Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Data Extraction
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vijayalaxmi; Scarfi, M.R. International and national expert group evaluations: Biological/health effects of radiofrequency fields. Int. J. Environ. Res. Public Health 2014, 11, 9376–9408. [Google Scholar] [CrossRef] [PubMed]
- Gherardini, L.; Ciuti, G.; Tognarelli, S.; Cinti, C. Searching for the perfect wave: The effect of radiofrequency electromagnetic fields on cells. Int. J. Mol. Sci. 2014, 15, 5366–5387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Cann, P.; Bonvallot, N.; Glorennec, P.; Deguen, S.; Goeury, C.; Le Bot, B. Indoor environment and children’s health: Recent developments in chemical, biological, physical and social aspects. Int. J. Hyg. Environ. Health 2011, 215, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Marjanovic, A.M.; Pavicic, I.; Trosic, I. Biological indicators in response to radiofrequency/microwave exposure. Arch. Hig. Rada Toksikol. 2012, 63, 407–416. [Google Scholar] [CrossRef] [PubMed]
- IARC. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr. Eval. Carcinog. Risks Hum. 2013, 102, 1–460. [Google Scholar]
- ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 KHz). Health Phys. 2010, 99, 818–836. [Google Scholar]
- SCENIHR. Health Effects of Exposure to EMF. Available online: http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf (accessed on 25 May 2016).
- SCENIHR. Opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics 2015, 36, 480–484. [Google Scholar]
- Shen, T.; Huang, S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents. Med. Chem. 2012, 12, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, M.-O.; Simkó, M. Grouping of experimental conditions as an approach to evaluate effects of extremely low frequency magnetic fields on oxidative response in in vitro studies. Front. Public Health 2014, 2, 132. [Google Scholar] [CrossRef] [PubMed]
- Schuderer, R.; Spat, D.; Samaras, T.; Oesch, W.; Kuster, N. In vitro exposure systems for RF exposures at 900 MHz. IEEE Trans. Microwave Theory Tech. 2004, 52, 2067–2075. [Google Scholar] [CrossRef]
- Paffi, A.; Apollonio, F.; Lovisolo, G.A.; Marino, C.; Pinto, R.; Repacholi, M.; Liberti, M. Considerations for developing an RF exposure system: A review for in vitro biological experiments. IEEE Trans. Microwave Theory Tech. 2010, 58, 2702–2714. [Google Scholar] [CrossRef]
- Chou, C.K.; Bassen, H.; Osepchuk, J.; Balzano, Q.; Petersen, R.; Meltz, M.; Cleveland, R.; Lin, J.C.; Heynick, L. Radio frequency electromagnetic exposure: Tutorial review on experimental dosimetry. Bioelectromagnetics 1996, 17, 195–208. [Google Scholar] [CrossRef]
- Kuster, N.; Schonborn, F. Recommended minimal requirements and development guidelines for exposure setups of bio-experiments addressing the health risk concern of wireless communications. Bioelectromagnetics 2000, 21, 508–514. [Google Scholar] [CrossRef]
- Zeni, O.; Scarfi, M.R. Experimental requirements for in vitro studies aimed to evaluate the biological effects of radiofrequency radiation, microwave materials characterization. In Microwave Materials Characterization; Costanzo, S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 121–138. [Google Scholar]
- Antonopoulos, A.; Eisenbrandt, H.; Obe, G. Effects of high-frequency electromagnetic fields on human lymphocytes in vitro. Mutat. Res. 1997, 395, 209–214. [Google Scholar] [CrossRef]
- Huang, T.Q.; Lee, M.S.; Oh, E.; Zhang, B.T.; Seo, J.S.; Park, W.Y. Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation. Int. J. Radiat. Biol. 2008, 84, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, R.; Brescia, F.; Capasso, D.; Sannino, A.; Sarti, M.; Capri, M.; Grassilli, E.; Scarfi, M.R. Exposure to 900 MHz radiofrequency radiation induces caspase 3 activation in proliferating human lymphocytes. Radiat. Res. 2008, 170, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.; Kim, K.T.; Jo, S.J.; Cho, A.R.; Jeon, S.I.; Choi, H.D.; Kim, K.H.; Park, G.S.; Pack, J.K.; Kwon, O.S.; et al. Induction of hair growth by insulin-like growth factor-1 in 1763 MHz radiofrequency—Irradiated hair follicle cells. PLoS ONE 2011. [Google Scholar] [CrossRef]
