Water Environmental Capacity Analysis of Taihu Lake and Parameter Estimation Based on the Integration of the Inverse Method and Bayesian Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Lake Eutrophication Water Quality Model
2.3. Bayesian Approach
3. Results and Discussion
3.1. Estimation of S and Assessment of Model Fit
5% | 25% | Mean | 75% | 95% | SD | MC Error | |
---|---|---|---|---|---|---|---|
STN | 1.728 | 1.805 | 1.861 | 1.914 | 2.0 | 0.08329 | 0.0003863 |
STP | 4.148 | 4.464 | 4.698 | 4.918 | 5.32 | 0.3579 | 0.001441 |
3.2. Variable WEC and Required Load Reduction Ratio
2015 | 2020 | |
---|---|---|
TN | 2.2 (inferiorV) | 2.0 (IV) |
TP | 0.06 (IV) | 0.05 (III) |
TN | TP | |||
---|---|---|---|---|
WEC (t/a) | Load Reduction Ratio | WEC (t/a) | Load Reduction Ratio | |
5% | 46743 | 19.87% | 1918 | 42.02% |
25% | 47494 | 18.59% | 2002 | 39.48% |
Mean | 48040 | 17.65% | 2064 | 37.60% |
75% | 48556 | 16.76% | 2123 | 35.83% |
95% | 49394 | 15.33% | 2230 | 32.60% |
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, H.D.; Xia, Q. Advances in environmental capacity. Environ. Sci. Technol. 1983, 1, 32–36. (in Chinese). [Google Scholar]
- Yu, S. Study on the environmental capacity. Mar. Environ. Sci. 1984, 3, 72–77. (in Chinese). [Google Scholar]
- Xia, Q.; Sun, Y.; He, Z.; Li, L.Y.; Su, Y.B.; Deng, C.L. Calculation method summary of total amount control of water pollutant. Res. Environ. Sci. 1989, 2, 1–73. (in Chinese). [Google Scholar]
- Xu, Z.X.; Lu, S.Q.; Lin, W.Q. Calculating analysis on water environmental capacity of ridal river networks. Shanghai Environ. Sci. 2003, 22, 254–257. (in Chinese). [Google Scholar]
- Li, R.Z.; Wang, J.Q.; Wang, C.; Qian, J.Z. Calculation of river environmental capacity under unascertained information. Adv. Water Sci. 2003, 14, 359–363. (in Chinese). [Google Scholar]
- Han, L.X.; Zhu, D.S.; Yao, Q. Water environment capacity calculating method for shallow-broad rivers. J. Hohai Univ. Nat. Sci. 2001, 29, 72–75. (in Chinese). [Google Scholar]
- Li, S.W.; Li, H.Y.; Xia, J.X. Dapeng Bay water environment capacity analysis on the base of Delft 3D Model. Res. Environ. Sci. 2005, 18, 91–95. (in Chinese). [Google Scholar]
- Dong, F.; Peng, W.Q.; Liu, X.B.; Wu, W.Q. Study on calculation of water environmental capacity of river basin. Water Resour. Hydropower Eng. 2012, 43, 9–14. (in Chinese). [Google Scholar]
- Saadatpour, M.; Afshar, A. Waste load allocation modeling with fuzzy goals simulation-optimization approach. Water Resour. Manag. 2007, 21, 1207–1224. [Google Scholar] [CrossRef]
- Zou, R.; Lung, W.S.; Wu, J. An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Qin, X.S.; Huang, G.H.; Chen, B.; Zhang, B.Y. An Interval-Parameter Waste-Load-Allocation Model for river water quality management under uncertainty. Environ. Manag. 2009, 43, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Li, R.R.; Zou, Z.H. Calculation of River Water Environmental Capacity Based on Trapezoidal Fuzzy Number and Stochastic Simulation; Science Paper Online: Beijing, China, 2014. [Google Scholar]
- Freni, G.; Mannina, G. Bayesian approach for uncertainty quantification in water quality modeling: The influence of prior distribution. J. Hydrol. 2010, 392, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Neuman, S.P.; Xue, L.; Ye, M.; Lu, D. Bayesian analysis of data-worth considering model and parameter uncertainties. Adv. Water Resour. 2012, 36, 75–85. [Google Scholar] [CrossRef]
- Shen, J.; Kuo, A.Y. Application of inverse method to calibrate estuarine eutrophication model. J. Environ. Eng. 1998, 124, 409–418. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.J.; Hu, C.; Guo, H.C. Water quality modeling for load reduction under uncertainty: A Bayesian approach. Water Res. 2008, 42, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A.M.; Kitanidis, P.K. Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geo-statistical inverse modeling. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Vermeulen, P.T.M.; Heemink, A.W.; Valstar, J.R. Inverse modeling of groundwater flow using model reduction. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Snehalatha, S.; Rastogi, A.K.; Patil, S. Development of numerical model for inverse modeling of confined aquifer: Application of simulated annealing method. Water Int. 2006, 31, 266–271. [Google Scholar] [CrossRef]
- Shen, J.; Jia, J.J.; Sisson, G.M. Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland. Water Res. 2006, 40, 3333–3342. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhao, Y. Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation. Water Res. 2010, 44, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bumgarner, J.R.; McCray, J.E. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling. Water Res. 2007, 41, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, A.D.; Ulrych, T.J. A full-Bayesian approach to the groundwater inverse problem for steady state flow. Water Resour. Res. 2000, 8, 2081–2093. [Google Scholar] [CrossRef]
