Small-Scale Variations in Urban Air Pollution Levels Are Significantly Associated with Premature Births: A Case Study in São Paulo, Brazil
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Definition of the Study
2.2. Study Location
2.3. Identification of Spatial Clusters of Prematurity
2.4. Definition of Cases and Controls
2.5. Variables Related to Mothers
2.6. Estimates of Air Pollution Exposure
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Approval
References
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Gravett, M.G.; Rubens, C.E.; Nunes, T.M. Global report on preterm birth and stillbirth (2 of 7): Discovery science. BMC Pregnancy Childbirth 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.J.; McWilliam, O.A.; Newnham, J.P.; Pennell, C.E. Preterm birth aetiology 2004–2008. Maternal factors associated with three phenotypes: Spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. J. Matern. Fetal Neonatal Med. 2012, 25, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Visentin, S.; Grumolato, F.; Nardelli, G.B.; Di Camillo, B.; Grisan, E.; Cosmi, E. Early origins of adult disease: Low birth weight and vascular remodeling. Atherosclerosis 2014, 237, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, M.; Tian, H.; Liu, Z.; Yin, X.; Xi, B. Preterm birth and risk of type 1 and type 2 diabetes: Systematic review and meta-analysis. Obes. Rev. 2014, 15, 804–811. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.; Sozo, F.; Harding, R. Impact of preterm birth and bronchopulmonary dysplasia on the developing lung: Long-term consequences for respiratory health. Clin. Exp. Pharmacol. Physiol. 2013, 40, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Bayman, E.; Drake, A.J.; Piyasena, C. Prematurity and programming of cardiovascular disease risk: A future challenge for public health. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F510–F514. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhu, T.; Qu, Y.; Mu, D. Prenatal, perinatal and neonatal risk factors for intellectual disability: A systemic review and meta analysis. PLoS ONE 2016, 11, e0153655. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.H.; Baccarelli, A.A.; Wright, R.O.; Wright, R.J. Epigenetics: Linking social and environmental exposures to preterm birth. Pediatr. Res. 2016, 79, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Stieb, D.M.; Chen, L.; Eshoul, M.; Judek, S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 2012, 117, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Malley, C.S.; Kuylenstierna, J.C.; Vallack, H.W.; Henze, D.K.; Blencowe, H.; Ashmore, M.R. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment. Environ. Int. 2017, 101, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Balkhair, T.; Knowledge Synthesis Group on Determinants of Preterm/LBW births. Air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef] [PubMed]
- Veras, M.M.; Damaceno-Rodrigues, N.R.; Caldini, E.G.; Ribeiro, A.A.M.; Mayhew, T.M.; Saldiva, P.H.; Dolhnikoff, M. Particulate urban air pollution affects the functional morphology of mouse placenta. Biol. Reprod. 2008, 79, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Van den Hooven, E.H.; Pierik, F.H.; de Kluizenaar, Y.; Hofman, A.; van Ratingen, S.W.; Zandveld, P.Y.; Russcher, H.; Lindemans, J.; Miedema, H.M.; Steeqers, E.A.; et al. Air pollution exposure and markers of placental growth and function: The generation R study. Environ. Health Perspect. 2012, 120, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Novack, L.; Yitshak-Sade, M.; Landau, D.; Kloog, I.; Sarov, B.; Karakis, I. Association between ambient air pollution and proliferation of umbilical cord blood cells. Environ. Res. 2016, 151, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.A.; Bernardes, L.S.; Hettfleisch, K.; Pastro, L.D.; Vieira, S.E.; Saldiva, S.R.; Saldiva, P.H.; Francisco, R.P. Associations of maternal personal exposure to air pollution on fetal weight and fetoplacental Doppler: A prospective cohort study. Reprod. Toxicol. 2016, 62, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Vadillo-Ortega, F.; Osornio-Vargas, A.; Buxton, M.A.; Sánchez, B.N.; Rojas-Bracho, L.; Viveros-Alcaráz, M.; Castillo-Castrejón, M.; Beltrán-Montoya, J.; Brown, D.G.; O’Neill, M.S. Air pollution, inflammation and preterm birth: A potential mechanistic link. Med Hypotheses 2014, 82, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajat, A.; Hsia, C.; O’Neill, M.S. Socioeconomic disparities and air pollution exposure: A global review. Curr. Environ. Health Rpt. 2015, 2, 440. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Tu, W.; Tedders, S.H. Spatial variations in the associations of term birth weight with ambient air pollution in Georgia, USA. Environ. Int. 2016, 92, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.; Liverani, S.; Su, J.G.; Molitor, J. Multi-pollutant modeling through examination of susceptible subpopulations using profile regression. Curr. Environ. Health Rep. 2018, 5, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Passini, R., Jr.; Cecatti, J.G.; Lajos, G.J.; Tedesco, R.P.; Nomura, M.L.; Dias, T.Z.; Haddad, S.M.; Rehder, P.M.; Pacagnella, R.C.; Costa, M.L.; et al. Brazilian Multicentre Study on Preterm Birth (EMIP): Prevalence and factors associated with spontaneous preterm birth. PLoS ONE 2014, 9, e109069. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Preterm Birth: Causes, Consequences, and Prevention; Behrman, R.E., Butler, A.S., Eds.; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- SaTScanTM, v9.3; Boston, MA, USA, 2014. Available online: http://www.satscan.org/ (accessed on 14 October 2014).
- Novaes, P.; Saldiva, P.H.N.; Kara-José, N.; Macchione, M.; Matsuda, M.; Racca, L.; Berra, A. Ambient levels of air pollution induce goblet-cell hyperplasia in human conjunctival epithelium. Environ. Health Perspect. 2007, 115, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Saldiva de André, C.D.; de André, P.A.; Rocha, F.M.; Saldiva, P.H.N.; Oliveira, R.C.; Singer, J.M. Reliability of reflectance measures in passive filters. Atmos. Environ. 2014, 92, 178e181. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, M.F.H.; Ribeiro, F.Q.; Fernandes-Filho, F.N.; Lobo, D.J.A.; Barbosa, F.; Rhoden, C.R.; Mauad, T.; Saldiva, P.H.N.; Carvalho-Oliveira, R. Pollen abortion rates, nitrogen dioxide by passive diffusive tubes and bioaccumulation in tree barks are effective in the characterization of air pollution. Environ. Exp. Bot. 2011, 72, 272–277. [Google Scholar] [CrossRef]
- Amato-Lourenco, L.F.; Lobo, D.J.A.; Guimarães, E.T.; Moreira, T.C.L.; Carvalho-Oliveira, R.; Saiki, M.; Saldiva, P.H.N.; Mauad, T. Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens. Sci. Total Environ. 2017, 575, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Oliveira, R.; Amato-Lourenço, L.F.; Moreira, T.C.; Silva, D.R.R.; Vieira, B.D.; Mauad, T.; Saiki, M.; Saldiva, P.H.N. Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates. Environ. Int. 2017, 99, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.C.L.; de Oliveira, R.C.; Amato-Lourenço, L.F.; Kang, C.M.; Saldiva, P.H.N.; Saiki, M. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environ. Int. 2016, 91, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.C.L.; Amato-Lourenço, L.F.; da Silva, G.T.; Saldiva de André, C.D.; de André, P.A.; Barrozo, L.V.; Singer, J.M.; Saldiva, P.H.N.; Saiki, M.; Locosselli, G.M. The use of tree barks to monitor traffic related air pollution: A case study in São Paulo–Brazil. Front. Environ. Sci. 2018, 6, 72. [Google Scholar] [CrossRef]
- Schwartz, J.; Laden, F.; Zanobetti, A. The concentration-response relation between pm (2.5) and daily deaths. Environ. Health Perspect. 2002, 110, 1025. [Google Scholar] [CrossRef] [PubMed]
- Makri, A.; Stilianakis, N.I. Vulnerability to air pollution health effects. Int. J. Hyg. Environ. Health 2008, 211, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Guo, Y.; Abramson, M.J.; Williams, G.; Li, S. Exposure to low concentrations of air pollutants and adverse birth outcomes in Brisbane, Australia, 2003–2013. Sci. Total Environ. 2018, 622, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Brindley, P.; Maheswaran, R.; Pearson, T.; Wise, S.; Haining, R.P. Using modeled air pollution data for health surveillance. In GIS in Public Health Practice; Maheswaran, R., Craglia, M., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 125–150. [Google Scholar]
- HEADLAMP; World Health Organization; Office of Global and Integrated Environmental Health; United Nations Environment Programme & United States. Environmental Protection Agency. Linkage Methods for Environment and Health Analysis: General Guidelines: A Report of the Health and Environment Analysis for Decision-making (HEADLAMP) Project. Available online: http://www.who.int/iris/handle/10665/62988 (accessed on 17 September 2018).