- Atasoy, A.; Sevim, Y.; Kaya, I.; Yilmaz, M.; Durmus, A.; Sonmez, M.; Omay, S.B.; Ozdemir, F.; Ovali, E. The effects of electromagnetic fields on peripheral blood mononuclear cells in vitro. Bratisl. Lek. Listy. 2009, 110, 526–529. [Google Scholar] [PubMed]
- Huang, T.Q.; Lee, M.S.; Oh, E.H.; Kalinec, F.; Zhang, B.T.; Seo, J.S.; Park, W.Y. Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells. Int. J. Radiat. Biol. 2008, 84, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Pavicic, I.; Trosic, I. Influence of 864 MHz electromagnetic field on growth kinetics of established cell line. Biologia 2006, 61, 321–325. [Google Scholar] [CrossRef]
- Avendano, C.; Mata, A.; Sanchez Sarmiento, C.A.; Doncel, G.F. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil. Steril. 2012. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zong, C.; Jiang, B.; Zhou, Z.; Tong, J.; Cao, Y. The effect of combined exposure of 900 MHz radiofrequency fields and doxorubicin in HL-60 cells. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed]
- Pavicic, I.; Trosic, I. In vitro testing of cellular response to ultra high frequency electromagnetic field radiation. Toxicol. In Vitro 2008, 22, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Zeni, O.; Chiavoni, A.S.; Sannino, A.; Antolini, A.; Forigo, D.; Bersani, F.; Scarfi, M.R. Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields. Radiat. Res. 2003, 160, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, I.Y.; Hillert, L.; Protopopova, M.; Tamm, C.; Malmgren, L.O.; Persson, B.R.; Selivanova, G.; Harms-Ringdahl, M. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 2005, 26, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Joubert, V.; Leveque, P.; Rametti, A.; Collin, A.; Bourthoumieu, S.; Yardin, C. Microwave exposure of neuronal cells in vitro: Study of apoptosis. Int. J. Radiat. Biol. 2006, 82, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Pavicic, I.; Trosic, I. Impact of 864 MHz or 935 MHz radiofrequency microwave radiation on the basic growth parameters of V79 cell line. Acta Biol. Hung. 2008, 59, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Zeni, O.; Romano, M.; Perrotta, A.; Lioi, M.B.; Barbieri, R.; d’Ambrosio, G.; Massa, R.; Scarfi, M.R. Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields. Bioelectromagnetics 2005, 26, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell. Biochem. Biophys. 2009, 55, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Joubert, V.; Leveque, P.; Cueille, M.; Bourthoumieu, S.; Yardin, C. No apoptosis is induced in rat cortical neurons exposed to GSM phone fields. Bioelectromagnetics 2007, 28, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Peinnequin, A.; Piriou, A.; Mathieu, J.; Dabouis, V.; Sebbah, C.; Malabiau, R.; Debouzy, J.C. Non-thermal effects of continuous 2.45 GHz microwaves on fas-induced apoptosis in human jurkat T-cell line. Bioelectrochemistry 2000, 51, 157–161. [Google Scholar] [CrossRef]
- Zeni, O.; Gallerano, G.P.; Perrotta, A.; Romano, M.; Sannino, A.; Sarti, M.; D’Arienzo, M.; Doria, A.; Giovenale, E.; Lai, A.; et al. Cytogenetic observations in human peripheral blood leukocytes following in vitro exposure to thz radiation: A pilot study. Health Phys. 2007, 92, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Chidichimo, G.; De Rose, R.; Filippelli, L.; Straface, S.V.; Venuta, S. Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Res. 2005, 25, 1023–1028. [Google Scholar] [PubMed]
- Joubert, V.; Bourthoumieu, S.; Leveque, P.; Yardin, C. Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons. Radiat. Res. 2008, 169, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Perez-Castejon, C.; Perez-Bruzon, R.N.; Llorente, M.; Pes, N.; Lacasa, C.; Figols, T.; Lahoz, M.; Maestu, C.; Vera-Gil, A.; Del Moral, A.; et al. Exposure to elf-pulse modulated x band microwaves increases in vitro human astrocytoma cell proliferation. Histol. Histopathol. 2009, 24, 1551–1561. [Google Scholar] [PubMed]
