Monitoring Master Swimmers’ Performance and Active Drag Evolution along a Training Mesocycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Performance Assessment in Free Swimming
2.4. Active Drag Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubin, R.T.; Rahe, R.H. Effects of aging in masters swimmers: 40-year review and suggestions for optimal health benefits. Open Access J. Sports Med. 2010, 1, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Maharam, L.G.; Bauman, P.A.; Kalman, D.; Skolnik, H.; Perle, S.M. Masters Athletes: Factors affecting performance. Sports Med. 1999, 28, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.; Sousa, C.V.; Olher, R.R.; Nikolaidis, P.T.; Knechtle, B. Pacing in World-Class Age Group Swimmers in 100 and 200 m Freestyle, Backstroke, Breaststroke, and Butterfly. Int. J. Environ. Res. Public Health 2020, 17, 3875. [Google Scholar] [CrossRef]
- Zamparo, P.; Gatta, G.; Di Prampero, P.E. The determinants of performance in master swimmers: An analysis of master world records. Eur. J. Appl. Physiol. 2012, 112, 3511–3518. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.I.; Barbosa, T.M.; Costa, M.J.; Neiva, H.P.; Marinho, D.A. Energetics, Biomechanics, and Performance in Masters’ Swimmers: A Systematic Review. J. Strength Cond. Res. 2016, 30, 2069–2081. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.I.; Barbosa, T.M.; Costa, M.J.; Neiva, H.P.; Vilaça, J.; Marinho, D.A. Effects of swim training on energetic and performance in women masters’ swimmers. J. Hum. Sport. Exerc. 2016, 11, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Marinho, D.A.; Ferreira, M.I.; Barbosa, T.M.; Vilaça-Alves, J.; Costa, M.J.; Ferraz, R.; Neiva, H.P. Energetic and Biomechanical Contributions for Longitudinal Performance in Master Swimmers. J. Funct. Morphol. Kinesiol. 2020, 5, 37. [Google Scholar] [CrossRef]
- Mejias, J.E.; Bragada, J.A.; Costa, M.J.; Reis, V.M.; Garrido, N.D.; Barbosa, T.M. “Young” masters vs. elite swimmers: Comparison of performance, energetics, kinematics and efficiency. Int. Sport Med. J. 2014, 15, 165–177. [Google Scholar]
- Pendergast, D.R.; Capelli, C.; Craig, A.B.; Di Prampero, P.E.; Minetti, A.E.; Mollendorf, J.; Termin, I.I.; Zamparo, P. Biophysics in swimming. Rev. Port. Cienc. Desp. 2006, 6, 185–189. [Google Scholar]
- Peterson Silveira, R.; Soares, S.M.; Zacca, R.; Alves, F.B.; Fernandes, R.J.; Castro, F.A.d.S.; Vilas-Boas, J.P. A Biophysical Analysis on the Arm Stroke Efficiency in Front Crawl Swimming: Comparing Methods and Determining the Main Performance Predictors. Int. J. Environ. Res. Public Health 2019, 16, 4715. [Google Scholar] [CrossRef] [Green Version]
- Vilas-Boas, J.P.; Costa, L.; Fernandes, R.; Ribeiro, J.; Figueiredo, P.; Marinho, D.; Silva, A.; Rouboa, A.; Machado, L. Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke. J. Appl. Biomech. 2010, 26, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatta, G.; Cortesi, M.; Zamparo, P. The relationship between power generated by thrust and power to overcome drag in elite short distance swimmers. PLoS ONE 2016, 11, e0162387. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Ribeiro, J.; Figueiredo, P.; Seifert, L.; Vilas-Boas, J.P. Kinematics of the hip and body center of mass in front crawl swimming. J. Hum. Kinet. 2012, 33, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Marinho, D.A.; Barbosa, T.M.; Costa, M.J.; Figueiredo, C.; Reis, V.M.; Silva, A.J.; Marques, M.C. Can 8-weeks of Training Affect Active Drag in Young Swimmers? J. Sports Sci. Med. 2010, 9, 71–78. [Google Scholar] [PubMed]
