Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid
Abstract
:1. Introduction
2. Experiments
2.1. Concentration Analysis of Humic Acid
2.2. Adsorption Analysis to Mimic Conditions in the Gastrointestinal Tract
2.3. Preparation of Chitosans with Different Degree of Deacetylation Values
2.4. Batch Experiment for Adsorption Isotherms
3. Results and Discussion
3.1. Adsorption of Humic Acid by Different Adsorbents
3.2. Adsorption Isotherms
Sample | K (L/mg) | q∞ (mg/g) | RL |
---|---|---|---|
Chitosan | 1.01 × 10−2 | 3.33 × 103 | 4.74 × 10−3 |
DEAE-cellulose | 1.21 × 10−1 | 2.13 × 102 | 1.92 × 10−2 |
Chitin | 4.54 × 10−2 | 1.89 × 102 | 5.17 × 10−2 |
Active charcoal | 2.49 × 10−2 | 1.54 × 102 | 6.26 × 10−2 |
3.3. Adsorption Isotherms for Chitosans with Different DD Values
4. Conclusions
Acknowledgments
References
- Tseng, W.P.; Chen, W.Y.; Sung, J.L.; Chen, J.S. A Clinical Study of Blackfoot Disease in Taiwan, an Endemic Peripheral Vascular Disease. In Guoli Taiwan Daxue Yixueyuan Yanjiu Baogao; National Taiwan University: Taipei, Taiwan, 1961; Volume 7, pp. 1–18. [Google Scholar]
- Hseu, Y.C.; Lu, F.J.; Engelking, L.R.; Chen, C.L.; Chen, Y.H.; Yang, H.L. Humic acid-induced echinocyte transformation in human erythrocytes: Characterization of morphological changes and determination of the mechanism underlying damage. J. Toxicol. Environ. Health A 2000, 60, 215–230. [Google Scholar]
- Hseu, Y.C.; Yang, H.L. The effects of humic acid-arsenate complexes on human red blood cells. Environ. Res. 2002, 89, 131–137. [Google Scholar]
- Alaniz, S.; Armengol, J.; Leon, M.; Garcia-Jimenez, J.; Abad-Campos, P. Analysis of genetic and virulence diversity of cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycol. Res. 2009, 113, 16–23. [Google Scholar]
- Petit, E.; Gubler, W.D. First report of cylindrocarpon liriodendri causing black foot disease of grapevine in California. Plant Dis. 2007, 91, 1060. [Google Scholar]
- Agustí-Brisach, C.; Gramaje, D.; León, M.; García-Jiménez, J.; Armengol, J. Evaluation of vineyard weeds as potential hosts of black-foot and petri disease pathogens. Plant Dis. 2011, 95, 803–810. [Google Scholar]
- Yu, H.S. Blackfoot disease and chronic arsenism in southern Taiwan. Int. J. Dermatol. 1984, 23, 258–260. [Google Scholar]
- Lu, F.J. Blackfoot disease: Arsenic or humic acid? Lancet 1990, 336, 115–116. [Google Scholar] [PubMed]
- Lu, F.J.; Liu, T.M. Fluorescent compounds in drinking water of blackfoot disease endemic areas: Animal experimental model. Taiwan Yi Xue Hui Za Zhi 1986, 85, 352–358. [Google Scholar]
- Lu, F.J. Fluorescent humic substances and blackfoot disease in Taiwan. Appl. Organomet. Chem. 1990, 4, 191–195. [Google Scholar]
- Hseu, Y.C.; Wang, S.Y.; Chen, H.Y.; Lu, F.J.; Gau, R.J.; Chang, W.C.; Liu, T.Z.; Yang, H.L. Humic acid induces the generation of nitric oxide in human umbilical vein endothelial cells: Stimulation of nitric oxide synthase during cell injury. Free Radic. Biol. Med. 2002, 32, 619–629. [Google Scholar]
- Ting, H.C.; Yen, C.C.; Chen, W.K.; Chang, W.H.; Chou, M.C.; Lu, F.J. Humic acid enhances the cytotoxic effects of arsenic trioxide on human cervical cancer cells. Environ. Toxicol. Pharmacol. 2010, 29, 117–125. [Google Scholar]
- Hartenstein, R. Sludge decomposition and stabilization. Science 1981, 212, 743–749. [Google Scholar]
- Lu, F.J.; Yamamura, Y.; Yamauchi, H. Studies on fluorescent compounds in water of a well in blackfoot disease endemic areas in Taiwan: Humic substances. Taiwan Yi Xue Hui Za Zhi 1988, 87, 66–75. [Google Scholar]