- Zeni, O.; Schiavoni, A.; Perrotta, A.; Forigo, D.; Deplano, M.; Scarfi, M.R. Evaluation of genotoxic effects in human leukocytes after in vitro exposure to 1950 MHz UMTS radiofrequency field. Bioelectromagnetics 2008, 29, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Chidichimo, G.; Tripepi, S.; Perrotta, E.; Cufone, F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: Ultrastructural- and metabolic-induced changes. Bioelectrochemistry 2007, 70, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kahya, M.C.; Naziroglu, M.; Cig, B. Selenium reduces mobile phone (900 MHz)—Induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol. Trace Elem. Res. 2014, 160, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Port, M.; Abend, M.; Romer, B.; Van Beuningen, D. Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression. Int. J. Radiat. Biol. 2003, 79, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Zeni, O.; Sannino, A.; Romeo, S.; Massa, R.; Sarti, M.; Reddy, A.B.; Prihoda, T.J.; Vijayalaxmi; Scarfi, M.R. Induction of an adaptive response in human blood lymphocytes exposed to radiofrequency fields: Influence of the universal mobile telecommunication system (UMTS) signal and the specific absorption rate. Mutat. Res. 2012, 747, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Bock, J.; Fukuyo, Y.; Kang, S.; Phipps, M.L.; Alexandrov, L.B.; Rasmussen, K.O.; Bishop, A.R.; Rosen, E.D.; Martinez, J.S.; Chen, H.T.; et al. Mammalian stem cells reprogramming in response to terahertz radiation. PLoS ONE 2010. [Google Scholar] [CrossRef] [PubMed]
- Karaca, E.; Durmaz, B.; Aktug, H.; Yildiz, T.; Guducu, C.; Irgi, M.; Koksal, M.G.; Ozkinay, F.; Gunduz, C.; Cogulu, O. The genotoxic effect of radiofrequency waves on mouse brain. J. Neurooncol. 2012, 106, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Milochau, A.; Ruffie, G.; Poulletier de Gannes, F.; Lagroye, I.; Haro, E.; Surleve-Bazeille, J.E.; Billaudel, B.; Lassegues, M.; Veyret, B. Human skin cell stress response to GSM—900 mobile phone signals. In vitro study on isolated primary cells and reconstructed epidermis. FEBS J. 2006, 273, 5491–5507. [Google Scholar] [CrossRef] [PubMed]
- Zeni, O.; Sannino, A.; Sarti, M.; Romeo, S.; Massa, R.; Scarfi, M.R. Radiofrequency radiation at 1950 MHz (UMTS) does not affect key cellular endpoints in neuron—Like PC12 cells. Bioelectromagnetics 2012, 33, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Bourthoumieu, S.; Magnaudeix, A.; Terro, F.; Leveque, P.; Collin, A.; Yardin, C. Study of P53 expression and post-transcriptional modifications after GSM—900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 2013, 34, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Wood, A.W.; Anderson, V.; McIntosh, R.L.; Chen, Y.Y.; McKenzie, R.J. Evaluation of hematopoietic system effects after in vitro radiofrequency radiation exposure in rats. Int. J. Radiat. Biol. 2011, 87, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sannino, A.; Di Costanzo, G.; Brescia, F.; Sarti, M.; Zeni, O.; Juutilainen, J.; Scarfi, M.R. Human fibroblasts and 900 MHz radiofrequency radiation: Evaluation of DNA damage after exposure and co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h)-furanone (MX). Radiat. Res. 2009, 171, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Zhijian, C.; Xiaoxue, L.; Wei, Z.; Yezhen, L.; Jianlin, L.; Deqiang, L.; Shijie, C.; Lifen, J.; Jiliang, H. Studying the protein expression in human B lymphoblastoid cells exposed to 1.8-GHz (GSM) radiofrequency radiation (RFR) with protein microarray. Biochem. Biophys. Res. Commun. 2013, 433, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Buttiglione, M.; Roca, L.; Montemurno, E.; Vitiello, F.; Capozzi, V.; Cibelli, G. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J. Cell. Physiol. 2007, 213, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Kwee, S.; Raskmark, P. Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation. Bioelectrochem. Bioenerg. 1998, 44, 251–255. [Google Scholar] [CrossRef]
