Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Sample Collection
2.2. Air and Urinary Exposure Assessment
2.3. DNA, RNA, and Histone Purification
2.4. Repetitive Element Expression
2.5. DNA Methylation Analysis
2.6. Histone-3-lysine-9 Trimethylation (H3K9me3)
2.7. Statistical Analysis
3. Results
3.1. Study Subjects and Exposure Assessment
3.2. Repetitive-Element Expression, Repetitive-Element Methylation, and H3K9me3 Modification by Occupational Groups
3.3. Repetitive Element Expression in Relation to Exposure Assessment
3.4. Repetitive Element Methylation and H3K9me3 Modification in Relation to Exposure Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Campo, L.; Rossella, F.; Mercadante, R.; Fustinoni, S. Exposure to BTEX and ethers in petrol station attendants and proposal of biological exposure equivalents for urinary benzene and MTBE. Ann. Occup. Hyg. 2016, 60, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Campo, L.; Cattaneo, A.; Consonni, D.; Scibetta, L.; Costamagna, P.; Cavallo, D.M.; Bertazzi, P.A.; Fustinoni, S. Urinary methyl tert-butyl ether and benzene as biomarkers of exposure to urban traffic. Environ. Int. 2011, 37, 404–411. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Poli, D.; Manini, P.; Andreoli, R.; Mozzoni, P.; Apostoli, P.; Mutti, A. Biomarkers of exposure to aromatic hydrocarbons and methyl tert-butyl ether in petrol station workers. Biomarkers 2012, 17, 343–351. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Diesel and Petrol Engine Exhausts and Some Nitroarenes; IARC: Lyon, France, 2013. [Google Scholar]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs; IARC: Lyon, Fance, 1987. [Google Scholar]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic risk of Chemicals to Humans, Some Chemicals that Cause Tumors of the Kidney or Urinary Bladder in Rodents and Some Other Substances; IARC: Lyon, France, 1999. [Google Scholar]
- Fustinoni, S.; Consonni, D.; Campo, L.; Buratti, M.; Colombi, A.; Pesatori, A.C.; Bonzini, M.; Bertazzi, P.A.; Foà, V.; Garte, S.; et al. Monitoring low benzene exposure: Comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Baccarelli, A.; Hou, L.; Bonzini, M.; Fustinoni, S.; Cavallo, D.; Byun, H.M.; Jiang, J.; Marinelli, B.; Pesatori, A.C.; et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Fustinoni, S.; Rossella, F.; Polledri, E.; Bollati, V.; Campo, L.; Byun, H.M.; Agnello, L.; Consonni, D.; Pesatori, A.C.; Baccarelli, A.; et al. Global DNA methylation and low-level exposure to benzene. Med. Lav. 2012, 103, 84–95. [Google Scholar] [PubMed]
- Ji, Z.; Zhang, L.; Peng, V.; Ren, X.; McHale, C.M.; Smith, M.T. A comparison of the cytogenetic alterations and global DNA hypomethylation induced by the benzene metabolite, hydroquinone, with those induced by melphalan and etoposide. Leukemia 2010, 24, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, X.R.; Li, X.F.; Suriguga; Yu, C.H.; Li, Y.R.; Yi, Z.C. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to phenol and hydroquinone. Toxicology 2013, 312, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Chen, Q.; Li, G.; Zhang, L.; Zheng, M.; Zou, Z.; Hou, L.; Wang, Q.F.; Liu, X.; Guo, X. Microsomal epoxide hydrolase (EPHX1) polymorphisms are associated with aberrant promoter methylation of ERCC3 and hematotoxicity in benzene-exposed workers. Environ. Mol. Mutagen. 