Measuring the Fate of Compost-Derived Phosphorus in Native Soil below Urban Gardens
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Depth | Soil Type | DI-Pi | DI-Pt | KCl-Pi | KCl-Pt | NaHCO3-Pi | NaHCO3-Pt | NaOH-Pi | NaOH-Pt | HCl-Pi | HCl-Pt |
---|---|---|---|---|---|---|---|---|---|---|---|
(cm) | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | |
10 | Garden | 110.5 | 157.5 | 109.7 | 83.7 | 69.9 | 527.7 | 146.0 | 477.4 | 467.5 | 412.2 |
Reference | 17.7 | 65.9 | 7.0 | 2.3 | 1.2 | 257.3 | 84.2 | 437.6 | 521.8 | 778.0 | |
20 | Garden | 139.9 | 108.7 | 95.6 | 230.9 | 17.1 | 213.8 | 222.6 | 348.2 | 382.8 | 115.1 |
Reference | 5.4 | 64.2 | 3.2 | 2.1 | 0.0 | 0.0 | 42.6 | 251.5 | 222.4 | 567.9 | |
30 | Garden | 31.1 | 126.9 | 42.7 | 32.3 | 0.0 | 110.6 | 64.4 | 179.9 | 285.3 | 275.6 |
Reference | 42.9 | 150.5 | 28.3 | 8.3 | 33.7 | 219.8 | 239.4 | 413.8 | 330.3 | 292.3 | |
40 | Garden | 4.6 | 34.8 | 3.5 | 50.5 | 42.5 | 170.5 | 57.5 | 89.6 | 54.1 | 138.7 |
Reference | 19.9 | 96.9 | 3.3 | 4.4 | 11.0 | 198.0 | 148.0 | 399.4 | 415.8 | 620.6 | |
50 | Garden | 4.4 | 26.8 | 2.2 | 20.5 | 22.4 | 33.5 | 77.6 | 207.7 | 162.3 | 2.2 |
Reference | - | - | - | - | - | - | - | - | - | - | |
60 | Garden | 8.8 | 141.1 | 9.9 | 24.4 | 0.0 | 148.1 | 137.1 | 203.8 | 270.1 | 241.9 |
Reference | 36.6 | 167.2 | 11.6 | 10.5 | 48.1 | 185.4 | 194.1 | 319.8 | 322.8 | 492.5 | |
70 | Garden | 13.0 | 287.1 | 6.6 | 144.6 | 5.4 | 150.0 | 128.7 | 186.2 | 387.5 | 676.9 |
Reference | 84.4 | 175.1 | 1.1 | 6.3 | 41.9 | 179.2 | 189.4 | 307.3 | 494.6 | 614.9 | |
80 | Garden | 16.8 | 26.9 | 2.2 | 15.7 | 4.5 | 154.1 | 122.0 | 163.5 | 440.4 | 925.3 |
Reference | 20.3 | 152.0 | 0.0 | 6.5 | 0.0 | 136.2 | 183.9 | 309.4 | 403.9 | 555.6 | |
90 | Garden | 27.9 | 176.5 | 0.0 | 17.9 | 7.8 | 160.9 | 65.7 | 113.2 | 51.3 | 860.6 |
Reference | 90.0 | 275.1 | 3.2 | 4.2 | 0.0 | 196.7 | 206.4 | 243.3 | 532.8 | 1065.6 | |
100 | Garden | 48.4 | 145.4 | 9.9 | 8.8 | 6.6 | 138.9 | 166.3 | 144.6 | 509.5 | 989.1 |
Reference | 171.1 | 400.3 | 0.0 | 13.0 | 21.7 | 263.2 | 332.8 | 382.5 | 543.4 | 1086.9 |
References
- Burger, J.R.; Allen, C.D.; Brown, J.H.; Burnside, W.R.; Davidson, A.D.; Fristoe, T.S.; Hamilton, M.J.; Mercado-Silva, N.; Nekola, J.C.; Okie, J.G.; et al. The Macroecology of Sustainability. PLoS Biol. 2012, 10, e1001345. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.A. Can urban P conservation help to prevent the brown devolution? Chemosphere 2011, 84, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Levis, J.; Barlaz, M.; Themelis, N.; Ulloa, P.; Levis, J. Assessment of the state of food waste treatment in the United States and Canada. Waste Manag. 2010, 30, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Metson, G.S.; Bennett, E.M. Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems. PLoS ONE 2015, 10, e0120726. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Colenbrander, S.; Sudmant, A.H.; Gouldson, A.; Tin, L.C. The economic case for low carbon waste management in rapidly growing cities in the developing world: The case of Palembang, Indonesia. J. Environ. Manag. 2015, 163, 11–19. [Google Scholar] [CrossRef]
- Zaman, A.U. A comprehensive review of the development of zero waste management: Lessons learned and guidelines. J. Clean. Prod. 2015, 91, 12–25. [Google Scholar] [CrossRef]
