Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits
Abstract
:1. Introduction
2. Sea Buckthorn in the Acceptance of Scientific and Popular Language
3. Documentary Attestations of Sea Buckthorn
4. The Nutritional Value of Sea Buckthorn
4.1. Major Nutrients
4.1.1. Lipids and Fatty Acids
4.1.2. Carbohydrates and Fibers
4.1.3. Proteins and Amino Acids
4.1.4. Organic Acids
4.1.5. Mineral Elements
4.2. Lipophilic Components
4.2.1. Carotenoids
4.2.2. Tocochromanols
4.3. Hydrophilic Components
4.3.1. Ascorbic Acid
4.3.2. Phenolic Compounds
4.4. Aroma Compounds
4.5. Bacterial and Fungal Microorganisms
4.6. Antioxidant Properties
5. Sea Buckthorn Applications
5.1. Therapeutic Uses of Sea Buckthorn
5.2. Sea Buckthorn in the Cosmetic Industry
5.3. Sea Buckthorn in the Food Industry
5.3.1. Food Supplements and Food Additives
5.3.2. Refreshments
5.3.3. Jams and Jellies
5.3.4. Dairy Products
5.3.5. Alcoholic Beverages
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced research on the antioxidant activity and mechanism of polyphenols from hippophae species-a review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [Green Version]
- Li, T.S.C.; Beveridge, T.H.J. Sea Buckthorn (Hippophae rhamnoides L.): Production and Utilization. In Sea Buckthorn (Hippophae rhamnoides L.): Production and Utilization; NRC Research Press: Ottawa, ON, Canada, 2003. [Google Scholar]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Yang, B.; Kallio, H.P. Fatty acid composition of lipids in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins. J. Agric. Food Chem. 2001, 49, 1939–1947. [Google Scholar] [CrossRef]
- Ruan, C.; Li, D. Community characteristics of Hippophae rhamnoides forest and water and nutrient condition of the woodland in Loess Hilly Region. Chin. J. Appl. Ecol. 2002, 13, 1061–1064. [Google Scholar]
- Pop, R.M.; Socaciu, C.; Pintea, A.; Buzoianu, A.D.; Sanders, M.G.; Gruppen, H.; Vincken, J.P. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. Varieties. Phytochem. Anal. 2013, 24, 484–492. [Google Scholar] [CrossRef]
- Raina, S.N.; Jain, S.; Sehgal, D.; Kumar, A.; Dar, T.H.; Bhat, V.; Pandey, V.; Vaishnavi, S.; Bhargav, A.; Singh, V.; et al. Diversity and relationships of multipurpose seabuckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers. Genet. Resour. Crop. Evol. 2012, 59, 1033–1053. [Google Scholar] [CrossRef]
- Piłat, B.; Bieniek, A.; Zadernowski, R. Common Sea Buckthorn (Hippophae rhamnoides L.) As an Alternative Orchard Plant. Pol. J. Nat. Sci. 2015, 30, 417–430. [Google Scholar]
- Du, J.; Xi, Y.L.; Song, C.M. Effect of Sea Buckthorn Powder on Hepatic Lipid Metabolism and Oxidative Stress in Rats. Mod. Food Sci. Technol. 2017, 33, 8–12. [Google Scholar] [CrossRef]
- Olas, B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem. Toxicol. 2016, 97, 199–204. [Google Scholar] [CrossRef]
- Guo, R.; Guo, X.; Li, T.; Fu, X.; Liu, R.H. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 2017, 221, 997–1003. [Google Scholar] [CrossRef]
- Ranard, K.M.; Erdman, J.W. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr. Rev. 2018, 76, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Skalski, B.; Ulanowska, K. The anticancer activity of sea buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front. Pharmacol. 2018, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamułka, J.; Górnicka, M.; Sulich, A.; Frąckiewicz, J. Weight loss program is associated with decrease α-tocopherol status in obese adults. Clin. Nutr. 2019, 38, 1861–1870. [Google Scholar] [CrossRef]
- Hao, W.; He, Z.; Zhu, H.; Liu, J.; Kwek, E.; Zhao, Y.; Ma, K.Y.; He, W.S.; Chen, Z.Y. Sea buckthorn seed oil reduces blood cholesterol and modulates gut microbiota. Food Funct. 2019, 10, 5669–5681. [Google Scholar] [CrossRef] [PubMed]
- Brad, I.; Brad, I.L.; Radu, F. Sea Buckthorn: A Pharmacy in a Plant; Technical Publishing House: Bucharest, Romania, 2002. [Google Scholar]
- Rați, I.V.; Rați, L. Sea Buckthorn in Agricultural Holdings; Ministry of Agriculture, Forests, Waters and Environment, National Agricultural Consulting Agency: Bucharest, Romania, 2003.
