Adoption of Precision Farming Tools: The Case of Italian Farmers
Abstract
:1. Introduction
2. The Evolution of Innovation Process in the Agricultural Context
3. Precision Farming Adoption Process
4. Data Collection and Methods
4.1. Pilot Study
4.2. Main Study
4.2.1. Sample
4.2.2. Questionnaire
- ◾
- efficiency effects: introduction of PFTs leads to efficiency gains at the farm level;
- ◾
- institutional effects: introduction of PFT requires farmers’ engagement in stakeholders’ and networking platforms;
- ◾
- organizational effects: introduction of PFT requires organizational and structural adjustments that are difficult to implement;
- ◾
- effects on agricultural practices: PFT requires radical change in agricultural practices;
- ◾
- financial exposure effects: introduction of PFT requires investments to be recovered in the long term.
4.2.3. Logit Regression
5. Results and Discussions
5.1. Pilot Study
5.2. Main Study
5.2.1. Descriptive Results
5.2.2. Logit Regression Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gebbers, R.; Adamchiuk, V. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Basso, B.; Sartori, L.; Bertocco, M. Agricoltura di Precisione. Concetti Teorici e Applicazioni Pratiche; L’Informatore Agrario: Verona, Italy, 2005. [Google Scholar]
- Fountas, S.; Blackmore, B.S.; Ess, D.; Hawkins, S.; Blumhoff, G.; Lowenberg-Deboer, J.; Sorensen, C.G. Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precis. Agric. 2005, 6, 121–141. [Google Scholar] [CrossRef]
- Casa, R. Agricoltura di Precisione. Metodi e tecnologie per migliorare l’efficienza e la sostenibilità dei sistemi colturali; Edagricole—New Business Media: Milano, Italy, 2016. [Google Scholar]
- Pisante, M. Agricoltura Sostenibile. Principi, Sistemi E Tecnologie Applicate All’Agricoltura Produttiva per La Salvaguardia Dell’Ambiente E Della Tutela Chimica; Edagricole—New Business Media: Milano, Italy, 2013. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Lipper, L.; Zilberman, D. A short history of the evolution of the climate smart agriculture approach and its Links to climate change and sustainable agriculture debates. In Climate Smart Agriculture; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sunding, D.; Zilberman, D. The agricultural innovation process: Research and technology adoption in a changing agricultural sector. Handb. Agric. Econ. 2011, 4, 207–261. [Google Scholar]
- Pedersen, S.M.; Fountas, S.; Blackmore, B.S.; Gylling, M.; Pedersen, J.L. Adoption and perspective of precision farming in Denmark. Acta Agric. Scand. Sect. Soil Plant Sci. 2004, 54, 2–8. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of precision agriculture technologies adoption: A literature review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture Technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- De Castro, P.; Adinolfi, F.; Capitanio, F.; Di Falco, S. Building a new framework for Common Agricultural Policy: A Responsibility toward the overall community. EuroChoices 2011, 10, 32–36. [Google Scholar] [CrossRef]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Klerkx, L.; Van Mierlo, B.; Leeuwis, C. Evolution of systems approaches to agricultural innovation: Concepts, analysis and interventions. In Farming Systems Research into the 21st Century: The New Dynamic; Darnhofer, I., Gibbon, D., Dedieu, B., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Busse, M.; Doernberg, A.; Siebert, R.; Kuntosch, A.; Schwerdtner, W.; König, B.; Bokelmann, W. Innovation mechanisms in German precision farming. Precis. Agric. 2014, 15, 403–426. [Google Scholar] [CrossRef]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Kuehne, G.; Llewellyn, R.; Pannell, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Adinolfi, F.; Bartoli, L.; De Rosa, M.; Masi, M.; Vecchio, Y. Entrepreneurial Identity and Adoption of Precision Agricultural Tools. In Proceedings of the ISBE, Birmingham, UK, 7–8 November 2018; pp. 1–18. [Google Scholar]
- Vecchio, Y.; De Rosa, M.; Adinolfi, F.; Bartoli, L.; Masi, M. Adoption of Precision Farming Tools: A context-related analysis. Land Use Policy 2020, in press. [Google Scholar] [CrossRef]
- World Bank. Enhancing Agricultural Innovation: How to Go beyond the Strengthening of Research Systems. 2006. Available online: http://siteresources.worldbank.org/INTARD/Resources/Enhancing_Ag_Innovation.pdf (accessed on 27 January 2020).
