The Relationship between Diabetes Mellitus and Respiratory Function in Patients Eligible for Coronary Artery Bypass Grafting
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Conflicts of Interest
References
- Karolewski, M.; Borowicz-Bieńkowska, S.; Przywarska, I.; Dylewicz, P. Patient with diabetes mellitus after coronary artery bypass surgery—Challenge for cardiac rehabilitation. Kardiochir. Torakochir. Pol. 2007, 4, 300–303. [Google Scholar]
- Ferreira, G.M.; Haeffner, M.P.; Barreto, S.S.; Dall’Ago, P. Incentive spirometry with expiratory positive airway pressure brings benefits after myocardial revascularization. Arq. Bras. Cardiol. 2010, 94, 230–235. [Google Scholar] [PubMed]
- Freitas, E.R.; Soares, B.G.; Cardoso, J.R.; Atallah, Á.N. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2012, 9. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, J.; Dancewicz, M. Rak płuca: Leczenie chorych z ograniczoną rezerwą oddechową. Kardiochir. Torakochir. Pol. 2008, 5, 413–417. [Google Scholar]
- Cesario, A.; Ferri, L.; Galetta, D.; Cardaci, V.; Biscione, G.; Pasqua, F.; Piraino, A.; Bonassi, S.; Russo, P.; Sterzi, S.; et al. Pre-operative pulmonary rehabilitation and surgery for lung cancer. Lung Cancer 2007, 57, 118–119. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewicz, Z.; Bugaj, B.; Cabała, K.; Pypno, D.; Waracki, M. Modern trends of treating diabetes. Clin. Diabetol. 2014, 3, 198–202. [Google Scholar]
- Cornell, S. Continual evolution of type 2 diabetes: An update on pathophysiology and emerging treatment options. Ther. Clin. Risk. Manag. 2015, 11, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Hara, F. The pulmonary function and histopathological studies of the lung in diabetes mellitus. Nippon Ika Daigaku Zasshi 1991, 58, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Iacopo, O.; Guazzi, M.D. Insulin improves alveolarcapilary membrane gas conductance in type 2 diabetes. Diabetes Care 2002, 25, 1802–1806. [Google Scholar] [CrossRef] [PubMed]
- Kuziemski, K.; Górska, L.; Jassem, E.; Madej-Dmochowska, A. Mikroangiopatia płucna w przebiegu cukrzycy. Pneumonol. Alergol. Pol. 2009, 77, 394–399. [Google Scholar] [PubMed]
- Popov, D.; Simionescu, M. Alterations of lung structure in experimental diabetes, and diabetes associated with hyperlipidaemia in hamsters. Eur. Respir. J. 1997, 10, 1850–1858. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society. Standardization of spirometry, 1994 update. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar]
- American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique—1995 update. Am. J. Respir. Crit. Care Med. 1995, 152, 2185–2198. [Google Scholar]
- MacIntyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.M.E.; Knuiman, M.; Kendall, P.; Vu, H.; Davis, W.A. Reduced pulmonary function and its association in type 2 diabetes: The Fremantle Diabetes Study. Diabetes Res. Clin. Pract. 2000, 50, 153–159. [Google Scholar] [CrossRef]
- Kaminsky, D. Spirometry and diabetes: Implications of reduced lung function. Diabetes Care 2004, 27, 837–838. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.W.; Knuiman, M.; Kendall, P.; Grange, V.; Davis, T.M.; Fremantle Diabetes Study. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: The Fremantle diabetes study. Diabetes Care 2004, 27, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.; Lazarus, R.; Sparrow, D.; Demolles, D.; Weiss, S.T. Lung function in type 2 diabetes: The normative aging study. Respir. Med. 2005, 99, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.; Punjabi, N.M.; Wang, N.; Pankow, J.S.; Duncan, B.B.; Cox, C.E.; Selvin, E.; Brancati, F.L. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: The atherosclerosis risk in communities (ARIC) study. Diabetes Care 2008, 31, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Ebrahim, S.; Smith, G.D. Associations of measures of lung function with insulin resistance and Type 2 diabetes: Findings from the British women’s heart and health study. Diabetologia 2004, 47, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.W.; Keller, J.B. Seven measures of ventilatory lung function. Population values and a comparison of their ability to discriminate between persons with and without chronic respiratory symptoms and disease, Tecumseh, Michigan. Am. Rev. Respir. Dis. 1973, 108, 258–272. [Google Scholar] [PubMed]
