone Dimartino. 2025. "A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed" Marine Drugs 23, no. 1: 27. https://doi.org/10.3390/md23010027
APA StyleChadwick, M., Carvalho, L. G., Vanegas, C., & Dimartino, S. (2025). A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Marine Drugs, 23(1), 27. https://doi.org/10.3390/md23010027