- Schut, M.; Rodenburg, J.; Klerkx, L.; van Ast, A.; Bastiaans, L. Systems approaches to innovation in crop protection. A systematic literature review. Crop Prot. 2014, 56, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Schut, M.; Klerkx, L.; Rodenburg, J.; Kayeke, J.; Hinnou, L.C.; Raboanarielina, C.M.; Adegbola, P.Y.; van Ast, A.; Bastiaans, L. RAAIS: Rapid Appraisal of Agricultural Innovation Systems (Part I). A diagnostic tool for integrated analysis of complex problems and innovation capacity. Agric. Syst. 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Schut, M.; de Roo, N.; Salomons, M.; Beshah, T.; Hawkins, R. System Analysis in AIS: Potentials and Pitfalls; Kit Pulishers: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Norman, D.W. The farming systems approach: A historical perspective. In Proceedings of the 17th Symposium of the International Farming Systems Association, Lake Buena Vista, FL, USA, 17–20 November 2002. [Google Scholar]
- Pant, L.P.; Hambly-Odame, H. Innovation systems in renewable natural resource management and sustainable agriculture: A literature review. Afr. J. Sci. Technol. Innov. Dev. 2009, 1, 103–135. [Google Scholar]
- Altieri, M.A. Pest management technologies for peasants: A farming systems approach. Crop Prot. 1984, 3, 87–94. [Google Scholar] [CrossRef]
- Biggs, S.D. Farming systems research and rural poverty: Relationships between context and content. Agric. Syst. 1995, 47, 161–174. [Google Scholar] [CrossRef]
- Giller, K.E. Can we define the term “farming systems?” A question of scale. Outlook Agric. 2013, 42, 149–153. [Google Scholar] [CrossRef]
- Leeuwis, C. Communication for Rural Innovation. Rethinking Agricultural Extension; Blackwell Science: Oxford, UK, 2004. [Google Scholar]
- Hounkonnou, D.; Kossou, D.; Kuyper, T.W.; Leeuwis, C.; Nederlof, E.S.; Röling, N.; Sakyi-Dawson, O.; Traoré, M.; Van Huis, A. An innovation systems approach to institutional change: Smallholder development in West Africa. Agric. Syst. 2012, 108, 74–83. [Google Scholar] [CrossRef]
- Leeuwis, C. Reconceptualizing participation for sustainable rural development: Towards a negotiation approach. Dev. Chang. 2000, 31, 931–959. [Google Scholar] [CrossRef]
- Hall, L.; Prevatt, J.W.; Martin, N.R.; Dunkelberger, J.; Ferreira, W. Diffusion-Adoption of Personal Computers and the Internet in Farm Business Decisions: South-eastern Beef and Peanut Farmers. J. Ext. 2003, 41, 1–11. [Google Scholar]
- Klerkx, L.; Aarts, N.; Leeuwis, C. Adaptive management in agricultural innovation systems: The interactions between innovation networks and their environment. Agric. Syst. 2010, 103, 390–400. [Google Scholar] [CrossRef]
- Schut, M.; van Paassen, A.; Leeuwis, C.; Klerkx, L. Towards dynamic research configurations. A framework for reflection on the contribution of research to policy and innovation processes. Sci. Public Policy 2013, 41, 207–218. [Google Scholar] [CrossRef]
- De Rosa, M. Il Riposizionamento Funzionale Dell’Agricoltura E IL Rinnovato Ruolo Dei Servizi Di Sviluppo Agricolo; FrancoAngeli: Milano, Italy, 2014. [Google Scholar]
- Vellema, S. Postharvest innovation in developing societies: The institutional dimensions of technological change. Stewart Postharvest Rev. 2008, 4, 1–8. [Google Scholar] [CrossRef]
- Hall, A.; Clark, N. What do complex adaptive systems look like and what are the implications for innovation policy? J. Int. Dev. 2010, 22, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Hekkert, M.P.; Suurs, R.A.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E.H. Functions of innovation systems: A new approach for analysing technological change. Technol. Forecast. Soc. Chang. 2007, 74, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.; Loevinsohn, M. Shaping agricultural innovation systems responsive to food insecurity and climate change. Nat. Resour. Forum 2011, 35, 185–200. [Google Scholar] [CrossRef]