- Fleischer, N.L.; Merialdi, M.; van Donkelaar, A.; Vadillo-Ortega, F.; Martin, R.V.; Betran, A.P.; Souza, J.P. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 2014, 122, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Rich, D.Q.; Liu, K.; Zhang, J.; Thurston, S.W.; Stevens, T.P.; Pan, Y.; Kane, C.; Weinberger, B.; Ohman-Strickland, P.; Woodruff, T.J.; Duan, X.; et al. Differences in birth weight associated with the 2008 Beijing Olympics air pollution reduction: Results from a natural experiment. Environ. Health Perspect. 2015, 123, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Giorgis-Allemand, L.; Pedersen, M.; Bernard, C.; Aguilera, I.; Beelen, R.M.; Chatzi, L.; Cirach, M.; Danileviciute, A.; Dedele, A.; van Eijsden, M.; et al. The influence of meteorological factors and atmospheric pollutants on the risk of preterm birth. Am. J. Epidemiol. 2017, 185, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.E.; Stein, R.T.; Ferraro, A.A.; Pastro, L.D.; Pedro, S.S.; Lemos, M.; da Silva, E.R.; Sly, P.D.; Saldiva, P.H. Urban air pollutants are significant risk factors for asthma and pneumonia in children: The influence of location on the measurement of pollutants. Arch. Bronconeumol. 2012, 48, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Soto, S.F.; Melo, J.O.; Marchesi, G.D.; Lopes, K.L.; Veras, M.M.; Oliveira, I.B.; Souza, R.M.; de Castro, I.; Furukawa, L.N.S.; Saldiva, P.H.N.; et al. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system. PLoS ONE 2017, 12, e0183314. [Google Scholar] [CrossRef] [PubMed]
Clusters | Mother’s Characteristics | Preterm | ||||
---|---|---|---|---|---|---|
No | % | Yes | % | Total | ||
Tremembé | <20 y | 10 | 2.8 | 7 | 4.0 | 17 |
Age p = 0.2 | 20–34.9 y | 256 | 71.7 | 113 | 64.2 | 369 |
≥35 y | 91 | 25.5 | 56 | 31.8 | 147 | |
Total | 357 | 100 | 176 | 100 | 533 | |
Ethnicity p = 0.3 | White | 175 | 49.0 | 76 | 43.2 | 251 |
Black | 48 | 13.4 | 21 | 11.9 | 69 | |
Asian | 3 | 0.8 | 0 | 0 | 3 | |
Mixed | 125 | 35.0 | 77 | 43.8 | 202 | |
Indigenous | 6 | 1.7 | 2 | 1.1 | 8 | |
Total | 357 | 100 | 176 | 100 | 533 | |
Education p = 0.01 | Elementary | 92 | 25.8 | 30 | 17.1 | 122 |
High school | 203 | 56.9 | 99 | 56.6 | 302 | |
College | 62 | 17.4 | 46 | 26.3 | 108 | |
Total | 357 | 100 | 175 | 100 | 532 | |
Civil status p = 0.2 | Single | 94 | 26.3 | 53 | 30.1 | 147 |
Married | 263 | 73.6 | 123 | 69.9 | 386 | |
Total | 357 | 100 | 176 | 100 | 533 | |
Residence time p = 0.28 | <1 year | 73 | 20.6 | 36 | 20.5 | 109 |
1–5 years | 130 | 36.6 | 76 | 43.2 | 206 | |