2013, 54, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Wang, Q.F.; Li, B.; Tian, H.; Ni, Y.; Yin, S.; Li, G. Methylation and expression analysis of tumor suppressor genes p15 and p16 in benzene poisoning. Chem. Biol. Interact. 2010, 184, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bai, W.; Niu, P.; Tian, L.; Gao, A. Aberrant hypomethylated stat3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and MRNA expression data. Exp. Mol. Pathol. 2014, 96, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.M.; Motta, V.; Panni, T.; Bertazzi, P.A.; Apostoli, P.; Hou, L.; Baccarelli, A.A. Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants. Part. Fibre Toxicol. 2013, 10, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordaux, R.; Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009, 10, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Aporntewan, C.; Phokaew, C.; Piriyapongsa, J.; Ngamphiw, C.; Ittiwut, C.; Tongsima, S.; Mutirangura, A. Hypomethylation of intragenic line-1 represses transcription in cancer cells through AGO2. PLoS ONE 2011, 6, e17934. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Strub, K. Multiple roles of Alu-related noncoding RNAS. Prog. Mol. Subcell. Biol. 2011, 51, 119–146. [Google Scholar] [PubMed]
- Kaneko, H.; Dridi, S.; Tarallo, V.; Gelfand, B.D.; Fowler, B.J.; Cho, W.G.; Kleinman, M.E.; Ponicsan, S.L.; Hauswirth, W.W.; Chiodo, V.A.; et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 2011, 471, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Castelnuovo, M.; Massone, S.; Tasso, R.; Fiorino, G.; Gatti, M.; Robello, M.; Gatta, E.; Berger, A.; Strub, K.; Florio, T.; et al. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J. 2010, 24, 4033–4046. [Google Scholar] [CrossRef] [PubMed]
- Belancio, V.P.; Roy-Engel, A.M.; Deininger, P.L. All y’all need to know ’bout retroelements in cancer. Semin. Cancer Biol. 2010, 20, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Varshney, D.; Vavrova-Anderson, J.; Oler, A.J.; Cowling, V.H.; Cairns, B.R.; White, R.J. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat. Commun. 2015, 6, 6569. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Rota, F.; Ragni, E.; Favero, C.; Motta, V.; Lazzari, L.; Bollati, V.; Fustinoni, S.; Dieci, G. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells. Biochem. Biophys. Res. Commun. 2016, 474, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Fustinoni, S.; Campo, L.; Polledri, E.; Mercadante, R.; Erspamer, L.; Ranzi, A.; Lauriola, P.; Goldoni, C.A.; Bertazzi, P.A. Validated method for urinary cotinine quantification used to classify active and environmental tobacco smoke exposure. Curr. Anal. Chem. 2013, 9, 447–456. [Google Scholar] [CrossRef]
- Kroll, M.H.; Chester, R.; Hagengruber, C.; Blank, D.W.; Kestner, J.; Rawe, M. Automated determination of urinary creatinine without sample diluition: Theory and practice. Clin. Chem. 1986, 32, 446–452. [Google Scholar] [PubMed]