- Gijsbers, G.; van Tulder, R. New Asian challenges: Missing linkages in Asian agricultural innovation and the role of public research organisations in four small- and medium-sized Asian countries. Sci. Technol. Soc. 2011, 16, 29–51. [Google Scholar] [CrossRef]
- Leitgeb, F.; Funes-Monzote, F.R.; Kummer, S.; Vogl, C.R. Contribution of farmers’ experiments and innovations to Cuba’s agricultural innovation system. Renew. Agric. Food Syst. 2011, 26, 354–367. [Google Scholar] [CrossRef]
- Tyagi, A.C. Integrating irrigation and drainage into agricultural innovation systems. Irrig. Drain. 2012, 61, 565–566. [Google Scholar] [CrossRef]
- Chandler, D.; Davidson, G.; Grant, W.P.; Greaves, J.; Tatchell, G.M. Microbial biopesticides for integrated crop management: An assessment of environmental and regulatory sustainability. Trends Food Sci. Technol. 2008, 19, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Erenstein, O.; Sayre, K.; Wall, P.; Hellin, J.; Dixon, J. Conservation agriculture in maize- and wheat-based systems in the (sub)tropics: Lessons from adaptation initiatives in South Asia, Mexico, and southern Africa. J. Sustain. Agric. 2012, 36, 180–206. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Lenne, J.M.; Takan, J.P.; Mgonja, M.A.; Manyasa, E.O.; Kaloki, P.; Wanyera, N.; Okwadi, J.; Muthumeenakshi, S.; Brown, A.E.; Tamale, M.; et al. Finger millet blast disease management e a key entry point for fighting malnutrition and poverty in East Africa. Outlook Agric. 2007, 36, 101–108. [Google Scholar] [CrossRef]
- Sims, B.G.; Thierfelder, C.; Kienzle, J.; Friedrich, T.; Kassam, A. Development of the conservation agriculture equipment industry in sub-Saharan Africa. Appl. Eng. Agric. 2012, 28, 813–823. [Google Scholar] [CrossRef]
- Schut, M.; Klerkx, L.; Sartas, M.; Lamers, D.; Mc Campbell, M.; Ogbonna, I.; Kaushik, P.; Atta-Krah, K.; Leeuwis, C. Innovation platforms: Experiences with their institutional embedding in agricultural research for development. Exp. Agric. 2016, 52, 537–561. [Google Scholar] [CrossRef] [Green Version]
- Straub, E.T. Understanding technology adoption: Theory and future directions for informal learning. Rev. Educ. Res. 2009, 79, 625–649. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations; The Free Press: New York, NY, USA, 1995. [Google Scholar]
- Nitsch, U. From Diffusion of Innovations to Mutual Learning. The Changing Role of the Agricultural Advisory Service; Department of Extension Education—Swedish University of Agricultural Sciences: Uppsala, Finland, 1994. [Google Scholar]
- Diederen, P.; Van Meijl, H.; Wolters, A.; Bijak, K. Innovation adoption in agriculture: Innovators, early adopters and laggards. Cahiers d’Economie et de Sociologie Rurales 2003, 67, 29–50. [Google Scholar]
- Saha, L.; Alan, L.H.; Robert, S. Adoption of emerging technologies under output uncertainty. Am. J. Agric. Econ. 1994, 76, 836–846. [Google Scholar]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Just, R.J.; Zilberman, D. Adoption of agricultural innovations in developing countries: A Survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Pierce, F.J.; Nowak, P. Aspects of precision agriculture. Adv. Agronomy 1999, 67, 1–85. [Google Scholar]
- Nitsch, U. Farmer’s Problems of Practice Adoption and the Role of the Agricultural Extension Agent; University of Wisconsin: Madison, WI, USA, 1972. [Google Scholar]
- Tully, J. Farmers’ Problems of Behavioral Change. Human Relations 1968, 21, 373–382. [Google Scholar] [CrossRef]
- Wilkening, E.A. Some Perspectives on Change in Rural Societies. Rural Sociol. 1971, 29, 1–17. [Google Scholar]
- Rogers, E.M.; Shoemaker, F. Communication of Innovations; The Free Press: New York, NY, USA, 1971. [Google Scholar]
- Diagne, A.; Demont, M. Taking a new look at empirical models of adoption: Average treatment effect estimation of adoption rates and their determinants. Agric. Econ. 2007, 37, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Kabunga, N.S.; Dubois, T.; Qaim, M. Heterogeneous information exposure and technology adoption: The case of tissue culture bananas in Kenya. Agric. Econ. 2012, 43, 473–486. [Google Scholar] [CrossRef]