- Sannino, A.; Sarti, M.; Reddy, S.B.; Prihoda, T.J.; Vijayalaxmi; Scarfi, M.R. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat. Res. 2009, 171, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Zotti-Martelli, L.; Peccatori, M.; Scarpato, R.; Migliore, L. Induction of micronuclei in human lymphocytes exposed in vitro to microwave radiation. Mutat. Res. 2000, 472, 51–58. [Google Scholar] [CrossRef]
- Calabro, E.; Condello, S.; Curro, M.; Ferlazzo, N.; Caccamo, D.; Magazu, S.; Ientile, R. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves. World J. Biol. Chem. 2012, 3, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Lantow, M.; Viergutz, T.; Weiss, D.G.; Simko, M. Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation. Radiat. Res. 2006, 166, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Sannino, A.; Zeni, O.; Sarti, M.; Romeo, S.; Reddy, S.B.; Belisario, M.A.; Prihoda, T.J.; Vijayalaxmi; Scarfi, M.R. Induction of adaptive response in human blood lymphocytes exposed to 900 MHz radiofrequency fields: Influence of cell cycle. Int. J. Radiat. Biol. 2011, 87, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Zotti-Martelli, L.; Peccatori, M.; Maggini, V.; Ballardin, M.; Barale, R. Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat. Res. 2005, 582, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Canseven, A.G.; Esmekaya, M.A.; Kayhan, H.; Tuysuz, M.Z.; Seyhan, N. Effects of microwave exposure and Gemcitabine treatment on apoptotic activity in Burkitt’s lymphoma (Raji) cells. Electromagn. Biol. Med. 2015, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Johnson, D.; Dunbar, K.; Dong, H.; Ge, X.; Kim, Y.C.; Wing, C.; Jayathilaka, N.; Emmanuel, N.; Zhou, C.Q.; et al. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 2005, 579, 4829–4836. [Google Scholar] [CrossRef] [PubMed]
- Sannino, A.; Zeni, O.; Romeo, S.; Massa, R.; Gialanella, G.; Grossi, G.; Manti, L.; Vijayalaxmi; Scarfi, M.R. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: Resistance to ionizing radiation-induced damage. J. Radiat. Res. 2014, 55, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.Y.; Lin, T.; Wang, D.W.; Peng, R.Y.; Wang, S.M.; Gao, Y.B.; Xu, X.P.; Li, Y.; Wang, S.X.; Zhao, L.; et al. Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int. J. Med. Sci. 2014, 11, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, W.; Lu, M.X.; Xu, Q.; Meng, Q.Q.; Nie, J.H.; Tong, J. 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells. J. Toxicol. Environ. Health A 2009, 72, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Kwak, H.J.; Lee, Y.M.; Lee, J.W.; Park, M.J.; Ko, Y.G.; Choi, H.D.; Kim, N.; Pack, J.K.; Hong, S.I.; et al. Acute radio frequency irradiation does not affect cell cycle, cellular migration, and invasion. Bioelectromagnetics 2008, 29, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Scarfì, M.R.; Fresegna, A.M.; Villani, P.; Pinto, R.; Marino, C.; Sarti, M.; Altavista, P.; Sannino, A.; Lovisolo, G.A. Exposure to radiofrequency radiation (900 MHz, GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes: An interlaboratory study. Radiat. Res. 2006, 165, 655–663. [Google Scholar]
- Capri, M.; Scarcella, E.; Fumelli, C.; Bianchi, E.; Salvioli, S.; Mesirca, P.; Agostini, C.; Antolini, A.; Schiavoni, A.; Castellani, G.; et al. In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: Studies of proliferation, apoptosis and mitochondrial membrane potential. Radiat Res. 2004, 162, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Kim, B.C.; Han, N.K.; Lee, Y.S.; Kim, T.; Yun, J.H.; Kim, N.; Pack, J.K.; Lee, J.S. Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins. Bioelectromagnetics 2011, 32, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Schrader, T.; Munter, K.; Kleine-Ostmann, T.; Schmid, E. Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals. Bioelectromagnetics 2008, 29, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Caraglia, M.; Marra, M.; Mancinelli, F.; D’Ambrosio, G.; Massa, R.; Giordano, A.; Budillon, A.; Abbruzzese, A.; Bismuto, E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J. Cell. Physiol. 