- Gray, L.; Diekmann, L.; Algert, S.; WinklerPrins, A.M. North American Urban Agriculture: Barriers and Benefits. In Global Urban Agriculture; CABI Publishing: Wallingford, UK, 2017; pp. 24–37. [Google Scholar]
- Kleinman, P.J.A.; Allen, A.L.; Needelman, B.A.; Sharpley, A.N.; Vadas, P.A.; Saporito, L.S.; Folmar, G.J.; Bryant, R.B. Dynamics of phosphorus transfers from heavily manured Coastal Plain soils to drainage ditches. J. Soil Water Conserv. 2007, 62, 225–35. [Google Scholar]
- Kleinman, P.J.A.; Sharpley, A.N.; McDowell, R.W.; Flaten, D.N.; Buda, A.R.; Tao, L.; Bergström, L.; Zhu, Q. Managing agricultural phosphorus for water quality protection: Principles for progress. Plant Soil 2011, 349, 169–182. [Google Scholar] [CrossRef]
- Taylor, J.R.; Lovell, S.T. Urban home gardens in the Global North: A mixed methods study of ethnic and migrant home gardens in Chicago, IL. Renew. Agric. Food Syst. 2015, 30, 22–32. [Google Scholar] [CrossRef]
- Abdulkadir, A.; Leffelaar, P.A.; Agbenin, J.O.; Giller, K.E. Nutrient flows and balances in urban and peri-urban agroecosystems of Kano, Nigeria. Nutr. Cycl. Agroecosyst. 2013, 95, 231–254. [Google Scholar] [CrossRef]
- Small, G.; Shrestha, P.; Metson, G.S.; Polsky, K.; Jimenez, I.; Kay, A. Excess phosphorus from compostapplications in urban gardens creates potential pollution hotspots. Environ. Res. Comm. 2019, 1, 091007. [Google Scholar] [CrossRef]
- Sharpley, A.; Buda, A.; Spears, B.; Jarvie, H.P.; May, L.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domagalski, J.L.; Johnson, H.M. Subsurface transport of orthophosphate in five agricultural watersheds, USA. J. Hydrol. 2011, 409, 157–171. [Google Scholar] [CrossRef]
- Holman, I.P.; Whelan, M.J.; Howden, N.J.K.; Bellamy, P.H.; Willby, N.J.; McConvey, P.; Holman, I.; Whelan, M.; Bellamy, P.; Rivas-Casado, M.; et al. Phosphorus in groundwater-an overlooked contributor to eutrophication? Hydrol. Process. 2008, 22, 5121–5127. [Google Scholar] [CrossRef]
- Vadas, P.A.; Srinivasan, M.S.; Kleinman, P.J.A.; Schmidt, J.P.; Allen, A.L. Hydrology and groundwater nutrient concentrations in a ditch-drained agroecosystem. J. Soil Water Conserv. 2007, 62, 178–88. [Google Scholar]
- Heckrath, G.; Brookes, P.C.; Poulton, P.R.; Goulding, K.W.T. Phosphorus Leaching from Soils Containing Different Phosphorus Concentrations in the Broadbalk Experiment. J. Environ. Qual. 1995, 24, 904. [Google Scholar] [CrossRef]
- Small, G.; Shrestha, P.; Kay, A. The fate of compost-derived phosphorus in urban gardens. Int. J. Des. Nat. Ecodyn. 2018, 13, 415–422. [Google Scholar] [CrossRef]
- Withers, P.; Edwards, A.; Foy, R. Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manag. 2001, 17, 139–149. [Google Scholar] [CrossRef]
- McCray, J.M.; Wright, A.L.; Luo, Y.; Ji, S. Soil Phosphorus Forms Related to Extractable Phosphorus in the Everglades Agricultural Area. Soil Sci. 2012, 177, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; DeLaune, R.D.; DeLaune, R.D. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Dixon, J.B.; Weed, S.B.; Kittrick, J.A.; Milford, M.H.; White, J.L. Minerals in Soil Environments; Soil Science Society of America: Madison, WI, USA, 1977; pp. 1–948. [Google Scholar]
- Sanchez, P.A.; Palm, C.A.; Buol, S.W. Fertility capability soil classification: A tool to help assess soil quality in the tropics. Geoderma 2003, 114, 157–185. [Google Scholar] [CrossRef]