- Gooday, G.W. Physiology of microbial degradation of chitin and chitosan. Biodegradation 1990, 1, 177–190. [Google Scholar]
- Chen, J.K.; Shen, C.R.; Liu, C.L. N-Acetylglucosamine: Production and applications. Mar. Drugs 2010, 8, 2493–2516. [Google Scholar]
- Mathur, N.K.; Narang, C.K. Chitin and chitosan, versatile polysaccharides from marine animals. J. Chem. Educ. 1990, 67, 938–942. [Google Scholar]
- Liu, C.L.; Shen, C.R.; Hsu, F.F.; Chen, J.K.; Wu, P.T.; Guo, S.H.; Lee, W.C.; Yu, F.W.; Mackey, Z.B.; Turk, J.; et al. Isolation and identification of two novel sds-resistant secreted chitinases from Aeromonas schubertii. Biotechnol. Prog. 2009, 25, 124–131. [Google Scholar] [PubMed]
- Shen, C.R.; Chen, Y.S.; Yang, C.J.; Chen, J.K.; Liu, C.L. Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay. J. Biomol. Screen. 2010, 15, 213–217. [Google Scholar]
- Chen, J.K.; Shen, C.R.; Yeh, C.H.; Fang, B.S.; Huang, T.L.; Liu, C.-L. N-Acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis. Int. J. Mol. Sci. 2011, 12, 1187–1195. [Google Scholar]
- Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sorlie, M.; Varum, K.M.; Eijsink, V.G. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 2010, 8, 1482–1517. [Google Scholar]
- Singh, D.K.; Ray, A.R. Biomedical applications of chitin, chitosan, and their derivatives. J. Macromol. Sci. Polym. Rev. 2000, 40, 69–83. [Google Scholar]
- Yang, C.J.; Liu, Y.K.; Liu, C.L.; Shen, C.N.; Kuo, M.L.; Su, C.C.; Tseng, C.P.; Yen, T.C.; Shen, C.R. Inhibition of acidic mammalian chitinase by rna interference suppresses ovalbumin-sensitized allergic asthma. Hum. Gene Ther. 2009, 20, 1597–1606. [Google Scholar]
- Liu, Y.K.; Yang, C.J.; Liu, C.L.; Shen, C.R.; Shiau, L.D. Using a fed-batch culture strategy to enhance raav production in the baculovirus/insect cell system. J. Biosci. Bioeng. 2010, 110, 187–193. [Google Scholar]
- Shen, C.R.; Juang, J.H.; Tsai, Z.T.; Wu, S.T.; Tsai, F.Y.; Wang, J.J.; Liu, C.L.; Yen, T.C. Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium)Propyl] chitosan chloride. Carbohydr. Polym. 2011, 84, 781–787. [Google Scholar]
- Shen, C.R.; Wu, S.T.; Tsai, Z.T.; Wang, J.J.; Yen, T.C.; Tsai, J.S.; Shih, M.F.; Liu, C.L. Characterization of quaternized chitosan-stabilized iron oxide nanoparticles as a novel potential magnetic resonance imaging contrast agent for cell tracking. Polym. Int. 2011, 60, 945–950. [Google Scholar]
- Hossain, S.; Rahman, A.; Kabir, Y.; Shams, A.A.; Afros, F.; Hashimoto, M. Effects of shrimp (Macrobracium rosenbergii)-derived chitosan on plasma lipid profile and liver lipid peroxide levels in normo- and hypercholesterolaemic rats. Clin. Exp. Pharmacol. Physiol. 2007, 34, 170–176. [Google Scholar]
- Ebihara, K.; Schneeman, B.O. Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rats. J. Nutr. 1989, 119, 1100–1106. [Google Scholar]
- Sugano, M.; Fujikawa, T.; Hiratsuji, Y.; Nakashima, K.; Fukuda, N.; Hasegawa, Y. A novel use of chitosan as a hypocholesterolemic agent in rats. Am. J. Clin. Nutr. 1980, 33, 787–793. [Google Scholar]
- Bokura, H.; Kobayashi, S. Chitosan decreases total cholesterol in women: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr. 2003, 57, 721–725. [Google Scholar]
- Colombo, P.; Sciatto, A.M. Nutritional aspects of chitosan employment in hypocaloric diet. Acta Toxicol. Ther. 1996, 16, 287–302. [Google Scholar]