- Ribeiro, J.; de Jesus, K.; Figueiredo, P.; Toussaint, H.; Guidetti, L.; Alves, F.; Vilas-Boas, J.P.; Fernandes, R.J. Biomechanical determinants of force production in front crawl swimming. J. Sports Med. Phys. Fitness 2013, 53, 30–37. [Google Scholar]
- Zamparo, P.; Gatta, G.; Pendergast, D.; Capelli, C. Active and passive drag: The role of trunk incline. Eur. J. Appl. Physiol. 2009, 106, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Havriluk, R. Magnitude of the effect of an instructional intervention on swimming technique and performance. In Biomechanics and Medicine in Swimming X; Vilas-Boas, J.P., Alves, F., Marques, A., Eds.; Portuguese Journal of Sport Sciences: Porto, Portugal, 2006; pp. 218–220. [Google Scholar]
- Toussaint, H. Biomechanics of drag and propulsion in front crawl swimming. In World Book of Swimming: From Science to Performance; Seifert, L., Chollet, D., Mujika, I., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 3–20. [Google Scholar]
- Costa, L.; Mantha, V.R.; Silva, A.J.; Fernandes, R.J.; Marinho, D.A.; Vilas-Boas, J.P.; Machado, L.; Rouboa, A. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions. J. Biomech. 2015, 48, 2221–2226. [Google Scholar] [CrossRef] [PubMed]
- Hollander, A.P.; De Groot, G.; van Ingen Schenau, G.J.; Toussaint, H.M.; De Best, H.; Peeters, W.; Meuleman, A.; Schreurs, A.W. Measurement of active drag during crawl arm stroke swimming. J. Sports Sci. 1986, 4, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chatard, J.C.; Busso, T.; Geyssant, A.; Barale, F.; Lacoste, L. Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995, 20, 395–406. [Google Scholar] [CrossRef]
- Neiva, H.P.; Marques, M.C.; Barbosa, T.M.; Izquierdo, M.; Viana, J.L.; Teixeira, A.M.; Marinho, D.A. Warm-up for sprint swimming: Race-pace or aerobic stimulation? A randomized study. J. Strength Cond. Res. 2017, 31, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Bartolomeu, R.; Morais, J.E.; Costa, M.J. Skillful swimming in age-groups is determined by anthropometrics, biomechanics and energetics. Front. Physiol. 2019, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.B.; Semblano, P.; Fernandes, D.; Gonçalves, P.; Morouço, P.; Sousa, F.; Fernandes, R.; Barbosa, T.; Correia, M.V.; Tani, G.; et al. A kinematical, imagiological and acoustical biofeedback system for the technical training in breaststroke swimming. Rev. Port. Cienc. Desp. 2006, 6 (Suppl. 1), 22. [Google Scholar]
- Soares, S.M.; Fernandes, R.J.; Machado, J.L.; Maia, J.A.; Daly, D.J.; Vilas-Boas, J.P. Assessment of fatigue thresholds in 50-m all-out swimming. Int. J. Sports Physiol. Perform. 2014, 9, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. J. Sci. Med. Sport. 2010, 13, 262–269. [Google Scholar] [CrossRef]
- Ribeiro, J.; Toubekis, A.G.; Figueiredo, P.; de Jesus, K.; Toussaint, H.M.; Alves, F.; Vilas-Boas, J.P.; Fernandes, R.J. Biophysical determinants of front crawl swimming at moderate and severe intensities. Int. J. Sports Physiol. Perform. 2017, 12, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, H.M.; Beelen, A.; Rodenburg, A.; Sargeant, A.J.; De Groot, G.; Hollander, A.P.; Van Ingen Schenau, G.J. Propelling efficiency on front-crawl swimming. J. Appl. Physiol. 1988, 65, 2506–2512. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, L.; Porcelli, S.; Bonato, M.; Pavei, G.; La Torre, A.; Maggioni, M.A.; Bellistri, G.; Marzorati, M. Effects of manipulating volume and intensity training in masters swimmers. Int. J. Sports Physiol. Perform. 2015, 10, 907–912. [Google Scholar] [CrossRef]
