Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Tick Collection
2.2. Molecular Detection of B. burgdorferi
2.3. Spatial Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Daily, G.C.; Ehrlich, P.R. Global change and human susceptibility to disease. Annu. Rev. Energy Environ. 1996, 21, 125–144. [Google Scholar] [CrossRef]
- Estrada-Pena, A.; Venzal, J.M. Changes in habitat suitability for the tick Ixodes ricinus (Acari: Ixodidae) in Europe (1900–1999). Ecohealth 2006, 3, 154–162. [Google Scholar] [CrossRef]
- Hartemink, N.; Vanwambeke, S.O.; Purse, B.V.; Gilbert, M.; Van Dyck, H. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks. Biol. Rev. 2015, 90, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Lindsay, L.R. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E. Ticks and tick-borne disease systems in space and from space. Adv. Parasitol. 2000, 47, 217–243. [Google Scholar] [PubMed]
- Cumming, G.S. Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 2002, 83, 255–268. [Google Scholar] [CrossRef]
- Yamada, K.; Valderrama, A.; Gottdenker, N.; Cerezo, L.; Minakawa, N.; Saldana, A.; Calzada, J.E.; Chaves, L.F. Macroecological patterns of American cutaneous leishmaniasis transmission across the health areas of Panama (1980–2012). Parasite Epidemiol. Control 2016, 1, 42–55. [Google Scholar] [CrossRef]
- Adler, G.H.; Telford, S.R.; Wilson, M.L.; Spielman, A. Vegetation structure influences the burden of immature Ixodes dammini on its main host, Peromyscus leucopus. Parasitology 1992, 105, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E.; Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 1999, 36, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Talleklint-Eisen, L.; Lane, R.S. Variation in the density of questing Ixodes pacificus (Acari: Ixodidae) nymphs infected with Borrelia burgdorferi at different spatial scales in California. J. Parasitol. 1999, 85, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Perdanani, N.; Mather, T. Lack of spatial autocorrelation in fine-scale distributions of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2004, 41, 861–864. [Google Scholar] [CrossRef]
- Ogden, N.H.; Barker, I.K.; Beauchamp, G.; Brazeau, S.; Charron, D.F.; Maarouf, A.; Morshed, M.G.; O’Callaghan, C.J.; Thompson, R.A.; Waltner-Toews, D.; et al. Investigation of ground level and remote-sensed classification and prediction of survival of Ixodes scapularis in habitats of southeastern Canada. J. Med. Entomol. 2006, 42, 403–414. [Google Scholar] [CrossRef]
- Hamer, G.L.; Chaves, L.F.; Anderson, T.K.; Kitron, U.D.; Brawn, J.D.; Ruiz, M.O.; Loss, S.R.; Walker, E.D.; Goldberg, T.L. Fine-scale variation in vector host use and force of infection drive localized patterns of west Nile virus transmission. PLoS ONE 2011. [Google Scholar] [CrossRef] [PubMed]
- Noden, B.H.; Dubie, T. Involvement of invasive eastern red cedar (Juniperus virginiana) in the expansion of Amblyomma americanum in Oklahoma. J. Vector Ecol. 2017, 42, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Asghar, N.; Petersson, M.; Johansson, M.; Dinnetz, P. Local landscape effects on population dynamics of Ixodes ricinus. Geospat. Health 2016, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.J.; Hyon, D.W.; Brewington, J.B., III; O’Connor, K.E.; Swei, A.; Briggs, C.J. Lyme disease risk in southern California: Abiotic and environmental drivers of Ixodes pacificus (Acari: Ixodidae) density and infection prevalence with Borrelia burgdorferi. Parasites Vectors 2017, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.; Bastian, S.; Agoulon, A.; Bouju, A.; Durand, A.; Faille, F.; Lebert, I.; Rantier, Y.; Plantard, O.; Butet, A. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasites Vectors 2016, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.; Bastian, S.; Chastagner, A.; Agoulon, A.; Plantard, O.; Vourc’h, G.; Butet, A. Ecological factors influencing small mammal infection by Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in agricultural and forest landscapes. Environ. Microbiol. 2017, 19, 4205–4219. [Google Scholar] [CrossRef] [PubMed]