- Kim, C.Y.; Choi, H.M.; Cho, H.T. Effect of deacetylation on sorption of dyes and chromium on chitin. J. Appl. Polym. Sci. 1997, 63, 725–736. [Google Scholar]
- Da Sacco, L.; Masotti, A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and As2o3 delivery in tumor therapy. Mar. Drugs 2010, 8, 1518–1525. [Google Scholar]
- Muraleedharan, T.R.; Venkobachar, C. Mechanism of biosorption of Copper(Ii) by ganoderma iucidum. Biotechnol. Bioeng. 1990, 35, 320–325. [Google Scholar]
- Udaybhaskar, P.; Iyengar, L.; Rao, A.V.S.P. Hexavalent chromium interaction with chitosan. J. Appl. Polym. Sci. 1990, 39, 739–747. [Google Scholar]
- Coughlin, R.W.; Deshaies, M.R.; Davis, E.M. Chitosan in crab shell wastes purifies electroplating wastewater. Environ. Prog. 1990, 9, 35–39. [Google Scholar]
- Rorrer, G.L.; Hsien, T.Y.; Way, J.D. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind. Eng. Chem. Res. 1993, 32, 2170–2178. [Google Scholar]
- Rodriguez, M.S.; Albertengo, L.E. Interaction between chitosan and oil under stomach and duodenal digestive chemical conditions. Biosci. Biotechnol. Biochem. 2005, 69, 2057–2062. [Google Scholar]
- Staffolo, M.D.; Martino, M.; Bevilacqua, A.; Montero, M.; Rodríguez, M.S.; Albertengo, L. Chitosan interaction with iron from yoghurt using an in vitro digestive model: Comparative study with plant dietary fibers. Int. J. Mol. Sci. 2011, 12, 4647–4660. [Google Scholar]
- Kanauchi, O.; Deuchi, K.; Imasato, Y.; Shizukuishi, M.; Kobayashi, E. Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci. Biotechnol. Biochem. 1995, 59, 786–790. [Google Scholar]
- Narayani, R.; Rao, K.P. Ph-Responsive gelatin microspheres for oral delivery of anticancer drug methotrexate. J. Appl. Polym. Sci. 1995, 58, 1761–1769. [Google Scholar]
- Juang, R.S.; Tseng, R.L.; Wu, F.C.; Lin, S.J. Use of chitosan in lobster shell wastes for colour removal from aqueous solutions. J. Environ. Sci. Health 1996, A31, 325–338. [Google Scholar]
- Tan, S.C.; Khor, E.; Tan, T.K.; Wong, S.M. The degree of deacetylation of chitosan: Advocating the first derivative Uv-Spectrophotometry method of determination. Talanta 1998, 45, 713–719. [Google Scholar]
- Muzzarelli, R.A.A. Chitosan-based dietary foods. Carbohydr. Polym. 1996, 29, 309–316. [Google Scholar]
- Popa, M.I.; Aelenei, N.; Popa, V.I.; Andrei, D. Study of the interactions between polyphenolic compounds and chitosan. React. Funct. Polym. 2000, 45, 35–43. [Google Scholar]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar]
- Muzzarelli, R.A.A. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar. Drugs 2010, 8, 292–312. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, J.-K.; Yeh, C.-H.; Wang, L.-C.; Liou, T.-H.; Shen, C.-R.; Liu, C.-L. Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid. Mar. Drugs 2011, 9, 2488-2498. https://doi.org/10.3390/md9122488
Chen J-K, Yeh C-H, Wang L-C, Liou T-H, Shen C-R, Liu C-L. Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid. Marine Drugs. 2011; 9(12):2488-2498. https://doi.org/10.3390/md9122488
Chicago/Turabian StyleChen, Jeen-Kuan, Chao-Hsien Yeh, Lian-Chen Wang, Tzong-Horng Liou, Chia-Rui Shen, and Chao-Lin Liu. 2011. "Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid" Marine Drugs 9, no. 12: 2488-2498. https://doi.org/10.3390/md9122488
APA StyleChen, J. -K., Yeh, C. -H., Wang, L. -C., Liou, T. -H., Shen, C. -R., & Liu, C. -L. (2011). Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid. Marine Drugs, 9(12), 2488-2498. https://doi.org/10.3390/md9122488