- Chen, H.; Ke, Q.; Kluz, T.; Yan, Y.; Costa, M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol. Cell. Biol. 2006, 26, 3728–3737. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Kupper, L.L.; Rappaport, S.M. Air samples versus biomarkers for epidemiology. Occup. Environ. Med. 2005, 62, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Seow, W.J.; Pesatori, A.C.; Dimont, E.; Farmer, P.B.; Albetti, B.; Ettinger, A.S.; Bollati, V.; Bolognesi, C.; Roggieri, P.; Panev, T.I.; et al. Urinary benzene biomarkers and DNA methylation in bulgarian petrochemical workers: Study findings and comparison of linear and beta regression models. PLoS ONE 2012, 7, e50471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, B.T.; Gao, T.; Zheng, Y.; Liu, L.; Zhang, W.; Dai, Q.; Shrubsole, M.J.; Hibler, E.A.; Cristofanilli, M.; Zhang, H.; et al. Prospective changes in global DNA methylation and cancer incidence and mortality. Br. J. Cancer 2016, 115, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Häsler, J.; Strub, K. Alu elements as regulators of gene expression. Nucleic Acids Res. 2006, 34, 5491–5497. [Google Scholar] [CrossRef] [PubMed]
- Jurka, J.; Smith, T. A fundamental division in the Alu family of repeated sequences. Proc. Natl. Acad. Sci. USA 1988, 85, 4775–4778. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Szak, S.T.; Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 2004, 429, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Dewannieux, M.; Esnault, C.; Heidmann, T. Line-mediated retrotransposition of marked Alu sequences. Nat. Genet. 2003, 35, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Polak, P.; Domany, E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genom. 2006, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Boeke, J.D. Line-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression? Bioessays 2005, 27, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Carnevali, D.; Bollati, V.; Fustinoni, S.; Pellegrini, M.; Dieci, G. Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data. Nucleic Acids Res. 2015, 43, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Bleasdale, C.; Kennedy, G.; MacGregor, J.O.; Nieschalk, J.; Pearce, K.; Watson, W.P.; Golding, B.T. Chemistry of muconaldehydes of possible relevance to the toxicology of benzene. Environ. Health Perspect. 1996, 104 (Suppl. 6), 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shen, H.M.; Shi, C.Y.; Ong, C.N. Benzene metabolites enhance reactive oxygen species generation in HL60 human leukemia cells. Hum. Exp. Toxicol. 1996, 15, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Kurdistani, S.K. Histone modifications in cancer biology and prognosis. Prog. Drug Res. 2011, 67, 91–106. [Google Scholar] [PubMed]
- Teneng, I.; Montoya-Durango, D.E.; Quertermous, J.L.; Lacy, M.E.; Ramos, K.S. Reactivation of l1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 2011, 6, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Cantone, L.; Nordio, F.; Hou, L.; Apostoli, P.; Bonzini, M.; Tarantini, L.; Angelici, L.; Bollati, V.; Zanobetti, A.; Schwartz, J.; et al. Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ. Health Perspect. 2011, 119, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Philbrook, N.A.; Winn, L.M. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice. Toxicol. Appl. Pharmacol. 2015, 289, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chappell, G.; Pogribny, I.P.; Guyton, K.Z.; Rusyn, I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mut. Res. Rev. Mut. Res. 2016, 768, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Herceg, Z.; Lambert, M.P.; van Veldhoven, K.; Demetriou, C.; Vineis, P.; Smith, M.T.; Straif, K.; Wild, C.P. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013, 34, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