- Swei, A.; Meentemeyer, R.; Briggs, C.J. Influence of abiotic and environmental factors on the density and infection prevalence of Ixodes pacificus (Acari: Ixodidae) with Borrelia burgdorferi. J. Med. Entomol. 2011, 48, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Eisen, L.; Beard, C.B. County-Scale Distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Continental United States. J. Med. Entomol. 2016, 53, 349–386. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Lindsay, L.R.; Hanincova, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I.; et al. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef] [PubMed]
- Brinkerhoff, R.J.; Folsom-O’Keefe, C.M.; Tsao, K.; Diuk-Wasser, M.A. Do birds affect Lyme disease risk? Range expansion of the vector-borne pathogen Borrelia burgdorferi. Front. Ecol. Environ. 2011, 9, 103–110. [Google Scholar] [CrossRef]
- Madhav, N.K.; Brownstein, J.S.; Tsao, J.I.; Fish, D. A dispersal model for the range expansion of blacklegged tick (Acari: Ixodidae). J. Med. Entomol. 2004, 41, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.F.; Hamer, G.L.; Walker, E.D.; Brown, W.M.; Ruiz, M.O.; Kitron, U.D. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2011, 2, 1–21. [Google Scholar] [CrossRef]
- Chaves, L.F. Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus. Int. J. Biometerol. 2016, 60, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.M.; Hinckley, A.F.; Mead, P.S.; Hook, S.A.; Kugeler, K.J. Surveillance for Lyme Disease—United States, 2008–2015. MMWR Surveill. Summ. 2017, 66, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pepin, K.M.; Eisen, R.J.; Mead, P.S.; Piesman, J.; Fish, D.; Hoen, A.G.; Barbour, A.G.; Hamer, S.; Diuk-Wasser, M.A. Geographic Variation in the Relationship between Human Lyme Disease Incidence and Density of Infected Host-Seeking Ixodes scapularis Nymphs in the Eastern United States. Am. J. Trop. Med. Hyg. 2012, 86, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Hoen, A.G.; Cislo, P.; Brinkerhoff, R.; Hamer, S.A.; Rowland, M.; Cortinas, R.; Vourc’h, G.; Melton, F.; Hickling, G.J.; et al. Human Risk of Infection with Borrelia burgdorferi, the Lyme Disease Agent, in Eastern United States. Am. J. Trop. Med. Hyg. 2012, 86, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Brinkerhoff, R.J.; Gilliam, W.F.; Gaines, D. Lyme disease, Virginia, USA, 2000–2011. Emerg. Infect. Dis. 2014, 20, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, R.S.; Keesing, F. Biodiversity series: The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can. J. Zool. 2000, 78, 2061–2078. [Google Scholar] [CrossRef]
- Allan, B.F.; Keesing, F.; Ostfeld, R.S. Effect of Forest Fragmentation on Lyme Disease Risk. Conserv. Biol. 2003, 17, 267–272. [Google Scholar] [CrossRef]
- LoGiudice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Dobson, A.D.M.; Levi, T.; Salkeld, D.J.; Swei, A.; Ginsberg, H.S.; Kjemtrup, A.; Padgett, K.A.; Jensen, P.M.; Fish, D.; et al. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Phil. Trans. R. Soc. B 2017, 372, 20160117. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L.; Telford, S.R.; Piesman, J.; Spielman, A. Reduced Abundance of Immature Ixodes dammini (Acari: Ixodidae) Following Elimination of Deer. J. Med. Entomol. 1988, 25, 224–228. Available online: https://academic.oup.com/jme/article/25/4/224/2220586 (accessed on 28 February 2018). [CrossRef] [PubMed]
- Daniels, T.J.; Fish, D.; Schwartz, I. Reduced Abundance of Ixodes scapularis (Acari: Ixodidae) and Lyme Disease Risk by Deer Exclusion. J. Med. Entomol. 1993, 30, 1043–1049. Available online: https://academic.oup.com/jme/article/30/6/1043/2221334 (accessed on 28 February 2018). [CrossRef] [PubMed]