≥5 years | 152 | 42.8 | 64 | 36.4 | 216 | |
Total | 355 | 100 | 176 | 100 | 531 | |
Pedreira | <20 y | 21 | 5.9 | 7 | 4.5 | 28 |
Age p = 0.8 | 20–34.9 y | 234 | 66.1 | 101 | 66.0 | 335 |
≥35 y | 99 | 27.9 | 45 | 29.4 | 144 | |
Total | 354 | 100 | 153 | 100 | 507 | |
Ethnicity p = 0.57 | White | 124 | 40.1 | 67 | 45.0 | 191 |
Black | 65 | 21.0 | 27 | 18.1 | 92 | |
Asian | 2 | 0.6 | 0 | 0 | 2 | |
Mixed | 118 | 38.2 | 55 | 36.9 | 173 | |
Indigenous | 0 | 0 | 0 | 0 | 0 | |
Total | 309 | 100 | 149 | 100 | 458 | |
Education p = 0.87 | Elementary | 94 | 26.6 | 38 | 25.0 | 132 |
High school | 205 | 57.9 | 88 | 56.6 | 293 | |
College | 55 | 15.5 | 26 | 17.1 | 81 | |
Total | 354 | 100 | 152 | 100 | 506 | |
Civil status p = 0.63 | Single | 129 | 36.4 | 50 | 32.7 | 179 |
Married | 225 | 63.6 | 103 | 67.3 | 328 | |
Total | 354 | 100 | 153 | 100 | 507 | |
Residence time p = 0.25 | <1 year | 32 | 9.2 | 21 | 13.8 | 53 |
1–5 years | 138 | 39.5 | 61 | 40.1 | 199 | |
≥5 years | 179 | 51.3 | 70 | 46.1 | 249 | |
Total | 349 | 100 | 152 | 100 | 501 | |
Jardim Ângela | <20 y | 8 | 3.0 | 11 | 10.1 | 19 |
Age p = 0.02 | 20–34.9 y | 192 | 72.5 | 75 | 68.8 | 267 |
≥35 y | 65 | 24.5 | 23 | 21.1 | 88 | |
Total | 265 | 100 | 110 | 100 | 374 | |
Ethnicity p = 0.63 | White | 91 | 34.3 | 31 | 28.2 | 122 |
Black | 27 | 10.2 | 15 | 13.8 | 42 | |
Asian | 1 | 0.4 | 1 | 0.9 | 2 | |
Mixed | 145 | 54.7 | 61 | 56.0 | 207 | |
Indigenous | 1 | 0.4 | 1 | 0.9 | 2 | |
Total | 265 | 100 | 109 | 100 | 374 | |
Education p = 0.43 | Elementary | 56 | 21.4 | 28 | 25.9 | 84 |
High school | 163 | 62.2 | 67 | 62.0 | 230 | |
College | 43 | 16.4 | 13 | 12.0 | 56 | |
Total | 262 | 100 | 108 | 100 | 370 | |
Civil status p = 0.03 | Single | 75 | 28.3 | 39 | 35.8 | 114 |
Married | 190 | 71.7 | 70 | 64.2 | 260 | |
Total | 265 | 100 | 109 | 100 | 374 | |
Residence time p = 0.21 | <1 year | 34 | 12.8 | 21 | 19.3 | 55 |
1–5 years | 122 | 46.0 | 42 | 38.5 | 164 | |
≥5 years | 109 | 41.1 | 46 | 42.2 | 155 | |
Total | 265 | 100 | 109 | 100 | 374 |
Clusters | Prenatal Characteristics | Preterm | ||||
---|---|---|---|---|---|---|
No | % | Yes | % | Total | ||
Tremembé | 1 trimester | 310 | 87.6 | 151 | 87.7 | 461 |
Beginning prenatal care p = 0.7 | 2 trimester | 39 | 11.0 | 17 | 9.9 | 56 |
3 trimester | 5 | 1.4 | 4 | 2.3 | 9 | |
Total | 354 | 100 | 172 | 100 | 526 | |
Formal work p = 0.38 | Yes | 198 | 55.8 | 95 | 54.0 | 293 |
No | 157 | 42.2 | 81 | 46.0 | 238 | |
Total | 355 | 100 | 176 | 100 | 531 | |
Public assistance p = 0.08 | Yes | 250 | 70.6 | 113 | 64.2 | 363 |
No | 104 | 29.4 | 63 | 35.8 | 167 | |