- Knechtle, B.; Nikolaidis, P.T.; König, S.; Rosemann, T.; Rüst, C.A. Performance trends in master freestyle swimmers aged 25–89 years at the FINA World Championships from 1986 to 2014. Age 2016, 38, 18. [Google Scholar] [CrossRef] [PubMed]
- Donato, A.J.; Tench, K.; Glueck, D.H.; Seals, D.R.; Eskurza, I.; Tanaka, H. Declines in physiological functional capacity with age: A longitudinal study in peak swimming performance. J. Appl. Physiol. 2003, 94, 764–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, E.; Harrison, A.J.; Lyons, M. The impact of resistance training on swimming performance: A systematic eview. Sports Med. 2017, 47, 2285–2307. [Google Scholar] [CrossRef] [PubMed]
- Reaburn, P.; Dascombe, B. Anaerobic performance in masters athletes. Eur. Rev. Aging. Phys. Act. 2009, 6, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Espada, M.C.; Costa, M.J.; Costa, A.M.; Silva, A.J.; Barbosa, T.M.; Pereira, A.F. Relationship between performance, dry-land power and kinematics in master swimmers. Acta Bioeng. Biomech. 2016, 18, 145–151. [Google Scholar] [CrossRef]
- Knechtle, B.; Dalamitros, A.A.; Barbosa, T.M.; Sousa, C.V.; Rosemann, T.; Nikolaidis, P.T. Sex differences in swimming disciplines—can women outperform men in swimming? Int. J. Environ. Res. Public Health 2020, 17, 3651. [Google Scholar] [CrossRef] [PubMed]
- Gonjo, T.; Narita, K.; McCabe, C.; Fernandes, R.J.; Vilas-Boas, J.P.; Takagi, H.; Sanders, R. Front crawl is more efficient and has smaller active drag than backstroke swimming: Kinematic and kinetic comparison between the two techniques at the same swimming speeds at the same swimming speeds. Front. Bioeng. Biotechnol. 2020, 8, 570657. [Google Scholar] [CrossRef] [PubMed]
- Gourgoulis, V.; Boli, A.; Aggeloussis, N.; Toubekis, A.; Antoniou, P.; Kasimatis, P.; Vezos, N.; Michalopoulou, M.; Kambas, A.; Mavromatis, G. The effect of leg kick on sprint front crawl swimming. J. Sports Sci. 2014, 32, 278–289. [Google Scholar] [CrossRef]
- Yanai, T. Rotational effect of buoyancy in front crawl: Does it really cause the legs to sink? J. Biomech. 2001, 34, 235–243. [Google Scholar] [CrossRef]
- Pendergast, D.; Mollendorf, J.; Zamparo, P.; Termin, A.; Bushnell, D.; Paschke, D. The influence of drag on human locomotion in water. Undersea. Hyperb. Med. 2005, 32, 45–57. [Google Scholar] [PubMed]
- Termin, B.; Pendergast, D.R. Training using the stroke frequency velocity relationship to combine biomechanical and metabolic paradigms. J. Swim. Res. 2001, 14, 9–17. [Google Scholar]
- Arellano, R.; Terres-Nicol, J.M.; Redondo, J.M. Fundamental hydrodynamics of swimming propulsion. Rev. Port. Cien. Desp. 2006, 6, 15–20. [Google Scholar]
- Marinho, D.A.; Mantha, V.R.; Vilas-Boas, J.P.; Ramos, R.J.; Machado, L.; Rouboa, A.I.; Silva, A.J. Effect of wearing a swimsuit on hydrodynamic drag of swimmer. Braz. Arch. Biol. Technol. 2012, 55, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, S.V.; Lyapinm, S.; Rumyantseva, O.; Vilas-Boas, J.P. Technology for decreasing active drag at maximal swimming velocity. In Proceedings of the 18 International Symposium on Biomechanics in Sports, Hong Kong, China, 25–30 June 2000; Youlian, H., David, P.J., Ross, S., Eds.; International Society of Biomechanics in Sports: San Diego, CA, USA, 2000; pp. 39–47. [Google Scholar]
