Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pyne, D.B.; Lee, H.; Swanwick, K.M. Monitoring the lactate threshold in world ranked swimmers. Med. Sci. Sport Exer. 2001, 33, 291–297. [Google Scholar] [CrossRef]
- Pelarigo, J.G.; Greco, C.C.; Denadai, B.S.; Fernandes, R.J.; Vilas-Boas, J.P.; Pendergast, D.R. Do 5% changes around maximal lactate steady state lead to swimming biophysical modifications? Hum. Mov. Sci. 2016, 49, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Sousa, J.; Marinho, D.A.; Silva, A.J.; Vilas-Boas, J.P.; Fernandes, R.J. Anaerobic Threshold Biophysical Characterisation of the Four Swimming Techniques. Int. J. Sports Med. 2020, in press. [Google Scholar] [CrossRef]
- Chatard, J.C.; Lavoie, J.M.; Lacour, J. Analysis of determinants of swimming economy in front crawl. Eur. J. Appl. Physiol. 1990, 61, 88–92. [Google Scholar] [CrossRef]
- Morris, K.S.; Osborne, M.A.; Shephard, M.E.; Jenkins, D.G.; Skinner, T.L. Velocity, oxygen uptake, and metabolic cost of pull kick, and whole-body swimming. Int. J. Sport Physiol. 2017, 12, 1046–1051. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.J.; Billat, V.; Cruz, A.; Colaço, P.; Cardoso, C.; Vilas-Boas, J.P. Does net energy of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J. Sports Med. Phys. Fit. 2006, 46, 373–380. [Google Scholar]
- Fernandes, R.J.; Keskinen, K.; Colaço, P.; Querido, A.; Machado, L.; Morais, P.A.; Novais, D.Q.; Marinho, D.A.; Vilas-Boas, J.P. Time limit at VO2max velocity in elite crawl swimmers. Int. J. Sports Med. 2008, 29, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, T.M.; Keskinen, K.L.; Fernandes, R.J.; Vilas-Boas, J.P. The influence of stroke mechanics into energy cost of elite swimmers. Eur. J. Appl. Physiol. 2008, 103, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Morouço, P.G.; Jesus, S.; Feitosa, W.G.; Costa, M.J.; Marinho, D.A.; Silva, A.J.; Garrido, N.D. The interaction between intra-cyclic variation of the velocity and mean swimming velocity in young competitive swimmers. Int. J. Sports Med. 2013, 34, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamparo, P.; Pendergast, D.; Mollendorf, J.; Termin, A.; Minetti, A. An energy balance of front crawl. Eur. J. Appl. Physiol. 2005, 94, 134–144. [Google Scholar] [CrossRef]
- Peterson Silveira, R.; Soares, S.M.; Zacca, R.; Alves, F.B.; Fernandes, R.J.; De Souza Castro, F.A.; Vilas-Boas, J.P. A Biophysical Analysis on the Arm Stroke Efficiency in Front Crawl Swimming: Comparing Methods and Determining the Main Performance Predictors. Int. J. Environ. Res. Public Health 2019, 16, 4715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, J.P.; Cadavid, E.; Baena, J.; Monsalvete, E.; Barna, A.; De Rose, E.H. Metabolic predictors of middle-distance swimming performance. Br. J. Sport Med. 1990, 24, 196–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obert, P.; Falgairette, G.; Bedu, M.; Coudert, J. Bioenergetic characteristics of swimmers determined during an arm-ergometer test and during swimming. Int. J. Sports Med. 1991, 13, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Bragada, J.A.; Marinho, D.A.; Lopes, V.P.; Silva, A.J.; Barbosa, T.M. Longitudinal study in male swimmers: A hierarchical modeling of energetics and biomechanical contributions for performance. J. Sports Sci. Med. 2013, 12, 614–622. [Google Scholar] [PubMed]