Total | 354 | 100 | 176 | 100 | 530 | |
Number of consultations p = 0.39 | <7 | 74 | 21.1 | 39 | 22.5 | 113 |
≥7 | 277 | 78.9 | 134 | 77.5 | 411 | |
Total | 351 | 100 | 173 | 100 | 524 | |
Urinary infection p = 0.91 | Yes | 206 | 58.0 | 103 | 58.5 | 309 |
No | 149 | 42.0 | 73 | 41.5 | 222 | |
Total | 355 | 100 | 176 | 100 | 531 | |
Hypertension p = 0.12 | Yes | 52 | 14.6 | 35 | 19.9 | 87 |
No | 303 | 85.4 | 141 | 80.1 | 444 | |
Total | 355 | 100 | 176 | 100 | 531 | |
Type of delivery p = 0.2 | Vaginal | 171 | 48.0 | 92 | 52.3 | 263 |
C-section | 185 | 52.0 | 84 | 47.7 | 269 | |
Total | 356 | 100 | 176 | 100 | 532 | |
Pedreira | 1 trimester | 304 | 91.8 | 124 | 81.6 | 428 |
Beginning prenatal care p = 0.01 | 2 trimester | 26 | 7.9 | 23 | 15.1 | 49 |
3 trimester | 1 | 0.3 | 5 | 3.3 | 6 | |
Total | 331 | 100 | 152 | 100 | 483 | |
Formal work p = 0.53 | Yes | 177 | 50.7 | 77 | 50.7 | 254 |
No | 172 | 49.3 | 75 | 49.3 | 247 | |
Total | 349 | 100 | 152 | 100 | 501 | |
Public assistance p = 0.12 | Yes | 247 | 70.2 | 115 | 75.7 | 362 |
No | 105 | 29.8 | 37 | 24.3 | 142 | |
Total | 352 | 100 | 152 | 100 | 504 | |
Number of consultations p = 0.53 | <7 | 89 | 25.5 | 38 | 25.3 | 127 |
≥7 | 260 | 74.5 | 112 | 74.7 | 372 | |
Total | 349 | 100 | 150 | 100 | 499 | |
Urinary infection p = 0.001 | Yes | 29 | 8.3 | 63 | 41.4 | 92 |
No | 320 | 91.7 | 89 | 58.6 | 409 | |
Total | 349 | 100 | 152 | 100 | 501 | |
Hypertension p = 0.0001 | Yes | 21 | 6.0 | 36 | 23.7 | 57 |
No | 328 | 94.0 | 116 | 76.3 | 444 | |
Total | 349 | 100 | 152 | 100 | 501 | |
Type of delivery p = 0.32 | Vaginal | 197 | 55.6 | 81 | 52.9 | 278 |
C-section | 157 | 44.4 | 72 | 47.1 | 229 | |
Total | 354 | 100 | 153 | 100 | 507 | |
Jardim Ângela | 1 trimester | 241 | 90.9 | 93 | 86.1 | 334 |
Beginning prenatal care p = 0.18 | 2 trimester | 22 | 8.3 | 15 | 13.9 | 37 |
3 trimester | 2 | 0.8 | 0 | 0 | 2 | |
Total | 265 | 100 | 108 | 100 | 373 | |
Formal work p = 0.41 | Yes | 112 | 42.3 | 44 | 40.4 | 156 |
No | 153 | 57.7 | 65 | 59.6 | 218 | |
Total | 265 | 100 | 109 | 100 | 374 | |
Public assistance p = 0.02 | Yes | 168 | 63.6 | 82 | 75.2 | 250 |
No | 96 | 36.4 | 27 | 24.8 | 123 | |
Total | 264 | 100 | 109 | 100 | 373 | |
Number of consultations p = 0.43 | <7 | 53 | 20.0 | 20 | 18.5 | 73 |
≥7 | 212 | 80.0 | 88 | 81.5 | 300 | |
Total | 265 | 100 | 108 | 100 | 373 | |
Urinary infection p = 0.44 | Yes | 155 | 58.5 | 59 | 54.1 | 214 |
No | 110 | 41.5 | 50 | 45.9 | 160 | |
Total | 265 | 100 | 109 | 100 | 374 | |
Hypertension p = 0.97 | Yes | 46 | 17.4 | 19 | 17.4 | 65 |