Personal Characteristic | Statistics | Petrol Station Workers (N = 89) | Controls (N = 90) | p |
---|---|---|---|---|
Age (years) | mean ± SD | 44 ± 11 | 44 ± 11 | 0.9671 |
Sex (male) | N (%) | 89 (100%) | 90 (100%) | - |
BMI (kg/m2) | mean ± SD | 25.9 ± 3.1 | 26.2 ± 3.4 | 0.6000 |
Cotinine | ||||
>100 μg/L | N (%) | 40 (45%) | 36 (40%) | 0.5034 |
≤100 μg/L | N (%) | 49 (55%) | 54 (60%) | |
Cotinine in smokers (µg/L) | Median (10th–90th) | 1948 (984–2933) | 1691 (462–2856) | 0.4700 |
Creatinine * (g/L) | median (10th–90th) | 1.66 (0.92–2.40) | 1.54 (0.92–2.35) | 0.1670 |
Exposure assessment | ||||
BEN-A (μg/m3) | median (10th–90th) minimum–maximum | 59 (10–203) 3–3246 | 4 (2–112) 1–48 | <0.0001 |
MTBE-A (μg/m3) | median (10th–90th) minimum–maximum | 408 (32–1905) 2–57616 | 3.5 (1.7–15.3) <0.8–528 | <0.0001 |
BEN-U * (ng/L) | median (10th–90th) minimum–maximum | 382 (114–2201) 71–4702 | 122 (72–948) 54–4407 | <0.0001 |
tt-MA * (µg/L) | median (10th–90th) minimum–maximum | 86 (22–185) <20–505 | 63 (25–184) < 20–292 | 0.3324 |
SPMA * (µg/L) | median (10th–90th) minimum–maximum | 0.17 (<0.1–1.01) <0.1–2.19 | <0.1 (<0.1–0.68) <0.1–0.68 | 0.0002 |
MTBE-U * (ng/L) | median (10th–90th) minimum–maximum | 232 (85–751) 14–1733 | 58 (22–109) 8–158 | <0.0001 |
Variable | β | 95% CI | p | |
Gene expression (ΔCT) | ||||
Alu-Y | 0.05 | −0.12 | 0.22 | 0.53 |
Alu-J | 0.13 | −0.06 | 0.32 | 0.19 |
L1-5U’TR | 0.02 | −0.13 | 0.17 | 0.77 |
L1-ORF1 | 0.08 | −0.06 | 0.22 | 0.25 |
β | 95% CI | p | ||
Methylation (%5mC) | ||||
Alu-YB8 | 0.05 | −0.42 | 0.53 | 0.82 |
Alu-YD6 | −0.09 | −0.46 | 0.27 | 0.61 |
Alu-SX | 0.11 | −0.17 | 0.38 | 0.45 |
L1-HS | 0.13 | −0.28 | 0.54 | 0.54 |
L1-Pa2 | 0.16 | −0.33 | 0.66 | 0.51 |
L1-Pa5 | −1.02 | −2.04 | 0.01 | 0.05 |
L1-Ta | −0.08 | −0.45 | 0.29 | 0.67 |
eβ | 95% CI | p | ||
Histone modification (ng/µL) | ||||
H3K9me3 * | 1.09 | −1.04 | 3.23 | 0.30 |
Variable | BEN-A | MTBE-A | ||||||
β90-10 | 95% CI | p | β90-10 | 95% CI | p | |||
Gene expression (ΔCT) | ||||||||
Alu-Y | −0.010 | −0.051 | 0.031 | 0.6392 | −0.004 | −0.024 | 0.015 | 0.6787 |
Alu-J | −0.011 | −0.056 | 0.035 | 0.6404 | −0.006 | −0.028 | 0.016 | 0.5929 |
L1-5′UTR | 0.020 | −0.015 | 0.056 | 0.2654 | 0.009 | −0.008 | 0.026 | 0.2843 |
L1-ORF1 | 0.029 | −0.004 | 0.063 | 0.0871 | 0.013 | −0.003 | 0.029 | 0.1167 |
β90-10 | 95% CI | p | β90-10 | 95% CI | p | |||
Methylation (%5mC) | ||||||||
Alu-YB8 | 0.025 | −0.089 | 0.138 | 0.6728 | 0.015 | −0.040 | 0.069 | 0.5955 |
Alu-YD6 | 0.045 | −0.042 | 0.133 | 0.3098 | 0.029 | −0.013 | 0.071 | 0.1727 |
Alu-SX | 0.039 | −0.025 | 0.102 | 0.2342 | 0.014 | −0.016 | 0.045 | 0.3554 |
L1-HS | 0.026 | −0.073 | 0.125 | 0.6062 | 0.017 | −0.030 | 0.064 | 0.4841 |
L1-Pa2 | 0.048 | −0.068 | 0.165 | 0.4186 | 0.026 | −0.029 | 0.082 | 0.3554 |
L1-Pa5 | 0.060 | −0.194 | 0.313 | 0.6456 | 0.039 | −0.081 | 0.160 | 0.5237 |
L1-Ta | 0.017 | −0.073 | 0.106 | 0.7176 | 0.013 | −0.030 | 0.056 | 0.5531 |
Δ%90-10 | 95% CI | p | Δ%90-10 | 95% CI | p | |||
Histone modification (%) | ||||||||
H3K9me3 * | 0.545 | −3.423 | 4.677 | 0.7917 | 0.213 | −1.698 | 2.161 | 0.8291 |
Variable | BEN-U | tt-MA | SPMA | MTBE-U | ||||||||||||
β90-10 | 95% CI | p | β90-10 | 95% CI | P | β90-10 | 95% CI | p | β90-10 | 95% CI | p | |||||
Gene expression (ΔCT) | ||||||||||||||||