2005, 204, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Kim, H.R.; Kim, M.S.; Park, S.; Yoon, E.S.; Park, S.H.; Kim, D.W. Influence of smartphone Wi-Fi signals on adipose-derived stem cells. J. Craniofac. Surg. 2014, 25, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Schrader, T.; Kleine-Ostmann, T.; Munter, K.; Jastrow, C.; Schmid, E. Spindle disturbances in human-hamster hybrid (AL) cells induced by the electrical component of the mobile communication frequency range signal. Bioelectromagnetics 2011, 32, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Mariampillai, A.; Kutzner, B.C.; Wilkins, R.C.; Ferrarotto, C.; Bellier, P.V.; Marro, L.; Gajda, G.B.; Lemay, E.; Thansandote, A.; et al. Evaluating the biological effects of intermittent 1.9 GHz pulse-modulated radiofrequency fields in a series of human-derived cell lines. Radiat. Res. 2007, 167, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Wen, J.Q.; Fan, Y.B. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons. Neurotoxic. Res. 2011, 20, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, M.; Takeda, H.; Yasunaga, K.; Sakuma, N.; Hirose, H.; Nojima, T.; Miyakoshi, J. 2-GHz band CW and W-CDMA modulated radiofrequency fields have no significant effect on cell proliferation and gene expression profile in human cells. J. Radiat. Res. 2010, 51, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ma, Q.; Liu, C.; Deng, P.; Zhu, G.; Zhang, L.; He, M.; Lu, Y.; Duan, W.; Pei, L.; et al. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci. Rep. 2014, 4, 5103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Tai, J.L.; Li, G.Q.; Zhang, Z.W.; Xue, J.H.; Liu, H.S.; Zhu, H.; Cheng, J.D.; Liu, Y.L.; Li, A.M.; et al. Exposure to 1950-MHz TD-SCDMA electromagnetic fields affects the apoptosis of astrocytes via caspase-3-dependent pathway. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed]
- Stagg, R.B.; Thomas, W.J.; Jones, R.A.; Adey, W.R. DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics 1997, 18, 230–236. [Google Scholar] [CrossRef]
- Cleary, S.F.; Cao, G.; Liu, L.M. Effects of isothermal 2.45 GHz microwave radiation on the mammalian cell cycle: Comparison with effects of isothermal 27 MHz radiofrequency radiation exposure. Bioelectrochem. Bioenerg. 1996, 39, 167–173. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, G.; Wang, Z.; Liu, Y.; Dong, J.; Dong, X.; Liu, J.; Cao, J.; Ao, L.; Zhang, S. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800 MHz radiofrequency electromagnetic radiation. Toxicol. Lett. 2014, 228, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Szabo, I.; Rojavin, M.A.; Rogers, T.J.; Ziskin, M.C. Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics 2001, 22, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Czyz, J.; Guan, K.; Zeng, Q.; Nikolova, T.; Meister, A.; Schonborn, F.; Schuderer, J.; Kuster, N.; Wobus, A.M. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor P53-deficient embryonic stem cells. Bioelectromagnetics 2004, 25, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Lixia, S.; Yao, K.; Kaijun, W.; Deqiang, L.; Huajun, H.; Xiangwei, G.; Baohong, W.; Wei, Z.; Jianling, L.; Wei, W. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat. Res. 2006, 602, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Takashima, Y.; Hirose, H.; Koyama, S.; Suzuki, Y.; Taki, M.; Miyakoshi, J. Effects of continuous and intermittent exposure to RF fields with a wide range of SARs on cell growth, survival, and cell cycle distribution. Bioelectromagnetics 2006, 27, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, G.; Giuliani, A.; Fernandez, M.; Mesirca, P.; Bersani, F.; Pinto, R.; Ardoino, L.; Lovisolo, G.A.; Giardino, L.; Calza, L. Effect of radiofrequency electromagnetic field exposure on in vitro models of neurodegenerative disease. Bioelectromagnetics 2009, 30, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.S.; Huang, B.T.; Huang, Y.X. Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid. Med. Cell. Longevity 2012. [Google Scholar] [CrossRef] [PubMed]