- Diagne, A. Technological change in smallholder agriculture: Bridging the adoption gap by understanding its source. Afr. J. Agric. Res. Econ. 2010, 5, 261–283. [Google Scholar]
- Simtowe, F.; Asfaw, S.; Abate, T. Determinants of agricultural technology adoption under partial population awareness: The case of pigeonpea in Malawi. Agric. Food Econ. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Samiee, S.; Rezaei-Moghaddam, K. The proposed alternative model to predict adoption of innovations: The case of no-till technology in Iran. J. Saudi Soc. Agric. Sci. 2017, 16, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Kendall, H.; Naughton, P.; Clark, B.; Taylor, J.; Li, Z.; Zhao, C.; Yang, G.; Chen, J.; Frewer, L.J. Precision Agriculture in China: Exploring Awareness, Understanding, Attitudes and Perceptions of Agricultural Experts and End-Users in China. Adv. Anim. Biosci. 2017, 8, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, I.; Vanlauwe, B.; Merckx, R.; Maertens, M. Understanding the process of agricultural technology adoption: Mineral fertilizer in eastern DR Congo. World Dev. 2014, 59, 132–146. [Google Scholar] [CrossRef]
- Leathers, H.D.; Smale, M. A Bayesian approach to explaining sequential adoption of components of a technological package. Am. J. Agric. Econ. 1991, 73, 734–742. [Google Scholar] [CrossRef]
- Feder, G.; Slade, R. The Acquisition of Information and the Adoption of New Technology. Am. J. Agric. Econ. 1984, 66, 312–320. [Google Scholar] [CrossRef]
- Feder, G.; Umali, D.L. The adoption of agricultural innovations: A review. Technol. Forecast. Soc. Chang. 1993, 43, 215–239. [Google Scholar] [CrossRef]
- Schut, M.; Andersson, J.A.; Dror, I.; Kamanda, J.; Sartas, M.; Mur, R.; Kassam, S.N.; Brouwer, H.; Stoian, D.; Devaux, A.; et al. Guidelines for Innovation Platforms in Agricultural Research for Development: Decision Support for Research, Development and Funding Agencies on How to Design, Budget and Implement Impactful Innovation Platforms. IITA and WUR: Ibada. 2017. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/82550/schut_guidelines_IP_2017.pdf?sequence=2&isAllowed=y (accessed on 27 January 2020).
- Pino, G.; Toma, P.; Rizzo, C.; Miglietta, P.; Peluso, A.; Guido, G. Determinants of farmers’ intention to adopt water saving measures: Evidence from Italy. Sustainability 2017, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Pennings, J.M.; Irwin, S.H.; Good, D.L. Surveying farmers: A case study. Rev. Agric. Econ. 2002, 24, 266–277. [Google Scholar] [CrossRef]
- Maxwell, J.A. Qualitative Research Design: An Interactive Approach, 3rd ed.; SAGE Publications: London, UK, 1996. [Google Scholar]
- Taherdoost, H. Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. Int. J. Adv. Res. Manag. 2016, 5, 18–27. [Google Scholar] [CrossRef]
- Kelley, K.; Clark, B.; Brown, V.; Sitzia, J. Good practice in the conduct and reporting of survey research. Int. J. Qual. Health Care 2003, 15, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saris, W.E.; Gallhofer, I. Estimation of the effect of measurement characteristics on the quality of survey questions. Surv. Res. Methods 2007, 1, 29–43. [Google Scholar]
- Reichardt, M.; Jürgens, C.; Klöble, U.; Hüter, J.; Moser, K. Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities. Precis. Agric. 2009, 10, 525–545. [Google Scholar] [CrossRef]
- McBride, W.D.; Daberkow, S.G. Information and the adoption of precision farming technologies. J. Agribusiness 2003, 21, 21–38. [Google Scholar]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ perceptions and attitudes toward precision agriculture technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Wheeler, S.A. The barriers to further adoption of organic farming and genetic engineering in Australia: Views of agricultural professionals and their information sources. Renew. Agric. Food Syst. 2008, 23, 161–170. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Socioeconomic profiles of early adopters of precision agriculture technologies. Agribusiness 1998, 16, 151–168. [Google Scholar]