- Tan, K.H. Principles of Soil Chemistry, 2nd ed.; Marcel Dekker Inc.: New York, NY, USA, 1992. [Google Scholar]
- Nair, V.D. Soil phosphorus saturation ratio for risk assessment in land use systems. Front. Environ. Sci. 2014, 2, 6. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, N.F.; Nelson, K.C. The role of knowledge in residential lawn management. Urban Ecosyst. 2015, 18, 1031–1047. [Google Scholar] [CrossRef]
- Taylor, J.R.; Lovell, S.T. Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. Landsc. Urban Plan. 2012, 108, 57–70. [Google Scholar] [CrossRef]
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Clinton, N.; Stuhlmacher, M.; Miles, A.; Aragon, N.U.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P. A Global Geospatial Ecosystem Services Estimate of Urban Agriculture. Earth’s Future 2018, 6, 40–60. [Google Scholar] [CrossRef]
Compost Type | Compost Application Rate | Bulk Density | Total Organic Carbon | Total N | Total P | Total K |
---|---|---|---|---|---|---|
(kg dry mass/m2/y) | (g dry mass/dm3) | % | % | % | % | |
Manure compost | 0–6 | 120 | 39.2 | 1.68 | 0.60 | 0.60 |
Municipal compost | 0–9 | 490 | 19.2 | 1.11 | 0.16 | 0.41 |
Term | Estimate | Std. Error | t Ratio | P-Value |
---|---|---|---|---|
Intercept | 1.043 | 0.038 | 27.6 | <0.0001 |
Garden age (4-year) | −0.055 | 0.038 | −1.45 | 0.154 |
Depth (40 cm) | 0.210 | 0.093 | 2.26 | 0.028 |
Depth (50 cm) | −0.022 | 0.093 | −0.23 | 0.818 |
Depth (60 cm) | −0.032 | 0.093 | −0.34 | 0.734 |
Depth (70 cm) | −0.044 | 0.093 | −0.47 | 0.642 |
Depth (80 cm) | −0.023 | 0.093 | −0.25 | 0.805 |
Depth (90 cm) | −0.024 | 0.093 | −0.26 | 0.798 |
Garden age (4-year) × Depth (40) | 0.032 | 0.093 | 0.34 | 0.733 |
Garden age (4-year) × Depth (50) | 0.132 | 0.093 | 1.41 | 0.163 |
Garden age (4-year) × Depth (60) | 0.025 | 0.093 | 0.26 | 0.793 |
Garden age (4-year) × Depth (70) | −0.103 | 0.093 | −1.11 | 0.273 |
Garden age (4-year) × Depth (80) | 0.007 | 0.093 | 0.08 | 0.939 |
Garden age (4-year) × Depth (90) | −0.025 | 0.093 | −0.27 | 0.788 |
Depth (cm) | 4 year-old Garden (mg KCl-Pi/1 dm3) | 6 year-old Garden (mg KCl-Pi/1 dm3) |
---|---|---|
10 | 76.0 | 91.8 |
20 | 48.2 | 55.5 |
30 | 38.2 | 34.4 |
40 | 20.4 | 20.7 |
50 | 9.9 | 6.5 |
60 | 3.6 | 6.3 |
70 | 1.1 | 8.5 |
80 | 8.0 | 8.6 |
90 | 3.9 | 10.9 |
100 | 0.2 | 13.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Small, G.E.; Osborne, S.; Shrestha, P.; Kay, A. Measuring the Fate of Compost-Derived Phosphorus in Native Soil below Urban Gardens. Int. J. Environ. Res. Public Health 2019, 16, 3998. https://doi.org/10.3390/ijerph16203998
Small GE, Osborne S, Shrestha P, Kay A. Measuring the Fate of Compost-Derived Phosphorus in Native Soil below Urban Gardens. International Journal of Environmental Research and Public Health. 2019; 16(20):3998. https://doi.org/10.3390/ijerph16203998
Chicago/Turabian StyleSmall, Gaston E., Sara Osborne, Paliza Shrestha, and Adam Kay. 2019. "Measuring the Fate of Compost-Derived Phosphorus in Native Soil below Urban Gardens" International Journal of Environmental Research and Public Health 16, no. 20: 3998. https://doi.org/10.3390/ijerph16203998
APA StyleSmall, G. E., Osborne, S., Shrestha, P., & Kay, A. (2019). Measuring the Fate of Compost-Derived Phosphorus in Native Soil below Urban Gardens. International Journal of Environmental Research and Public Health, 16(20), 3998. https://doi.org/10.3390/ijerph16203998