- Xing, J.; Yang, B.; Dong, Y.; Wang, B.; Wang, J.; Kallio, H.P. Effects of sea buckthorn (Hippophaë rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats. Fitoterapia 2002, 73, 644–650. [Google Scholar] [CrossRef]
- Niesteruk, A.; Lewandowska, H.; Golub, Z.; Swisłocka, R.; Lewandowski, W. Let’s get interested with sea buckthorn. Preparations of sea buckthorn as food additives and assessment of their market in Poland. Kosmos 2013, 4, 571–581. [Google Scholar]
- Malinowska, P.; Olas, B. Sea buckthorn—Valuable plant for health. Kosmos 2016, 2, 285–292. [Google Scholar]
- Small, E.; Catling, P.M.; Li, T.S.C. Blossoming treasures of biodiversity: 5. Sea Buckthorn (Hippophae rhamnoides)—An ancient crop with modern virtues. Biodiversity 2002, 3, 25–27. [Google Scholar] [CrossRef]
- Madawala, S.R.P.; Brunius, C.; Adholeya, A.; Tripathi, S.B.; Hanhineva, K.; Hajazimi, E.; Shi, L.; Dimberg, L.; Landberg, R. Impact of location on composition of selected phytochemicals in wild sea buckthorn (Hippophae rhamnoides). J. Food Compos. Anal. 2018, 72, 115–121. [Google Scholar] [CrossRef]
- Kuhkheil, A.; Naghdi Badi, H.; Mehrafarin, A.; Abdossi, V. Chemical constituents of sea buckthorn (Hippophae rhamnoides L.) fruit in populations of central Alborz Mountains in Iran. Res. J. Pharmacogn. 2014, 4, 1–12. [Google Scholar]
- Beveridge, T.; Li, T.S.C.; Oomah, B.D.; Smith, A. Sea buckthorn products: Manufacture and composition. J. Agric. Food Chem. 1999, 47, 3480–3488. [Google Scholar] [CrossRef]
- Ursache, F.M.; Ghinea, I.O.; Turturică, M.; Aprodu, I.; Râpeanu, G.; Stănciuc, N. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment—Quantitative spectroscopic and kinetic approaches. Food Chem. 2017, 233, 442–449. [Google Scholar] [CrossRef]
- Jaroszewska, A.; Biel, W.; Telesiński, A. Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. J. Elem. 2018, 23. [Google Scholar] [CrossRef]
- Garcia, V.L. The omega 7 as a health strategy for the skin and mucous membranes. EC Nutr. 2019, 14, 484–489. [Google Scholar]
- Dulf, F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem. Cent. J. 2012, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Kallio, H. Composition and physiological effects of sea buckthorn (Hippophaë) lipids. Trends Food Sci. Technol. 2002, 13, 160–167. [Google Scholar] [CrossRef]
- Bal, L.M.; Meda, V.; Naik, S.N.; Satya, S. Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [Google Scholar] [CrossRef]
- Ranjith, A.; Sarin Kumar, K.; Venugopalan, V.V.; Arumughan, C.; Sawhney, R.C.; Singh, V. Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. JAOCS J. Am. Oil Chem. Soc. 2006, 83, 359–364. [Google Scholar] [CrossRef]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Kallio, H.; Yang, B.; Peippo, P.; Tahvonen, R.; Pan, R. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of sea buckthorn (Hippophaë rhamnoides). J. Agric. Food Chem. 2002, 50, 3004–3009. [Google Scholar] [CrossRef]
- Parimelazhagan, T.; Chaurasia, O.P.; Ahmed, Z. Seabuckthorn: Oil with promising medicinal value. Curr. Sci. 2005, 88, 8–9. [Google Scholar]
- Marsiñach, M.S.; Cuenca, A.P. The impact of sea buckthorn oil fatty acids on human health. Lipids Health Dis. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Stobdan, T.; Yadav, A.; Mishra, G.P.; Chaurasia, O.P.; Srivastava, R.B. Seabuckthorn: The Super Plant (Production, Characterization, Postharvest & Health Applications); DIHAR, Defence R&D Organisation: New Delhi, India, 2011.