- Terro, F.; Magnaudeix, A.; Crochetet, M.; Martin, L.; Bourthoumieu, S.; Wilson, C.M.; Yardin, C.; Leveque, P. GSM-900 MHz at low dose temperature-dependently downregulates alpha-synuclein in cultured cerebral cells independently of chaperone-mediated-autophagy. Toxicology 2012, 292, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Duranti, G.; Rossi, A.; Rosato, N.; Fazio, G.; Sacerdoti, G.; Rossi, P.; Falsaperla, R.; Cannelli, V.; Supino, R. In vitro evaluation of biological effects on human keratinocytes exposed to 900 MHz electromagnetic field. Environmentalist 2005, 25, 113–119. [Google Scholar] [CrossRef]
- Maes, A.; Collier, M.; Slaets, D.; Verschaeve, L. 954 MHz microwaves enhance the mutagenic properties of mitomycin C. Environ. Mol. Mutagen. 1996, 28, 26–30. [Google Scholar] [CrossRef]
- Trillo, M.A.; Cid, M.A.; Martinez, M.A.; Page, J.E.; Esteban, J.; Ubeda, A. Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals. Bioelectromagnetics 2011, 32, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Esmekaya, M.A.; Aytekin, E.; Ozgur, E.; Guler, G.; Ergun, M.A.; Omeroglu, S.; Seyhan, N. Mutagenic and morphologic impacts of 1.8 GHz radiofrequency radiation on human peripheral blood lymphocytes (hPBLs) and possible protective role of pre-treatment with ginkgo biloba (EGB 761). Sci. Total Environ. 2011, 410–411, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Gualini, S.; Cavallini, C.; Fontani, V.; Ventura, C. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell. Transplant. 2013, 22, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Velizarov, S.; Raskmark, P.; Kwee, S. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem. Bioenerg. 1999, 48, 177–180. [Google Scholar] [CrossRef]
- Falzone, N.; Huyser, C.; Franken, D.R.; Leszczynski, D. Mobile phone radiation does not induce pro-apoptosis effects in human spermatozoa. Radiat. Res. 2010, 174, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, F.; La Sala, D.; Cicciotti, G.; Cattini, L.; Trimarchi, C.; Putti, S.; Zamparelli, A.; Giuliani, L.; Tomassetti, G.; Cinti, C. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J. Cell. Physiol. 2004, 198, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi; Mohan, N.; Meltz, M.L.; Wittler, M.A. Proliferation and cytogenetic studies in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Int. J. Radiat. Biol. 1997, 72, 751–757. [Google Scholar] [PubMed]
- French, P.; Donnellan, M.; McKenzie, D.R. Electromagnetic radiation at 835 MHz changes the morphology and inhibits proliferation of a human astrocytoma cell line. Bioelectrochem. Bioenerg. 1997, 43, 13–18. [Google Scholar] [CrossRef]
- Merola, P.; Marino, C.; Lovisolo, G.A.; Pinto, R.; Laconi, C.; Negroni, A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics 2006, 27, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi; Bisht, K.S.; Pickard, W.F.; Meltz, M.L.; Roti Roti, J.L.; Moros, E.G. Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847.74 MHz, CDMA). Radiat. Res. 2001, 156, 430–432. [Google Scholar] [PubMed]
- Gurisik, E.; Warton, K.; Martin, D.K.; Valenzuela, S.M. An in vitro study of the effects of exposure to a GSM signal in two human cell lines: Monocytic U937 and neuroblastoma SK-N-SH. Cell. Biol. Int. 2006, 30, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, J.; Takemasa, K.; Takashima, Y.; Ding, G.R.; Hirose, H.; Koyama, S. Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 2005, 26, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi; Leal, B.Z.; Meltz, M.L.; Pickard, W.F.; Bisht, K.S.; Roti Roti, J.L.; Straube, W.L.; Moros, E.G. Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA). Radiat. Res. 2001, 155, 113–121. [Google Scholar] [PubMed]
- Higashikubo, R.; Ragouzis, M.; Moros, E.G.; Straube, W.L.; Roti Roti, J.L. Radiofrequency electromagnetic fields do not alter the cell cycle progression of C3H 10T and U87MG cells. Radiat. Res. 2001, 156, 786–795. [Google Scholar] [CrossRef]