- Rand, P.W.; Lubelczyk, C.; Holman, M.S.; Lacombe, E.H.; Smith, R.P. Abundance of Ixodes scapularis (Acari: Ixodidae) After the Complete Removal of Deer from an Isolated Offshore Island, Endemic for Lyme Disease. J. Med. Entomol. 2004, 41, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.A.; Schulze, T.L.; Jahn, M.B. Effects of Reduced Deer Density on the Abundance of Ixodes scapularis (Acari: Ixodidae) and Lyme Disease Incidence in a Northern New Jersey Endemic Area. J. Med. Entomol. 2007, 44, 752–757. [Google Scholar] [CrossRef] [PubMed]
- LoGiudice, K.; Duerr, S.T.; Newhouse, M.J.; Schmidt, K.A.; Killilea, M.E.; Ostfeld, R.S. Impact of Host Community Composition on Lyme Disease Risk. Ecology 2008, 89, 2841–2849. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E.; Dobson, A.D.M. Pangloss revisited: A critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 2012, 139, 847–863. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.A.; Eisen, L.; Eisen, R.J.; Fedorova, N.; Hasty, J.M.; Vaughn, C.; Lane, R.S. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: Associations with ecological factors, bird behavior, and tick infestation. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.L.; Gee, K.L.; Strickland, B.K.; Demarais, S.; DeYoung, R.W. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars. Int. J. Ecol. 2010, 2010, 1–12. [Google Scholar] [CrossRef]
- Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.; Grund, M.D. Forest Cover Influences Dispersal Distance of White-Tailed Deer. J. Mammal. 2005, 86, 623–629. [Google Scholar] [CrossRef]
- Krohne, D.T.; Dubbs, B.A.; Baccus, R. An Analysis of Dispersal in an Unmanipulated Population of Peromyscus leucopus. Am. Midl. Nat. 1984, 112, 146–156. [Google Scholar] [CrossRef]
- Li, J.; Kolivras, K.N.; Hong, Y.; Duan, Y.; Seukep, S.E.; Prisley, S.P.; Campbell, J.B.; Gaines, D.N. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia. Am. J. Trop. Med. Hyg. 2014, 91, 1166–1172. Available online: http://ajtmh.org/content/journals/10.4269/ajtmh.13-0733 (accessed on 28 February 2018). [CrossRef] [PubMed]
- Lantos, P.M.; Nigrovic, L.E.; Auwaerter, P.G.; Fowler, V.G.; Ruffin, F.; Brinkerhoff, R.J.; Reber, J.; Williams, C.; Broyhill, J.; Pan, W.K.; et al. Geographic Expansion of Lyme Disease in the Southeastern United States, 2000–2014. Open Forum Infect. Dis. 2015, 2. Available online: https://academic.oup.com/ofid/article/2/4/ofv143/2460356 (accessed on 28 February 2018). [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Vourc’h, G.; Cislo, P.; Hoen, A.G.; Melton, F.; Hamer, S.A.; Rowland, M.; Cortinas, R.; Hickling, G.J.; Tsao, J.I.; et al. Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Glob. Ecol. Biogeogr. 2010, 19, 504–514. [Google Scholar] [CrossRef]
- Kelly, R.R.; Gaines, D.; Gilliam, W.F.; Brinkerhoff, R.J. Population genetic structure of the Lyme disease vector Ixodes scapularis at an apparent spatial expansion front. Infect. Genet. Evol. 2014, 27, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Seukep, S.; Kolivras, K.; Hong, Y.; Li, J.; Prisley, S.; Campbell, J.; Gaines, D.; Dymond, R. An Examination of the Demographic and Environmental Variables Correlated with Lyme Disease Emergence in Virginia. EcoHealth 2015, 12, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Sonenshine, D.E. Insects of Virginia 13. Ticks of Virginia (Acari, Megastigmata). Va. Polytech. Inst. Res. Div. Bull. 1979, 139, 1–44. [Google Scholar]
- Bunikis, J.; Garpmo, U.; Tsao, J.; Berglund, J.; Fish, D.; Barbour, A.G. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 2004, 150, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. Fragstats v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 26 February 2018).