- Pallavee, K.; Ashwani, M. Sea Buckthorn Juice: Nutritional Therapeutic Properties and Economic Considerations. Int. J. Pharmacogn. Phytochem. Res. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Shi, L.K.; Zhao, C.W.; Jin, Q.Z.; Wang, X.G. Fatty acid, phytochemical, oxidative stability and in vitro antioxidant property of sea buckthorn (Hippophaë rhamnoides L.) oils extracted by supercritical and subcritical technologies. LWT Food Sci. Technol. 2017, 86. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A. The nutritional value of leaves of selected berry species. Sci. Agric. 2017, 74. [Google Scholar] [CrossRef]
- Tiitinen, K.; Vahvaselkä, M.; Hakala, M.; Laakso, S.; Kallio, H. Malolactic fermentation in sea buckthorn (Hippophaë rhamnoides L.) juice processing. Eur. Food Res. Technol. 2006, 222, 686–691. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, J.; Kallio, H. Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. Food Chem. 2011, 125, 388–396. [Google Scholar] [CrossRef]
- Tang, X.; Kälviäinen, N.; Tuorila, H. Sensory and Hedonic Characteristics of Juice of Sea Buckthorn (Hippophae rhamnoides L.) Origins and Hybrids. LWT-Food Sci. Technol. 2001, 34, 102–110. [Google Scholar] [CrossRef]
- Zheng, J.; Kallio, H.; Linderborg, K.; Yang, B. Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (Hippophaë rhamnoides ssp. sinensis) with special reference to influence of latitude and altitude. Food Res. Int. 2011, 44, 2018–2026. [Google Scholar] [CrossRef]
- Piłat, B.; Bieniek, A.; Zadernowski, R. Chemical composition of individual morphological parts of the sea buckthorn fruit (Hippophae rhamnoides, L.). In Proceedings of the Producing Sea Buckthorn of High Quality: Proceedings of the 3rd European Workshop on Sea Buckthorn, Helsinki, Finland, 10–14 October 2014; Kauppinen, S., Petruneva, E., Eds.; pp. 79–82. [Google Scholar]
- Stobdan, T.; Korekar, G.; Srivastava, R.B. Nutritional Attributes and Health Application of Seabuckthorn (Hippophae rhamnoides L.)—A Review. Curr. Nutr. Food Sci. 2013, 9, 151–165. [Google Scholar] [CrossRef]
- Uransanaa, M.; Gerel, D.; Jamyansan, Y.; Dash, T. Protein and amino acid composition of sea buckthorn seeds (Hippophae rhamnooides mongolica Rouse). Mong. J. Biol. Sci. 2003, 1, 85–88. [Google Scholar] [CrossRef]
- Chen, T. Studies of the biochemical composition of Hippophaė and its quality assessment in Gansu Province. Hippophaė 1988, 1, 19–26. [Google Scholar]
- Zhang, W.; Yan, J.; Duo, J.; Ren, B.; Guo, J. Preliminary study of biochemical constitutions of berry of sea buckthorn growing in Shanxi province and their changing trend. In Proceedings of the International Symposium on Sea Buckthorn (H. rhamnoides L.), Xi′an, China, 19–23 October 1989; pp. 96–105. [Google Scholar]
- Larmo, P.S.; Yang, B.; Hyssälä, J.; Kallio, H.P.; Erkkola, R. Effects of sea buckthorn oil intake on vaginal atrophy in postmenopausal women: A randomized, double-blind, placebo-controlled study. Maturitas 2014, 79, 316–321. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hortic. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Bell, S. Souci—Fachmann—Kraut, food composition and nutrition tables. Trends Food Sci. Technol. 2012, 24, 60. [Google Scholar] [CrossRef]
- Tang, X. Breeding in Sea Buckthorn: Genetic of Berry Yield, Quality and Plant Cold Hardiness; University of Helsinki: Helsinki, Finland, 2002. [Google Scholar]