- Moisescu, M.G.; Leveque, P.; Bertrand, J.R.; Kovacs, E.; Mir, L.M. Microscopic observation of living cells during their exposure to modulated electromagnetic fields. Bioelectrochemistry 2008, 74, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi; Reddy, A.B.; McKenzie, R.J.; McIntosh, R.L.; Prihoda, T.J.; Wood, A.W. Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields. Bioelectromagnetics 2013, 34, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Hintzsche, H.; Jastrow, C.; Kleine-Ostmann, T.; Karst, U.; Schrader, T.; Stopper, H. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed]
- Moquet, J.; Ainsbury, E.; Bouffler, S.; Lloyd, D. Exposure to low level GSM 935 MHz radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells. Radiat. Prot. Dosim. 2008, 131, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, P.; Bohnenberger, S.; Greinert, R.; Hermann-Then, B.; Heselich, A.; Klug, S.J.; Koenig, J.; Kuhr, K.; Kuster, N.; Merker, M.; et al. Influence of GSM signals on human peripheral lymphocytes: Study of genotoxicity. Radiat. Res. 2013, 179, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Hintzsche, H.; Jastrow, C.; Kleine-Ostmann, T.; Schrader, T.; Stopper, H. 900 MHz radiation does not induce micronucleus formation in different cell types. Mutagenesis 2012, 27, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Naziroglu, M.; Cig, B.; Dogan, S.; Uguz, A.C.; Dilek, S.; Faouzi, D. 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+ influx in human leukemia cancer cells. Int. J. Radiat. Biol. 2012, 88, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, D.; Shu, Z.; Zhou, H.; Zuo, H.; Wang, S.; Li, Y.; Xu, X.; Li, N.; Peng, R. Cytokines produced by microwave-radiated sertoli cells interfere with spermatogenesis in rat testis. Andrologia 2012. [Google Scholar] [CrossRef] [PubMed]
- Hirose, H.; Sakuma, N.; Kaji, N.; Suhara, T.; Sekijima, M.; Nojima, T.; Miyakoshi, J. Phosphorylation and gene expression of P53 are not affected in human cells exposed to 2.1425 GHz band Cw or W-CDMA modulated radiation allocated to mobile radio base stations. Bioelectromagnetics 2006, 27, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, T.; Czyz, J.; Rolletschek, A.; Blyszczuk, P.; Fuchs, J.; Jovtchev, G.; Schuderer, J.; Kuster, N.; Wobus, A.M. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. Faseb. J. 2005, 19, 1686–1688. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, G.; Chen, C.; Sun, C.; Zhang, D.; Murbach, M.; Kuster, N.; Zeng, Q.; Xu, Z. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Hoyto, A.; Luukkonen, J.; Juutilainen, J.; Naarala, J. Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants. Radiat. Res. 2008, 170, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, E.; Guler, G.; Kismali, G.; Seyhan, N. Mobile phone radiation alters proliferation of hepatocarcinoma cells. Cell. Biochem. Biophys. 2014, 70, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hao, D.; Wang, M.; Zeng, Y.; Wu, S.; Zeng, Y. Cellular neoplastic transformation induced by 916 MHz microwave radiation. Cell. Mol. Neurobiol. 2012, 32, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Hoyto, A.; Sokura, M.; Juutilainen, J.; Naarala, J. Radiofrequency radiation does not significantly affect ornithine decarboxylase activity, proliferation, or caspase-3 activity of fibroblasts in different physiological conditions. Int. J. Radiat. Biol. 2008, 84, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Pacini, S.; Ruggiero, M.; Sardi, I.; Aterini, S.; Gulisano, F.; Gulisano, M. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol. Res. 2002, 13, 19–24. [Google Scholar] [PubMed]
- Yao, K.; Wang, K.J.; Sun, Z.H.; Tan, J.; Xu, W.; Zhu, L.J.; Lu, D.Q. Low power microwave radiation inhibits the proliferation of rabbit lens epithelial cells by upregulating P27Kip1 expression. Mol. Vis. 2004, 10, 138–143. [Google Scholar] [PubMed]
- WHO. Health and Environmental Effects of Exposure to Static and Time Varying Electric and Magnetic Fields: Guidelines for Quality Research. Available online: http://apps.who.int/iris/bitstream/10665/64013/1/WHO_EHG_98.13.pdf (accessed on 10 February 2016).
- Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C.A.; Causton, H.C.; et al. Minimum information about a microarray experiment (MIAME)—Toward standards for microarray data. Nat. Genet. 2001, 29, 365–371. [Google Scholar] [CrossRef] [PubMed]
Biological Endpoint | Cell Type | Frequency | Exposure Duration | SAR |
---|---|---|---|---|
apoptosis | primary cells | 0.5–1 GHz | acute (≤60 min) | ≤1 W/kg |
cell proliferation | cell lines | 1–3 GHz | long (1–24 h) | 1–2 W/kg |
“cellular life” | 3–10 GHZ | chronic (day/s) | >2 W/kg | |
>10 GHz |
Reference | Number of Experiments | Reference | Number of Experiments | Reference | Number of Experiments | Reference | Number of Experiments |
---|---|---|---|---|---|---|---|
[16] | 15 | [17] | 2 | [18] | 4 | [19] | 4 |
[20] | 18 | [21] | 2 | [22] | 3 | [23] | 2 |
[24] | 2 | [25] | 3 | [26] | 4 | [27] | 2 |
[28] | 4 | [29] | 6 | [30] | 2 | [31] | 6 |
[32] | 1 | [33] | 2 | [34] | 4 | [35] | 1 |
[36] | 1 | [37] | 8 | [38] | 3 | [39] | 2 |
[40] | 1 | [41] | 2 | [42] | 4 | [43] | 1 |
[44] | 1 | [45] | 4 | [46] | 2 | [47] | 7 |
[48] | 2 | [49] | 1 | [50] | 2 | [51] | 10 |
[52] | 2 | [53] | 3 | [54] | 4 | [55] | 2 |
[56] | 2 | [57] | 1 | [58] | 6 | [59] | 1 |
[60] | 4 | [61] | 2 | [62] | 9 | [63] | 7 |
[64] | 2 | [65] | 3 | [66] | 10 | [67] | 4 |
[68] | 1 | [69] | 3 | [70] | 2 | [71] | 2 |
[72] | 11 | [73] | 1 | [74] | 36 | [75] | 7 |
[76] | 1 | [77] | 12 | [78] | 4 | [79] | 13 |
[80] | 1 | [81] | 12 | [82] | 3 | [83] | 10 |
[84] | 4 | [85] | 5 | [86] | 2 | [87] | 2 |
[88] | 1 | [89] | 2 | [90] | 4 | [91] | 2 |
[92] | 1 | [93] | 2 | [94] | 10 | [95] | 2 |
[96] | 2 | [97] | 6 | [98] | 2 | [99] | 2 |
[100] | 2 | [101] | 4 | [102] | 8 | [103] | 1 |
[104] | 2 | [105] | 4 | [106] | 3 | [107] | 3 |
[108] | 4 | [109] | 4 | [110] | 1 | [111] | 14 |
[112] | 8 | [113] | 12 | [114] | 12 | [115] | 16 |
[116] | 3 | [117] | 8 | [118] | 1 | [119] | 5 |
Quality Score a | High-Q (%) | Low-Q (%) | p Value d |
---|---|---|---|
1 | 21.1 | 27.5 | 0.19 |
2 | 19.6 | 31.4 | 0.014 |
3 | 17.7 | 29.8 | 0.002 |
4 | 13.2 | 30.3 | 4 × 10−6 |
5 | 1.8 | 27.5 | 4 × 10−11 |
S + D b | 15.5 | 34.2 | 4 × 10−6 |
S + D + T c | 16.1 | 31.8 | 6 × 10−5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simkó, M.; Remondini, D.; Zeni, O.; Scarfi, M.R. Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure. Int. J. Environ. Res. Public Health 2016, 13, 701. https://doi.org/10.3390/ijerph13070701
Simkó M, Remondini D, Zeni O, Scarfi MR. Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure. International Journal of Environmental Research and Public Health. 2016; 13(7):701. https://doi.org/10.3390/ijerph13070701
Chicago/Turabian StyleSimkó, Myrtill, Daniel Remondini, Olga Zeni, and Maria Rosaria Scarfi. 2016. "Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure" International Journal of Environmental Research and Public Health 13, no. 7: 701. https://doi.org/10.3390/ijerph13070701
APA StyleSimkó, M., Remondini, D., Zeni, O., & Scarfi, M. R. (2016). Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure. International Journal of Environmental Research and Public Health, 13(7), 701. https://doi.org/10.3390/ijerph13070701