- Chennamaneni, P.R.; Echambadi, R.; Hess, J.D.; Syam, N. Diagnosing harmful collinearity in moderated regressions: A roadmap. Int. J. Res. Market. 2016, 33, 172–182. [Google Scholar] [CrossRef]
- Tran, P.M.; Waller, L. Effects of landscape fragmentation and climate on Lyme disease incidence in the northeastern United States. EcoHealth 2013, 10, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Jamison, A.; Tuttle, E.; Jensen, R.; Bierly, G.; Gonser, R. Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl. Geogr. 2015, 63, 418–426. [Google Scholar] [CrossRef]
- Ginsberg, H.S.; Zhioua, E. Nymphal survival and habitat distribution of Ixodes scapularis and Amblyomma americanum ticks (Acari: Ixodidae) on Fire Island, New York, USA. Exp. Appl. Acarol. 1996, 20, 533–544. [Google Scholar] [CrossRef]
- Alverson, W.S.; Waller, D.M.; Solheim, S.L. Forests Too Deer: Edge Effects in Northern Wisconsin. Conserv. Biol. 1988, 2, 348–358. [Google Scholar] [CrossRef]
- Wilson, M.; Adler, G.; Spielman, A. Correlation between Abundance of Deer and That of the Deer Tick, Ixodes-Dammini (acari, Ixodidae). Ann. Entomol. Soc. Am. 1985, 78, 172–176. [Google Scholar] [CrossRef]
- Stafford, K.C. Reduced Abundance of Ixodes scapularis (Acari: Ixodidae) with Exclusion of Deer by Electric Fencing. J. Med. Entomol. 1993, 30, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, J.S.; Skelly, D.K.; Holford, T.R. Durland Fish Forest Fragmentation Predicts Local Scale Heterogeneity of Lyme Disease Risk. Oecologia 2005, 146, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Zolnik, C.P.; Falco, R.C.; Kolokotronis, S.-O.; Daniels, T.J. No observed effect of landscape fragmentation on pathogen infection in blacklegged ticks (Ixodes scapularis) in the northeastern United States. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Heske, E.J. Mammalian Abundances on Forest-Farm Edges versus Forest Interiors in Southern Illinois: Is There an Edge Effect? J. Mammal. 1995, 76, 562–568. [Google Scholar] [CrossRef]
- Rieucau, G.; Vickery, W.L.; Doucet, G.J. A Patch Use Model to Separate Effects of Foraging Costs on Giving-up Densities: An Experiment with White-Tailed Deer (Odocoileus virginianus). Behav. Ecol. Sociobiol. 2009, 63, 891–897. [Google Scholar] [CrossRef]
- Chaves, L.F.; Calzada, J.E.; Rigg, C.; Valderrama, A.; Gottdenker, N.L.; Saldana, A. Leishmaniasis sandfly vector density reduction is less marked in destitute housing after insecticide thermal fogging. Parasites Vectors 2013, 6, 164. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Pena, A. The relationships between habitat topology, critical scales of connectivity, and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 2003, 26, 661–671. [Google Scholar] [CrossRef]
- Estrada-Pena, A.; Venzal, J.M. A GIS framework for the assessment of tick impact on human health in a changing climate. Geospat. Health 2007, 1, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Connally, N.P.; Durante, A.J.; Yousey-Hindes, K.M.; Meek, J.I.; Nelson, R.S.; Heimer, R. Peridomestic Lyme Disease Prevention: Results of a Population-Based Case–Control Study. Am. J. Prev. Med. 2009, 37, 201–206. [Google Scholar] [CrossRef] [PubMed]
Landscape Metrics | Description |
---|---|
Percent land cover (PLAND) | Proportion of forest pixels within a buffer |
Number of patches (NP) | Total number forest patches |
Largest patch index (LPI) | Area of the largest forest patch, expressed as a percentage of total landscape area |
Mean patch size (MPS) | Average forest patch size (ha) |
Total edge (TE) | Sum of length of all edge segments for forest patches |