- Lambert, D.M.; Paudel, K.P.; Larson, J.A. Bundled Adoption of Precision Agriculture Technologies by Cotton Producers. J. Agric. Resour. Econ. 2015, 40, 325–345. [Google Scholar]
- Watcharaanantapong, P.; Roberts, R.K.; Lambert, D.M.; Larson, J.A.; Velandia, M.; English, B.C.; Rejesus, R.M.; Wang, C. Timing of precision agriculture technology adoption in US cotton production. Precis. Agric. 2013, 15, 427–446. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Adoption of precision agriculture technologies by US farmers. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, IN, USA, 16–19 July 2000. [Google Scholar]
- Walton, J.C.; Lambert, D.M.; Roberts, R.K.; Larson, J.A.; English, B.C.; Larkin, S.L.; Martin, S.W.; Marra, M.C.; Paxton, K.W.; Reeves, J.M. Adoption and abandonment of precision soil sampling in cotton production. J. Agric. Resour. Econ. 2008, 33, 428–448. [Google Scholar]
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L.; Metz, N.; O’Callaghan, C. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precision Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Paudel, K.P.; Mishra, A.K.; Segarra, E. Adoption and Non-adoption of Precision Farming Technologies by Cotton Farmers. In Proceedings of the Annual Meeting of the Agricultural and Applied Economics Association, Seattle, WA, USA, 12–14 August 2012. [Google Scholar]
- Läpple, D.; Renwick, A.; Thorne, F. Measuring and understanding the drivers of agricultural innovation: Evidence from Ireland. Food Policy 2015, 51, 1–8. [Google Scholar]
- Castle, M.H.; Lubben, B.D.; Luck, J.D. Factors Influencing the Adoption of Precision Agriculture Technologies by Nebraska Producers; UNL Digital Commons: Lincoln, NE, USA, 2016. [Google Scholar]
- Hategekimana, B.; Trant, M. Adoption and diffusion of new technology in agriculture: Genetically modified corn and soybeans. Can. J. Agric. Econ. 2002, 50, 357–371. [Google Scholar] [CrossRef]
- De Rose, C. Analisi del territorio nella programmazione di interventi di sviluppo agricolo. Guida all’uso degli indicatori. I Quaderni POM 2000, 131, 147. [Google Scholar]
- De Baerdemaeker, J. Precision agriculture technology and robotics for good agricultural practices. IFAC Proc. Vol. 2013, 46, 1–4. [Google Scholar] [CrossRef]
- Walton, J.C.; Larson, J.A.; Roberts, R.K.; Lambert, D.M.; English, B.C.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Paxton, K.W.; Reeves, J.M. Factors Influencing Farmer Adoption of Portable Computers for Site-Specific Management: A Case Study for Cotton Production. J. Agric. Appl. Econ. 2010, 42, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Paxton, K.; Mishra, A.K.; Chintawar, S.; Roberts, R.; Larson, J.A.; English, B.C.; Lambert, D.M.; Marra, M.C.; Larkin, S.L.; Reeves, J.M.; et al. Intensity of Precision Agriculture Technology Adoption by Cotton Producers. Agric. Resour. Econ. Rev. 2011, 40, 133–144. [Google Scholar] [CrossRef]
- Larson, J.A.; Roberts, R.K.; English, B.C.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Paxton, K.W.; Reeves, J.M. Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precis. Agric. 2008, 9, 195–208. [Google Scholar] [CrossRef]
- Roberts, R.K.; English, B.C.; Larson, J.A.; Cochran, R.L.; Goodman, W.R.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Shurley, W.D.; Reeves, J.M. Adoption of Site-Specific Information and Variable-Rate Technologies in Cotton Precision Farming. J. Agric. Appl. Econ. 2004, 36, 143–158. [Google Scholar] [CrossRef]