Variables | Pre-Training | Post-Training | % Change (Mean ± 95% CI) | p-Value |
---|---|---|---|---|
Maximum speed (m·s−1) | 1.91 ± 0.36 | 1.96 ± 0.33 | 3.12 ± 2.76 | 0.04 * |
Mean speed (m·s−1) | 1.52 ± 0.25 | 1.57 ± 0.24 | 2.92 ± 1.60 | 0.01 ** |
Minimum speed (m·s−1) | 1.17 ± 0.25 | 1.22 ± 0.25 | 4.64 ± 3.15 | 0.01 ** |
Speed decrease (%) | 3.19 ± 3.42 | 1.05 ± 3.41 | −82.46 ± 76.26 | 0.01 ** |
dv (%) | 10.88 ± 4.09 | 10.73 ± 3.63 | 0.67 ± 6.30 | 0.66 |
Subject | Pre-Training | Post-Training | ||||
---|---|---|---|---|---|---|
k | n | k | n | |||
A | 64.50 | 1.44 | 58.13 | 1.77 | ||
B | 28.55 | 2.55 | 23.48 | 3.10 | ||
C | 36.45 | 2.41 | 38.04 | 2.37 | ||
D | 47.14 | 2.22 | 42.41 | 2.87 | ||
E | 29.68 | 2.35 | 28.40 | 1.81 | ||
F | 49.29 | 2.08 | 47.61 | 1.85 | ||
G | 35.50 | 2.99 | 37.20 | 2.93 | ||
H | 37.92 | 2.36 | 42.35 | 2.25 | ||
I | 43.54 | 2.32 | 43.78 | 1.42 | ||
J | 44.11 | 1.86 | 36.09 | 1.93 | ||
K | 39.07 | 2.28 | 34.05 | 2.90 | ||
L | 57.19 | 1.89 | 50.97 | 1.92 | ||
M | 38.25 | 2.63 | 39.62 | 1.94 | ||
N | 54.23 | 2.35 | 62.01 | 1.21 | ||
O | 62.27 | 1.50 | 60.29 | 1.56 | ||
P | 60.19 | 2.08 | 55.09 | 2.00 | ||
Q | 30.41 | 2.26 | 38.96 | 1.75 | ||
R | 26.43 | 2.22 | 23.67 | 2.36 | ||
S | 43.36 | 2.04 | 30.50 | 2.24 | ||
T | 49.86 | 1.89 | 48.01 | 2.53 | ||
U | 37.38 | 1.75 | 39.85 | 2.04 | ||
V | 30.69 | 1.99 | 31.47 | 1.56 |
Swimming Speed (%) | Active Drag (N) | p-Value | Wd (W) | p-Value | |||
---|---|---|---|---|---|---|---|
Pre-Training | Post-Training | Pre-Training | Post-Training | ||||
70% | 1.10 ± 1.17 m·s−1 | 53.68 ± 16.65 | 51.12 ± 17.16 | 0.03 * | 60.80 ± 25.71 | 58.20 ± 26.62 | 0.06 |
80% | 1.26 ± 0.19 m·s−1 | 71.78 ± 22.86 | 67.70 ± 22.49 | 0.02 * | 93.22 ± 40.69 | 88.22 ± 40.53 | 0.03 * |
90% | 1.41 ± 0.21 m·s−1 | 92.92 ± 30.75 | 87.06 ± 29.71 | 0.05 * | 136.13 ± 61.41 | 127.80 ± 59.98 | 0.05 * |
100% | 1.57 ± 0.24 m·s−1 | 117.22 ± 40.52 | 109.37 ± 39.24 | 0.09 | 191.25 ± 89.15 | 178.58 ± 86.50 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neiva, H.P.; Fernandes, R.J.; Cardoso, R.; Marinho, D.A.; Abraldes, J.A. Monitoring Master Swimmers’ Performance and Active Drag Evolution along a Training Mesocycle. Int. J. Environ. Res. Public Health 2021, 18, 3569. https://doi.org/10.3390/ijerph18073569
Neiva HP, Fernandes RJ, Cardoso R, Marinho DA, Abraldes JA. Monitoring Master Swimmers’ Performance and Active Drag Evolution along a Training Mesocycle. International Journal of Environmental Research and Public Health. 2021; 18(7):3569. https://doi.org/10.3390/ijerph18073569
Chicago/Turabian StyleNeiva, Henrique P., Ricardo J. Fernandes, Ricardo Cardoso, Daniel A. Marinho, and J. Arturo Abraldes. 2021. "Monitoring Master Swimmers’ Performance and Active Drag Evolution along a Training Mesocycle" International Journal of Environmental Research and Public Health 18, no. 7: 3569. https://doi.org/10.3390/ijerph18073569
APA StyleNeiva, H. P., Fernandes, R. J., Cardoso, R., Marinho, D. A., & Abraldes, J. A. (2021). Monitoring Master Swimmers’ Performance and Active Drag Evolution along a Training Mesocycle. International Journal of Environmental Research and Public Health, 18(7), 3569. https://doi.org/10.3390/ijerph18073569