No | 219 | 82.6 | 90 | 82.6 | 309 | |
Total | 265 | 100 | 109 | 100 | 374 | |
Type of delivery p = 0.34 | Vaginal | 126 | 47.5 | 55 | 50.5 | 181 |
C-section | 139 | 52.5 | 54 | 49.5 | 193 | |
Total | 265 | 100 | 109 | 100 | 374 |
Elements | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|
Al | 66.71 | 3873.10 | 571.52 | 500.98 |
Ba | 59.55 | 1736.03 | 325.65 | 219.68 |
Ca | 9985.05 | 39,883.30 | 25,167.06 | 4984.49 |
Cl | 29.59 | 772.51 | 144.19 | 64.43 |
Cu | 3.97 | 7.44 | 4.61 | 0.39 |
Fe | 115.79 | 3630.08 | 644.44 | 465.86 |
K | 540.46 | 8167.26 | 1998.30 | 904.04 |
Mg | 496.37 | 4442.16 | 1405.33 | 462.27 |
Mn | 18.48 | 1487.87 | 113.26 | 142.33 |
Na | 8.05 | 22.20 | 16.89 | 1.95 |
P | 367.18 | 1682.65 | 738.05 | 171.59 |
Rb | 7.04 | 24.76 | 12.28 | 1.83 |
S | 805.46 | 3699.55 | 1842.72 | 433.43 |
Sr | 27.74 | 159.26 | 78.75 | 17.63 |
Zn | 10.71 | 126.39 | 55.20 | 23.33 |
COMPONENT MATRIX | ||||
---|---|---|---|---|
ELEMENTS | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
CU | 0.686 | 0.140 | 0.485 | −0.167 |
CA | −0.362 | −0.621 | 0.339 | 0.485 |
K | 0.773 | 0.039 | 0.542 | −0.045 |
CL | 0.426 | 0.240 | 0.290 | −0.462 |
S | 0.298 | 0.582 | 0.459 | 0.442 |
P | 0.760 | 0.071 | 0.482 | 0.080 |
AL | 0.786 | −0.074 | −0.552 | 0.184 |
MG | −0.224 | 0.794 | −0.014 | −0.324 |
NA | −0.568 | −0.674 | 0.336 | −0.131 |
BA | 0.844 | 0.083 | −0.437 | 0.206 |
SR | −0.275 | 0.412 | 0.425 | 0.711 |
RB | 0.549 | −0.298 | 0.468 | −0.278 |
ZN | 0.519 | −0.722 | 0.017 | 0.208 |
MN | −0.333 | 0.731 | −0.057 | 0.157 |
FE | 0.808 | −0.003 | −0.536 | 0.192 |
Models | Variables | Exp (B) | p | Lower CI 95% | Upper CI 95% |
---|---|---|---|---|---|
Model 1—Pollutants | Low NO2 | 1.03 | 0.98 | 0.76 | 1.33 |
Low O3 | 0.50 | 0.001 | 0.36 | 0.69 | |
Factor 1 (level 2) | 0.91 | 0.60 | 0.65 | 1.28 | |
Factor 1 (level 3) | 1.51 | 0.02 | 1.08 | 2.12 | |
Factor 1 (level 4) | 1.73 | 0.004 | 1.19 | 2.50 | |
Model 2—Pollutants and mothers’ characteristics | Low NO2 | 0.99 | 0.96 | 0.75 | 1.32 |
Low O3 | 0.51 | 0.001 | 0.37 | 0.70 | |
Factor 1 (level 2) | 0.89 | 0.53 | 0.64 | 1.26 | |
Factor 1 (level 3) | 1.52 | 0.02 | 1.08 | 2.13 | |
Factor 1 (level 4) | 1.72 | 0.004 | 1.18 | 2.49 | |
Mother’s age (<19 y) | 1.50 | 0.14 | 0.87 | 2.58 | |
Mother’s age (>34 y) | 1.10 | 0.47 | 0.85 | 1.43 | |
High school level | 1.20 | 0.21 | 0.90 | 1.60 | |
University level | 1.32 | 0.14 | 0.91 | 1.90 | |
Model 3—Pollutants, mothers’ characteristics, smoking, use of drugs, and prenatal disease | Low NO2 | 0.86 | 0.33 | 0.63 | 1.16 |