Shannon’s diversity index (SHDI) | Negative sum, across all land cover types, of the proportional abundance of each land cover type multiplied by that proportion |
Simpson diversity index (SIDI) | One minus the sum, across all land cover types, of the proportional abundance of each land cover type squared |
Euclidean nearest neighbor distance distribution (ENN) | Shortest straight-line distance (m) to the nearest neighboring forest patch |
Amblyomma Americanum | Dermacentor Variabilis | Ixodes Scapularis | |||
---|---|---|---|---|---|
Sites | Elevation (m) | Density | Density | Density | Infection Prevalence |
Beaver Creek Park (BC) | 177.1 | 3.6 | 0 | 1.8 | 0.06 |
Byrom (BY) | 366.4 | 18.4 | 4.2 | 8.6 | 0.15 |
Graveyard (UR) | 82.6 | 18.8 | 0 | 0.9 | 0.33 |
Hardware River WMA (HR) | 91.4 | 16.4 | 0.1 | 1.8 | 0 |
James River WMA (JR) | 146.9 | 34 | 0.5 | 1.4 | 0.07 |
Lake Anna State Park (LA) | 116.5 | 15.4 | 0.1 | 0.6 | 0 |
Mattaponi (MA) | 30.2 | 12.5 | 0.1 | 1.2 | 0.17 |
CF Phelps WMA (CFP) | 105.2 | 13.2 | 0.2 | 1.5 | 0 |
Pole Green Park (PG) | 50.6 | 19.1 | 0 | 1 | 0 |
Powhatan WMA (PO) | 127.1 | 21.9 | 0.3 | 2.3 | 0 |
Preddy Creek (PC) | 149 | 10 | 0 | 1.7 | 0 |
Whitney (WH) | 138.1 | 8.6 | 0.1 | 4.1 | 0.05 |
Zoar State Forest (ZO) | 29.9 | 8.9 | 0 | 0.1 | 0 |
Parameter Estimate | ||||||
---|---|---|---|---|---|---|
r2 | AICc | AREA_MN(1) | TE(5) | SHDI(10) | ENN(10) | ELEV |
0.905 | −20.96 | −0.31 | −0.86 | 0.41 | ||
0.903 | −20.66 | −0.73 | −0.67 | −0.38 | ||
0.854 | −18.85 | 0.62 | −1.10 | |||
0.914 | −17.92 | −0.51 | 0.24 | −0.80 | −0.20 | |
0.911 | −17.46 | 0.10 | −0.28 | 0.42 | −0.82 | |
0.873 | −17.21 | 0.18 | 0.62 | −0.99 | ||
0.872 | −17.05 | 0.65 | −1.03 | 0.16 | ||
0.832 | −17.00 | −0.55 | −0.54 | |||
Mean parameter estimate (all models) | 0.94 | −0.46 | −0.76 | 0.27 | −0.19 | |
Parameter st err | 0.14 | 0.27 | 0.25 | 0.25. | 0.23 |
Step | Description | Effects | Chi-Square | Pr > ChiSq | AICc |
---|---|---|---|---|---|
0 | Initial Model | 1 | 19.78 | ||
1 | ONE_NP entered | 2 | 1.73 × 102 | <0.0001 | −285.58 |
2 | TEN_TE entered | 3 | 1.00 × 1011 | <0.0001 | −182.79 |
3 | TEN_NP entered | 4 | 2.70 × 1013 | <0.0001 | −237.55 |
4 | elevation entered | 5 | 2.20 × 1011 | <0.0001 | −490.21 |
5 | TEN_NP removed | 4 | 3.39 × 10−2 | 0.8538 | −459.28 |
Parameter Estimate | |||||
---|---|---|---|---|---|
r2 | AICc | AREA_MN(1) | AREA_MN(5) | SHDI(10) | ELEV |
0.84 | −20.14 | 0.91 | |||
0.84 | −17.87 | 1.04 | 0.15 | ||
0.84 | −17.70 | −0.11 | 0.99 | ||
0.84 | −17.30 | 0.91 | 0.00 | ||
0.85 | −14.84 | −0.11 | 1.13 | 0.16 | |
0.84 | −14.42 | 1.06 | 0.16 | −0.02 | |
0.84 | −14.25 | −0.11 | 1.01 | −0.02 | |
0.85 | −10.57 | −0.12 | 1.17 | 0.16 | −0.04 |
Mean parameter estimate (all models) | −0.11 | 1.17 | 0.16 | −0.04 | |
Parameter st err | 0.21 | 0.36 | 0.25 | 0.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrell, A.M.; Brinkerhoff, R.J. Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi. Int. J. Environ. Res. Public Health 2018, 15, 737. https://doi.org/10.3390/ijerph15040737
Ferrell AM, Brinkerhoff RJ. Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi. International Journal of Environmental Research and Public Health. 2018; 15(4):737. https://doi.org/10.3390/ijerph15040737
Chicago/Turabian StyleFerrell, A. Michelle, and R. Jory Brinkerhoff. 2018. "Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi" International Journal of Environmental Research and Public Health 15, no. 4: 737. https://doi.org/10.3390/ijerph15040737
APA StyleFerrell, A. M., & Brinkerhoff, R. J. (2018). Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi. International Journal of Environmental Research and Public Health, 15(4), 737. https://doi.org/10.3390/ijerph15040737