- Zacca, R.; Azevedo, R.; Ramos, V.; Abraldes, J.; Vilas-Boas, J.; Castro, F.; Pyne, D.; Fernandes, R. Biophysical Follow-up of Age-Group Swimmers During a Traditional Three-Peak Preparation Program. J. Strength Cond. Res. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Cardoso, C.S.; Soares, S.M.; Ascensão, A.; Colaço, P.J.; Vilas-Boas, J.P. Time limit and VO2 slow component at intensities corresponding to VO2max in swimmers. Int. J. Sports Med. 2003, 24, 576–581. [Google Scholar]
- Laffite, L.P.; Vilas-Boas, J.P.; Demarle, A.; Silva, J.; Fernandes, R.; Billat, V. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can. J. Appl. Physiol. 2004, 29, S17–S31. [Google Scholar] [CrossRef]
- Montpetit, R.R.; Léger, L.A.; Lavoie, J.M.; Cazorla, G. VO2 peak during free swimming using the backward extrapolation of the O2 recovery curve. Eur. J. Appl. Physiol. Occup. Physiol. 1981, 47, 385–391. [Google Scholar] [CrossRef]
- Costa, M.J.; Bragada, J.A.; Mejias, J.E.; Louro, H.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Effects of swim training on energetics and performance. Int. J. Sports Med. 2013, 34, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Di Prampero, P.E. The energy cost of human locomotion on land and in water. Int. J. Sports Med. 1986, 7, 55–72. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Keskinen, K.L.; Fernandes, R.J.; Colaço, P.; Carmo, C.; Vilas-Boas, J.P. Relationship between energetic, stroke determinants and velocity in butterfly stroke. Int. J. Sports Med. 2005, 26, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minetti, A. The biomechanics of skipping gaits: A third locomotion paradigm? Proc. Biol. Sci. 1998, 265, 1227–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.; Skehan, P.; Pawelczyk, J.; Boomer, W. Velocity, stroke rate and distance per stroke during elite swimming competition. Med. Sci. Sport Exer. 1985, 17, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.L.; Kovaleski, J.; Porter, D.; Fielding, R.; King, D. Energy expenditure during front crawl swimming: Predicting success in middle-distance events. Int. J. Sports Med. 1985, 6, 266–270. [Google Scholar] [CrossRef]
- Zamparo, P. Effects of age and gender on the propelling efficiency of the arm stroke. Eur. J. Appl. Physiol. 2006, 97, 52–58. [Google Scholar] [CrossRef]
- Phillips, E.; Davids, K.; Renshaw, I.; Portus, M. Expert performance in sport and the dynamics of talent development. Sports Med. 2010, 40, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Hopkins, W.; Roberts, A.; Pyne, D. Monitoring seasonal ad long-term changes in test performance in elite swimmers. Eur. J. Sport Sci. 2006, 6, 145–154. [Google Scholar] [CrossRef]
- Troup, J. Aerobic characteristics of the four competitive strokes. In Studies by the International Center for Aquatic Research; Troup, J., Ed.; US Swimming Press: Colorado Spring, CO, USA, 1991; pp. 3–7. [Google Scholar]
- Zamparo, P.; Capelli, C.; Pendergast, D. Energetics of swimming: A historical perspective. Eur. J. Appl. Physiol. 2010, 111, 367–378. [Google Scholar] [CrossRef]
- Huot-Marchand, F.; Nesi, X.; Sidney, M.; Alberty, M.; Pelayo, P. Variations of stroking parameters associated with 200-m competitive performance improvement in top-standard front crawl swimmers. Sports Biomech. 2005, 4, 89–99. [Google Scholar] [CrossRef]
- Sánchez, J.; Arellano, R. Stroke index values according to level, gender, swimming style and event race distance. In Proceedings of the XXth International Symposium on Biomechanics in Sports; Gianikellis, K., Ed.; Universidad de Extremadura: Badajoz, Spain, 2002; pp. 56–59. [Google Scholar]