Low O3 | 0.46 | 0.001 | 0.33 | 0.65 | |
Factor 1 (level 2) | 0.87 | 0.43 | 0.60 | 1.24 | |
Factor 1 (level 3) | 1.60 | 0.01 | 1.12 | 2.29 | |
Factor 1 (level 4) | 1.65 | 0.01 | 1.11 | 2.45 | |
Mother’s age (<19 y) | 1.41 | 0.45 | 0.79 | 2.51 | |
Mother’s age (>34 y) | 1.11 | 0.62 | 0.84 | 1.47 | |
High school level | 1.25 | 0.16 | 0.92 | 1.70 | |
University level | 1.52 | 0.05 | 0.99 | 2.31 | |
Public assistance | 1.34 | 0.05 | 1.00 | 1.80 | |
Use of drugs | 1.13 | 0.80 | 0.43 | 2.98 | |
Smoking | 0.79 | 0.28 | 0.51 | 1.22 | |
Alcohol consumption | 0.91 | 0.70 | 0.55 | 1.50 | |
Urinary infection | 1.69 | 0.001 | 1.31 | 2.19 | |
Hypertension | 1.71 | 0.001 | 1.23 | 2.38 | |
Syphilis | 5.02 | 0.001 | 1.93 | 13.05 | |
2nd trimester onset of prenatal care | 1.74 | 0.001 | 1.26 | 2.39 | |
3rd trimester onset of prenatal care | 1.18 | 0.72 | 0.47 | 2.98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldiva, S.R.D.M.; Barrozo, L.V.; Leone, C.R.; Failla, M.A.; Bonilha, E.D.A.; Bernal, R.T.I.; Oliveira, R.C.d.; Saldiva, P.H.N. Small-Scale Variations in Urban Air Pollution Levels Are Significantly Associated with Premature Births: A Case Study in São Paulo, Brazil. Int. J. Environ. Res. Public Health 2018, 15, 2236. https://doi.org/10.3390/ijerph15102236
Saldiva SRDM, Barrozo LV, Leone CR, Failla MA, Bonilha EDA, Bernal RTI, Oliveira RCd, Saldiva PHN. Small-Scale Variations in Urban Air Pollution Levels Are Significantly Associated with Premature Births: A Case Study in São Paulo, Brazil. International Journal of Environmental Research and Public Health. 2018; 15(10):2236. https://doi.org/10.3390/ijerph15102236
Chicago/Turabian StyleSaldiva, Silvia Regina Dias Medici, Ligia Vizeu Barrozo, Clea Rodrigues Leone, Marcelo Antunes Failla, Eliana De Aquino Bonilha, Regina Tomie Ivata Bernal, Regiani Carvalho de Oliveira, and Paulo Hilário Nascimento Saldiva. 2018. "Small-Scale Variations in Urban Air Pollution Levels Are Significantly Associated with Premature Births: A Case Study in São Paulo, Brazil" International Journal of Environmental Research and Public Health 15, no. 10: 2236. https://doi.org/10.3390/ijerph15102236
APA StyleSaldiva, S. R. D. M., Barrozo, L. V., Leone, C. R., Failla, M. A., Bonilha, E. D. A., Bernal, R. T. I., Oliveira, R. C. d., & Saldiva, P. H. N. (2018). Small-Scale Variations in Urban Air Pollution Levels Are Significantly Associated with Premature Births: A Case Study in São Paulo, Brazil. International Journal of Environmental Research and Public Health, 15(10), 2236. https://doi.org/10.3390/ijerph15102236