- McAllister, D.A.; Wild, S.H.; MacLay, J.D.; Robson, A.; Newby, D.E.; MacNee, W.; Innes, J.A.; Zamvar, V.; Mills, N.L. Forced expiratory volume in one second predicts length of stay and in-hospital mortality in patients undergoing cardiac surgery: A retrospective cohort study. PLoS ONE 2013, 8, e64565. [Google Scholar] [CrossRef] [PubMed]
- Mokdad, A.H.; Ford, E.S.; Bowman, B.A.; Dietz, W.H.; Vinicor, F.; Bales, V.S.; Marks, J.S. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003, 289, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. From obesity to diabetes: Why, when and who? Acta Clin. Belg. 2000, 55, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.V.; Kelley, D.E. Metabolic consequences of weight loss on glucose metabolism and insulin action in type 2 diabetes. Diabetes Obes. Metab. 2000, 2, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M.; Rychlik, E. Epidemia otyłości—Jaka przyszłość nas czeka? Gastroenterologia Polska 2010, 17, 47–52. [Google Scholar]
- De Lusignan, S.; Hague, N.; Van Vlymen, J.; Dhoul, N.; Chan, T.; Thana, L.; Kumarapeli, P. A study of cardiovascular risk in overweight and obese people in England. Eur. J. Gen. Pract. 2006, 12, 19–29. [Google Scholar] [CrossRef] [PubMed]
Variable | Patients without Diabetes Mellitus (n = 229) | Patients with Diabetes Mellitus (n = 138) | p | |
---|---|---|---|---|
Sex (n, %) | Female | 46 (20.09%) | 34 (24.64%) | 0.306 |
Male | 183 (79.91%) | 104 (75.36%) | ||
Age (years) | 68.13 ± 8.55 | 68.91 ± 7.56 | 0.407 | |
BMI (kg/m2) | 28.26 ± 4.12 | 30.84 ± 3.96 | <0.001 * | |
Smoking (n, %) | Yes | 100 (43.67%) | 55 (39.86%) | 0.473 |
No | 129 (56.33%) | 83 (60.14%) | ||
Smoking (years) | 35.63 ± 10.94 | 32.08 ± 10.49 | 0.118 | |
Case priority (n, %) | Planned | 182 (80.53%) | 110 (80.88%) | 0.934 |
Urgent and emergent | 44 (19.47%) | 26 (19.12%) | ||
ESL (%) | 3.76 ± 3.38 | 4.68 ± 5.17 | 0.119 | |
EF (%) | 49.56 ± 9.32 | 48.22 ± 9.98 | 0.132 | |
Concomitant diseases | ||||
COPD (n, %) | Yes | 16 (6.99%) | 8 (5.80%) | 0.655 |
No | 213 (93.01%) | 130 (94.20%) | ||
Stroke (n, %) | Yes | 15 (6.55%) | 13 (9.42%) | 0.316 |
No | 214 (93.45%) | 125 (90.58%) | ||
Chronic renal failure (n, %) | Yes | 8 (3.49%) | 9 (6.52%) | 0.181 |
No | 221 (96.51%) | 129 (93.48%) | ||
Arterial hypertension (n, %) | Yes | 174 (75.98%) | 115 (83.33%) | 0.095 |
No | 55 (24.02%) | 23 (16.67%) | ||
Spirometry test | FVC (%) | 103.97 ± 24.61 | 91.65 ± 15.45 | <0.001 * |
FEV1.0 (%) | 110.30 ± 20.99 | 98.82 ± 15.70 | <0.001 * | |
PEF (%) | 87.00 ± 25.26 | 84.97 ± 24.50 | 0.771 |
Variable | Nonadjusted | Adjusted a | ||||||
---|---|---|---|---|---|---|---|---|
OR | −95% CI | +95% CI | p | OR | −95% CI | +95% CI | p | |
FVC (%) | 0.971 | 0.959 | 0.982 | <0.001 * | 0.969 | 0.957 | 0.981 | <0.001 * |
FEV1.0 (%) | 0.968 | 0.955 | 0.980 | <0.001 * | 0.966 | 0.953 | 0.980 | <0.001 * |
PEF (%) | 0.997 | 0.988 | 1.005 | 0.449 | 0.998 | 0.988 | 1.008 | 0.734 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szylińska, A.; Listewnik, M.; Ciosek, Ż.; Ptak, M.; Mikołajczyk, A.; Pawlukowska, W.; Rotter, I. The Relationship between Diabetes Mellitus and Respiratory Function in Patients Eligible for Coronary Artery Bypass Grafting. Int. J. Environ. Res. Public Health 2018, 15, 907. https://doi.org/10.3390/ijerph15050907
Szylińska A, Listewnik M, Ciosek Ż, Ptak M, Mikołajczyk A, Pawlukowska W, Rotter I. The Relationship between Diabetes Mellitus and Respiratory Function in Patients Eligible for Coronary Artery Bypass Grafting. International Journal of Environmental Research and Public Health. 2018; 15(5):907. https://doi.org/10.3390/ijerph15050907
Chicago/Turabian StyleSzylińska, Aleksandra, Mariusz Listewnik, Żaneta Ciosek, Magdalena Ptak, Anna Mikołajczyk, Wioletta Pawlukowska, and Iwona Rotter. 2018. "The Relationship between Diabetes Mellitus and Respiratory Function in Patients Eligible for Coronary Artery Bypass Grafting" International Journal of Environmental Research and Public Health 15, no. 5: 907. https://doi.org/10.3390/ijerph15050907
APA StyleSzylińska, A., Listewnik, M., Ciosek, Ż., Ptak, M., Mikołajczyk, A., Pawlukowska, W., & Rotter, I. (2018). The Relationship between Diabetes Mellitus and Respiratory Function in Patients Eligible for Coronary Artery Bypass Grafting. International Journal of Environmental Research and Public Health, 15(5), 907. https://doi.org/10.3390/ijerph15050907