- Madsen, O. Aerobic training: Not so fast there. Swim. Tech. 1983, 20, 13–17. [Google Scholar]
- Ryan, R.; Coyle, E.; Quick, R. Blood lactate profile throughout a training season in elite female swimmers. J. Swim. Res. 1990, 6, 5–9. [Google Scholar]
- Costill, D.L.; Flynn, M.G.; Kirwan, J.P.; Houmard, J.A.; Mitchell, J.B.; Thomas, R.; Park, S.H. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med. Sci. Sport Exer. 1988, 20, 249–254. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (±1 SD) | Max | Min | Correlation with T200m |
---|---|---|---|---|
T200m (s) | 117.94 ± 4.88 | 111.42 | 120.70 | --- |
Height (m) | 1.81 ± 0.07 | 1.91 | 1.71 | −0.43 (p = 0.29) |
Body mass (kg) | 73.20 ± 5.33 | 80.10 | 66.2 | −0.33 (p = 0.42) |
Arm span (m) | 1.87 ± 0.07 | 2.00 | 1.80 | −0.38 (p = 0.35) |
V4 (m·s−1) | 1.43 ± 0.05 | 1.50 | 1.35 | −0.81 (p = 0.01) |
VO2max (ml·kg−1·min−1) | 70.61 ± 6.44 | 78.82 | 63.34 | −0.50 (p = 0.21) |
C (J·kg−1·m−1) | 15.26 ± 1.18 | 16.85 | 13.81 | 0.02 (p = 0.95) |
SF (Hz) | 0.69 ± 0.04 | 0.73 | 0.60 | −0.55 (p = 0.15) |
SL (m) | 2.48 ± 0.14 | 2.56 | 2.37 | −0.61 (p = 0.11) |
SI (m2·s−1) | 4.22 ± 0.31 | 4.48 | 3.77 | −0.67 (p = 0.07) |
ηp (%) | 39.06 ± 1.55 | 41.43 | 36.13 | 0.07 (p = 0.87) |
Group | Variable | r2 | Adjusted r2 | T | p | Beta | F | p |
---|---|---|---|---|---|---|---|---|
Anthropometrics | Height | 0.22 | 0.09 | 3.84 | 0.01 | −0.464 | (1;6 ) = 1.65 | 0.25 |
Body mass | 0.20 | 0.08 | 6.03 | <0.01 | −0.448 | (1;6) = 1.50 | 0.27 | |
Arm span | 0.26 | 0.14 | 3.86 | <0.01 | −0.510 | (1;6) = 2.11 | 0.20 | |
Physiology | V4 | 0.59 | 0.52 | 5.99 | <0.01 | −0.769 | (1;6) = 8.68 | 0.03 |
VO2max | 0.25 | 0.13 | 7.62 | <0.01 | −0.500 | (1;6) = 1.99 | 0.21 | |
C | 0.01 | −0.16 | 4.82 | <0.01 | −0.090 | (1;6) = 0.05 | 0.83 | |
Biomechanics | SF | 0.23 | 0.10 | 5.28 | <0.01 | −0.481 | (1;6) = 1.80 | 0.23 |
SL | 0.04 | −0.12 | 3.86 | <0.01 | −0.198 | (1;6) = 0.25 | 0.64 | |
SI | 0.48 | 0.39 | 8.39 | <0.01 | −0.691 | (1;6) = 5.47 | 0.06 | |
ηp | 0.02 | −0.14 | 2.77 | 0.03 | −0.156 | (1;6) = 0.15 | 0.71 |
Variable | r2 | Adjusted r2 | T | p | Beta | F | p | |
---|---|---|---|---|---|---|---|---|
T200m | V4 SI Arm span | 0.59 0.73 0.74 | 0.52 0.63 0.54 | 5.99 6.71 5.55 | <0.01 <0.01 <0.01 | −0.769 −0.571 −0.082 | (1;7) = 8.68 (2;7) = 6.84 (3;7) = 3.74 | 0.03 0.04 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, M.J.; Santos, C.C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. Int. J. Environ. Res. Public Health 2020, 17, 2126. https://doi.org/10.3390/ijerph17062126
Costa MJ, Santos CC, Marinho DA, Silva AJ, Barbosa TM. Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. International Journal of Environmental Research and Public Health. 2020; 17(6):2126. https://doi.org/10.3390/ijerph17062126
Chicago/Turabian StyleCosta, Mário J., Catarina C. Santos, Daniel A. Marinho, António J. Silva, and Tiago M. Barbosa. 2020. "Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak" International Journal of Environmental Research and Public Health 17, no. 6: 2126. https://doi.org/10.3390/ijerph17062126
APA StyleCosta, M. J., Santos, C. C., Marinho, D. A., Silva, A. J., & Barbosa, T. M. (2020). Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. International Journal of Environmental Research and Public Health, 17(6), 2126. https://doi.org/10.3390/ijerph17062126