- Tong, J.; Zhang, C.; Zhao, Z.; Yang, Y.; Tian, K. The determination of the physical-chemical constants and sixteen mineral elements in sea buckthorn raw juice. In Proceedings of the International Symposium on Sea buckthorn (H. rhamnoides L.), Xi’an, China, 19–23 October 1989; pp. 132–137. [Google Scholar]
- Gutzeit, D.; Winterhalter, P.; Jerz, G. Nutritional assessment of processing effects on major and trace element content in sea buckthorn juice (Hippophaë rhamnoides L. ssp. rhamnoides). J. Food Sci. 2008, 73, H97–H102. [Google Scholar] [CrossRef]
- Zeb, A. Chemical and Nutritional Constituents of Sea Buckthorn Juice. Pak. J. Nutr. 2004, 3, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Sidor, A.M. The intake of minerals in the diet brought by the consumption of sea buckthorn (Hippophae rhamnoides L.) berries and juice. Food Environ. Saf. 2015, XIV, 327–330. [Google Scholar]
- Burk, R.F. Selenium, an antioxidant nutrient. Nutr. Clin. Care 2002, 5, 75–79. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Pop, E.A.; Diaconeasa, Z.M.; Fetea, F.; Bunea, A.; Dulf, F.; Pintea, A.; Socaciu, C. Carotenoids, Tocopherols and Antioxidant Activity of Lipophilic Extracts from Sea Buckthorn Berries (Hippophae rhamnoides), Apricot Pulp and Apricot Kernel (Prunus armeniaca). Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2015, 72, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focşan, M.; Rugină, D.O.; Pintea, A. Sea buckthorn oil as a valuable source of bioaccessible xanthophylls. Nutrients 2020, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Xiao-Hua, L.; Ling-Xue, K.; Hong-Zhang, L. Advances on Effective Compositions of Seabuckthorn. J. Jilin Agric. Univ. 2007, 29, 162–167. [Google Scholar]
- Chun, J.; Lee, J.; Ye, L.; Exler, J.; Eitenmiller, R.R. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J. Food Compos. Anal. 2006, 19, 196–204. [Google Scholar] [CrossRef]
- Ranard, K.M.; Kuchan, M.J.; Erdman, J.W. α-Tocopherol, but Not γ-Tocopherol, Attenuates the Expression of Selective Tumor Necrosis Factor-Alpha-Induced Genes in Primary Human Aortic Cell Lines. Lipids 2019, 54, 289–299. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Amarowicz, R. Tocopherols in sea buckthorn (Hippophaë rhamnoides L.) Berry oil. JAOCS J. Am. Oil Chem. Soc. 2003, 80, 55–58. [Google Scholar] [CrossRef]
- Kallio, H.; Yang, B.; Peippo, P. Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries. J. Agric. Food Chem. 2002, 50, 6136–6142. [Google Scholar] [CrossRef]
- Chandra, S.; Zafar, R.; Dwivedi, P.; Prita, B.; Shinde, L.P. Pharmacological and nutritional importance of sea buckthorn (Hippophae). Pharma Innov. J. 2018, 7, 258. [Google Scholar]
- Krejcarová, J.; Straková, E.; Suchý, P.; Herzig, I.; Karásková, K. Sea buckthorn (Hippophae rhamnoides L.) as a potential source of nutraceutics and its therapeutic possibilities—A review. Acta Vet. Brno 2015, 84, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Fatima, T.; Nazir, A.; Naseer, B.; Hussain, S.Z. Seabuckthorn (Hippophae rhamnoides): A repository of phytochemicals. Int. J. Pharm. Sci. Res. 2018, 3, 9–12. [Google Scholar]
- Cheng, J.; Kondo, K.; Suzuki, Y.; Ikeda, Y.; Meng, X.; Umemura, K. Inhibitory effects of total flavones of Hippophae rhamnoides L. on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sci. 2003, 72, 2263–2271. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Zadernowski, R.; Naczk, M.; Czaplicki, S.; Rubinskiene, M.; Szałkiewicz, M. Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. JAOCS J. Am. Oil Chem. Soc. 2005, 82, 175–179. [Google Scholar] [CrossRef]