- Popp, J.; Griffin, T. Adoption trends of early adopters of precision farming in Arkansas. In Proceedings of the Fifth International Conference on Precision Agriculture (CD), Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Isgin, T.; Bilgic, A.; Forster, D.L.; Batte, M. Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Comput. Electron. Agric. 2008, 62, 231–242. [Google Scholar] [CrossRef]
- Blackmore, S. Developing the principles of Precision Farming. In Proceedings of the ICETS, Beijing, China, 1 October 2000; pp. 11–13. [Google Scholar]
- Bucci, G.; Bentivoglio, D.; Finco, A. Factors affecting ICT adoption in agriculture: A case study in Italy. Calitatea 2019, 20, 122–129. [Google Scholar]
- Abeni, F.; Petrera, F.; Galli, A. A Survey of Italian Dairy Farmers’ Propensity for Precision Livestock Farming Tools. Animals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Caffaro, F.; Cavallo, E. The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy. Agriculture 2019, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Pagliacci, F.; Defrancesco, E.; Mozzato, D.; Bortolini, L.; Pezzuolo, A.; Pirotti, F.; Pisani, E.; Gatto, P. Drivers of farmers’ adoption and continuation of climate-smart agricultural practices. A study from northeastern Italy. Sci. Total Environ. 2019, 710, 136345. [Google Scholar] [CrossRef]
- Finger, R.; Swinton, S.M.; Benni, N.E.; Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 2019, 11, 313–335. [Google Scholar] [CrossRef] [Green Version]
Variable | Adopters | Non-Adopters |
---|---|---|
Farmer’s age | 43 years | 48 years |
Level of education | ||
Middle school | 2% | 7.3% |
High school | 12% | 40.3% |
Bachelor’s degree | 24% | 22.6% |
Master’s degree | 62% | 29.8% |
Farm size | 143.36 ha | 33.39 ha |
Labor intensity | ||
>25 day/ha | 0% | 43.5% |
25 ≤ day/ha < 50 | 4% | 44.4% |
50 ≤ day/ha < 75 | 42% | 12.1% |
≥75 day/ha | 54% | 0% |
Intensity of information | ||
<4 h | 10% | 29.8% |
4 ≤ h < 8 | 2% | 54% |
8 ≤ h < 12 | 52% | 12.9% |
≥12 | 36% | 3.2% |
Variables | Perceived Complexity | Labor Intensity | Age | Education | Intensity of Information |
---|---|---|---|---|---|
Perceived complexity | 1 | −0.672 ** | 0.276 ** | −0.449 ** | −0.704 ** |
Labor intensity | 1 | −0.299 ** | 0.423 ** | 0.628 ** | |
Age | 1 | −0.228 ** | −0.329 ** | ||
Education | 1 | 0.604 ** | |||
Intensity of information | 1 |
Category | Predicted | Percentage | |
---|---|---|---|
Observed | Non adopters | Adopters | |
Non adopters | 0 | 50 | 0 |
Adopters | 0 | 50 | 100 |
Overall Percentage | 50 |
Category | Predicted | Percentage | |
---|---|---|---|
Observed | Non adopters | Adopters | |
Non adopters | 47 | 3 | 94 |
Adopters | 2 | 48 | 96 |
Overall Percentage | 95 |
Variable | B | S.E. | Wald | Sig. | Exp(β) |
---|---|---|---|---|---|
Perceived Complexity | −16.359 | 6.464 | 6.404 | 0.011 | 0 |
Labor intensity | 4.386 | 1.263 | 12.067 | 0.001 | 80.291 |
Constant | −0.201 | 3.639 | 0.003 | 0.956 | |
Summary statistics | |||||
Likelihood ratio | 24.586 | ||||
Cox and Snell | 0.68 | ||||
Nagerkelke | 0.907 | ||||
Chi-squared | 114.043 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of Precision Farming Tools: The Case of Italian Farmers. Int. J. Environ. Res. Public Health 2020, 17, 869. https://doi.org/10.3390/ijerph17030869
Vecchio Y, Agnusdei GP, Miglietta PP, Capitanio F. Adoption of Precision Farming Tools: The Case of Italian Farmers. International Journal of Environmental Research and Public Health. 2020; 17(3):869. https://doi.org/10.3390/ijerph17030869
Chicago/Turabian StyleVecchio, Yari, Giulio Paolo Agnusdei, Pier Paolo Miglietta, and Fabian Capitanio. 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers" International Journal of Environmental Research and Public Health 17, no. 3: 869. https://doi.org/10.3390/ijerph17030869
APA StyleVecchio, Y., Agnusdei, G. P., Miglietta, P. P., & Capitanio, F. (2020). Adoption of Precision Farming Tools: The Case of Italian Farmers. International Journal of Environmental Research and Public Health, 17(3), 869. https://doi.org/10.3390/ijerph17030869