Alu-Y | 0.290 | 0.046 | 0.533 | 0.0210 | 0.410 | 0.191 | 0.628 | 0.0003 | 0.131 | −0.114 | 0.376 | 0.2953 | 0.039 | −0.076 | 0.154 | 0.5082 |
Alu-J | 0.458 | 0.191 | 0.724 | 0.0010 | 0.331 | 0.082 | 0.580 | 0.0100 | 0.154 | −0.119 | 0.427 | 0.2710 | 0.066 | −0.063 | 0.194 | 0.3169 |
L1-5’UTR | 0.031 | −0.185 | 0.246 | 0.7811 | 0.270 | 0.076 | 0.463 | 0.0070 | −0.034 | −0.248 | 0.179 | 0.7536 | 0.046 | −0.055 | 0.146 | 0.3745 |
L1-ORF1 | 0.092 | −0.112 | 0.296 | 0.3779 | 0.099 | −0.089 | 0.286 | 0.3030 | −0.171 | −0.372 | 0.030 | 0.0977 | 0.034 | −0.062 | 0.129 | 0.4892 |
β90-10 | 95% CI | p | β90-10 | 95% CI | p | β90-10 | 95% CI | p | β90-10 | 95% CI | p | |||||
Methylation (%5mC) | ||||||||||||||||
Alu-YB8 | 0.218 | −0.489 | 0.924 | 0.5467 | −0.228 | −0.847 | 0.391 | 0.4722 | 0.289 | −0.455 | 1.033 | 0.4474 | 0.049 | −0.273 | 0.370 | 0.7676 |
Alu-YD6 | −0.203 | −0.749 | 0.343 | 0.4670 | 0.061 | −0.419 | 0.542 | 0.8035 | −0.222 | −0.794 | 0.351 | 0.4486 | −0.257 | −0.502 | −0.012 | 0.0411 |
Alu-SX | 0.005 | −0.406 | 0.415 | 0.9820 | −0.136 | −0.492 | 0.220 | 0.4545 | 0.406 | −0.017 | 0.829 | 0.0616 | −0.037 | −0.218 | 0.144 | 0.6876 |
L1-HS | 0.081 | −0.536 | 0.698 | 0.7975 | −0.515 | −1.052 | 0.022 | 0.0620 | −0.137 | −0.784 | 0.510 | 0.6787 | −0.220 | −0.498 | 0.058 | 0.1232 |
L1-Pa2 | −0.364 | −1.094 | 0.367 | 0.3305 | −0.166 | −0.810 | 0.478 | 0.6137 | −0.224 | −0.991 | 0.542 | 0.5671 | 0.132 | −0.198 | 0.462 | 0.4333 |
L1-Pa5 | 0.071 | −1.527 | 1.669 | 0.9307 | −0.061 | −1.440 | 1.318 | 0.9312 | 0.303 | −1.344 | 1.950 | 0.7190 | −0.407 | −1.117 | 0.303 | 0.2625 |
L1-Ta | −0.096 | −0.656 | 0.464 | 0.7377 | −0.126 | −0.623 | 0.371 | 0.6191 | −0.086 | −0.680 | 0.508 | 0.7767 | −0.279 | −0.529 | −0.030 | 0.0298 |
Δ%90-10 | 95% CI | p | Δ%90-10 | 95% CI | p | Δ%90-10 | 95% CI | P | Δ%90-10 | 95% CI | p | |||||
Histone modification (%) | ||||||||||||||||
H3K9me3 * | −1.799 | −23.084 | 25.376 | 0.8844 | −9.209 | −28.292 | 14.952 | 0.4235 | 9.348 | −13.92 | 38.907 | 0.4652 | 0.825 | −10.017 | 12.974 | 0.8876 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rota, F.; Conti, A.; Campo, L.; Favero, C.; Cantone, L.; Motta, V.; Polledri, E.; Mercadante, R.; Dieci, G.; Bollati, V.; et al. Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE. Int. J. Environ. Res. Public Health 2018, 15, 735. https://doi.org/10.3390/ijerph15040735
Rota F, Conti A, Campo L, Favero C, Cantone L, Motta V, Polledri E, Mercadante R, Dieci G, Bollati V, et al. Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE. International Journal of Environmental Research and Public Health. 2018; 15(4):735. https://doi.org/10.3390/ijerph15040735
Chicago/Turabian StyleRota, Federica, Anastasia Conti, Laura Campo, Chiara Favero, Laura Cantone, Valeria Motta, Elisa Polledri, Rosa Mercadante, Giorgio Dieci, Valentina Bollati, and et al. 2018. "Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE" International Journal of Environmental Research and Public Health 15, no. 4: 735. https://doi.org/10.3390/ijerph15040735
APA StyleRota, F., Conti, A., Campo, L., Favero, C., Cantone, L., Motta, V., Polledri, E., Mercadante, R., Dieci, G., Bollati, V., & Fustinoni, S. (2018). Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE. International Journal of Environmental Research and Public Health, 15(4), 735. https://doi.org/10.3390/ijerph15040735