- Bittová, M.; Krejzová, E.; Roblová, V.; Kubán, P.; Kubáň, V. Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophaë rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential. Cent. Eur. J. Chem. 2014, 12, 1152–1161. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Ma, X.; Moilanen, J.; Laaksonen, O.; Yang, W.; Tenhu, E.; Yang, B. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves. Food Chem. 2019, 272, 1–11. [Google Scholar] [CrossRef]
- Salminen, J.P.; Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Lukša, J.; Vepštaitė-Monstavičė, I.; Yurchenko, V.; Serva, S.; Servienė, E. High content analysis of sea buckthorn, black chokeberry, red and white currants microbiota—A pilot study. Food Res. Int. 2018, 111. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Geetha, S.; Sai Ram, M.; Singh, V.; Ilavazhagan, G.; Sawhney, R.C. Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides)—An in vitro study. J. Ethnopharmacol. 2002, 79. [Google Scholar] [CrossRef]
- Socaci, S.A.; Socaciu, C.; Tofanǎ, M.; Raţi, I.V.; Pintea, A. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice. Phytochem. Anal. 2013, 24, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Vítová, E.; Sůkalová, K.; Mahdalová, M.; Butorová, L.; Melikantová, M. Comparison of selected aroma compounds in cultivars of sea buckthorn (Hippophae rhamnoides L.). Chem. Pap. 2015, 69, 881–888. [Google Scholar] [CrossRef]
- Ma, X.; Laaksonen, O.; Heinonen, J.; Sainio, T.; Kallio, H.; Yang, B. Sensory profile of ethyl β-D-glucopyranoside and its contribution to quality of sea buckthorn (Hippophaë rhamnoides L.). Food Chem. 2017, 233, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, Y.S.; Sa, Y.J.; Kim, M.J. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. J. Agric. Food Chem. 2011, 59, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Ding, X.; Gu, W. Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chem. 2007, 102, 168–177. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Yogendra Kumar, M.S.; Gupta, A. Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 2010, 48, 3443–3448. [Google Scholar] [CrossRef]
- Pandurangan, N.; Bose, C.; Banerji, A. Synthesis and antioxygenic activities of seabuckthorn flavone-3-ols and analogs. Bioorg. Med. Chem. Lett. 2011, 21, 5328–5330. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, F.; Zhao, L.; Zhang, D.; Wang, O.; Guo, X.; Lu, F.; Yang, X.; Ji, B.; Deng, Q. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits. J. Agric. Food Chem. 2016, 64, 161–170. [Google Scholar] [CrossRef]
- Su, H.L.; Wei, J.; Bi, Y.; Li, J.X.; Yury, Z.; Alexander, K. Antioxidant activity of ethanol extracts from Chinese sea buckthorn berries in vitro and on HepG2 cells. Sci. Technol. Food Ind. 2017, 5, 51–55. [Google Scholar]
- Rop, O.; Ercişli, S.; Mlcek, J.; Jurikova, T.; Hoza, I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turk. J. Agric. For. 2014, 38, 224–232. [Google Scholar] [CrossRef]
- Azzi, A.; Davies, K.J.A.; Kelly, F. Free radical biology—Terminology and critical thinking. FEBS Lett. 2004, 558, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Ting, H.C.; Hsu, Y.W.; Tsai, C.F.; Lu, F.J.; Chou, M.C.; Chen, W.K. The in vitro and in vivo antioxidant properties of seabuckthorn (Hippophae rhamnoides L.) seed oil. Food Chem. 2011, 125, 652–659. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Nowak-Polakowska, H.; Nesterowicz, J. Effect of sea buckthorn (Hippophae rhamnoides L.) berry extracts on the activity of lipase and lipoxygenase. J. Food Lipids 2002, 9, 249–258. [Google Scholar] [CrossRef]