- Michalak, A.M.; Kitanidis, P.K. A method for enforcing parameter non-negativity in Bayesian inverse problems with an application to contaminant source identification. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Dowd, M.; Meyer, R. A Bayesian approach to the ecosystem inverse problem. Ecol. Model. 2003, 168, 39–55. [Google Scholar] [CrossRef]
- Chen, D.J.; Lu, J.; Wang, H.L.; Shen, Y.N.; Gong, D.Q. Combined inverse modeling approach and load duration curve method for variable nitrogen total maximum daily load development in an agricultural watershed. Environ. Sci. Pollut. Res. 2011, 18, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.J.; Dahlgren, R.A.; Shen, Y.N.; Lu, J. A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment. Sci. Total Environ. 2012, 430, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sharma, A.; Sivakumar, B.; Marshall, L.; Wang, P.; Jiang, J. A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments. Environ. Modell. Softw. 2014, 57, 216–226. [Google Scholar] [CrossRef]
- Su, J.Y.; Liu, S.K.; He, S.L.; Qin, P.Y.; Zou, S.M.; Zhai, S.H. Research on Taihu Lake water environmental capacity. J. Hydraul. Eng. 1992, 11, 22–36. (in Chinese). [Google Scholar]
- Qian, Y.C.; He, P. Analysis of water environment variation in the Taihu Lake Basin. Yangtze River 2009, 40, 40–43. (in Chinese). [Google Scholar]
- Yan, S.W.; Yu, H.; Zhang, L.L.; Xu, J.; Wang, Z.P. Water quantity and pollutant fluxes of inflow and outflow rivers of Lake Taihu, 2009. J. Lake Sci. 2011, 23, 855–862. (in Chinese). [Google Scholar]
- Cheng, X. Study on relationship between water quality change and economic development of Taihu Lake. Environ. Sustain. Dev. 2012, 5, 73–77. (in Chinese). [Google Scholar]
- Cheng, S.T.; Qian, Y.C.; Zhang, H.J. Estimation and application of macroscopic water environmental capacity of total phosphorus and nitrogen for Taihu Lake. Acta Sci. Circumst. 2013, 33, 2848–2855. (in Chinese). [Google Scholar]
- Shen, J.Y.; Shi, Y.D.; Gan, S.W.; Gao, Y.; Xu, F. Changing trend of water entering western area of Taihu Lake Basin and causal analysis. Water Res. Prot. 2011, 27, 48–54. (in Chinese). [Google Scholar]
- Wang, B.Z. Water Pollution Control Engineering; Higher Education Press: Beijing, China, 1990. [Google Scholar]
- Qian, S.S.; Stow, C.A.; Borsuk, M.E. On Monte Carlo methods for Bayesian inference. Ecol. Model. 2003, 59, 269–277. [Google Scholar] [CrossRef]
- Reckhow, K.H. Importance of scientific uncertainty in decision-making. Environ. Manag. 1994, 18, 161–166. [Google Scholar] [CrossRef]
- Malve, O.; Qian, S.S. Estimating nutrients and chlorophyll a relationships in Finnish lakes. Environ. Sci. Technol. 2006, 40, 7848–7853. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.; Nott, D.; Sharma, A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-a Bayesian modeling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Pang, Y; Lu, G.H. Water Environmental Capacity Calculation Theory and Application; Science Press: Beijing, China, 2010. (in Chinese) [Google Scholar]
- Huang, Y.P. Taihu Lake Water Environment and Pollution Control; Science Press: Beijing, China, 2001. (in Chinese) [Google Scholar]
- Qin, B.Q.; Hu, W.P.; Chen, W.M. Taihu Lake Water Environment Evolution Process and Mechanism; Science Press: Beijing, China, 2004. (in Chinese) [Google Scholar]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Trans. ASAE 2003, 46, 1553–1566. [Google Scholar] [CrossRef]
- The State Coucil. The Whole Comprehensive Treatment Plan of Taihu Lake Water Environment; 2008. (in Chinese)
- Feng, M.W.; Wu, Y.H.; Feng, S.X.; Wu, Y.Y. Effect of different N/P ratios on algal growth. Ecol. Environ. 2008, 17, 1759–1763. (in Chinese). [Google Scholar]
- Wu, H.Y.; Zhou, D.P.; He, J.; Bao, C.K. Integrated benefit assessment of the project water diversion from Yangtze River to Lake Taihu and discussion on the methodology. J. Lake Sci. 2008, 20, 639–647. (in Chinese). [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zou, Z. Water Environmental Capacity Analysis of Taihu Lake and Parameter Estimation Based on the Integration of the Inverse Method and Bayesian Modeling. Int. J. Environ. Res. Public Health 2015, 12, 12212-12224. https://doi.org/10.3390/ijerph121012212
Li R, Zou Z. Water Environmental Capacity Analysis of Taihu Lake and Parameter Estimation Based on the Integration of the Inverse Method and Bayesian Modeling. International Journal of Environmental Research and Public Health. 2015; 12(10):12212-12224. https://doi.org/10.3390/ijerph121012212
Chicago/Turabian StyleLi, Ranran, and Zhihong Zou. 2015. "Water Environmental Capacity Analysis of Taihu Lake and Parameter Estimation Based on the Integration of the Inverse Method and Bayesian Modeling" International Journal of Environmental Research and Public Health 12, no. 10: 12212-12224. https://doi.org/10.3390/ijerph121012212
APA StyleLi, R., & Zou, Z. (2015). Water Environmental Capacity Analysis of Taihu Lake and Parameter Estimation Based on the Integration of the Inverse Method and Bayesian Modeling. International Journal of Environmental Research and Public Health, 12(10), 12212-12224. https://doi.org/10.3390/ijerph121012212