- Grey, C.; Widén, C.; Adlercreutz, P.; Rumpunen, K.; Duan, R.D. Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on human colon and liver cancer cell lines. Food Chem. 2010, 120, 1004–1010. [Google Scholar] [CrossRef]
- Boivin, D.; Blanchette, M.; Barrette, S.; Moghrabi, A.; Béliveau, R. Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFκB by edible berry juice. Anticancer Res. 2007, 27, 937–948. [Google Scholar] [PubMed]
- Tsybikova, G.T.; Razuvaeva, Y.G.; Toropova, A.A.; Nikolaev, S.M. Antimutagenic and antioxidant features of confectionery products containing the powder from the leaves of Hippophae rhamnoides L. Vopr. Pitan. 2018, 87, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Teng, B.-S.; Lu, Y.H.; Wang, Z.T.; Tao, X.Y.; Wei, D.Z. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol. Res. 2006, 54, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Kontek, B.; Malinowska, P.; Zuchowski, J.; Stochmal, A. Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma. Oxid. Med. Cell. Longev. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Goel, H.C.; Prasad, J.; Singh, S.; Sagar, R.K.; Prem Kumar, I.; Sinha, A.K. Radioprotection by a herbal preparation of Hippophae rhamnoides, RH-3, against whole body lethal irradiation in mice. Phytomedicine 2002, 9, 15–25. [Google Scholar] [CrossRef]
- Vashishtha, V.; Barhwal, K.; Kumar, A.; Hota, S.K.; Chaurasia, O.P.; Kumar, B. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: A longitudinal controlled trial on hypertensive subjects. Clin. Nutr. 2017, 36, 1231–1238. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Negi, P.S.; Ramteke, R.S. Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia 2007, 78, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Yang, B.; Venojärvi, M.; Viikari, J.; Kallio, H. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women. Eur. J. Clin. Nutr. 2011, 65, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, M.; Prasad, R.; Jayamurthy, P.; Pal, K.; Arumughan, C.; Sawhney, R.C. Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine 2007, 14, 770–777. [Google Scholar] [CrossRef]
- Sleyman, H.; Demirezer, L.; Bykokuroglu, M.E.; Akcay, M.F.; Gepdiremen, A.; Banoglu, Z.N.; Ger, F. Antiulcerogenic effect of Hippophae rhamnoides L. Phyther. Res. 2001, 15, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Larmo, P.; Alin, J.; Salminen, E.; Kallio, H.; Tahvonen, R. Effects of sea buckthorn berries on infections and inflammation: A double-blind, randomized, placebo-controlled trial. Eur. J. Clin. Nutr. 2008, 62, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.L.; Gu, X.H.; Cheng, F.T.; Jiang, F.H. Effect of Sea buckthorn on liver fibrosis: A clinical study. World J. Gastroenterol. 2003, 9, 1615–1617. [Google Scholar] [CrossRef]
- Khan, B.A.; Akhtar, N.; Mahmood, T.; Shoaib, H.M.; Qayum, M.; Saeed, T. Effects of antioxidants and flavonoids of sea buckthorn on skin whitening and skin erythema. Asian J. Chem. 2011, 23, 903. [Google Scholar]
- Hou, D.D.; Di, Z.H.; Qi, R.Q.; Wang, H.X.; Zheng, S.; Hong, Y.X.; Guo, H.; Chen, H.D.; Gao, X.H. Sea Buckthorn (Hippophaë rhamnoides L.) Oil Improves Atopic Dermatitis-Like Skin Lesions via Inhibition of NF-κB and STAT1 Activation. Ski. Pharmacol. Physiol. 2017, 30, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Larmo, P.S.; Järvinen, R.L.; Setälä, N.L.; Yang, B.; Viitanen, M.H.; Engblom, J.R.K.; Tahvonen, R.L.; Kallio, H.P. Oral sea buckthorn oil attenuates tear film osmolarity and symptoms in individuals with dry eye. J. Nutr. 2010, 140, 1462–1468. [Google Scholar] [CrossRef] [Green Version]
- Erkkola, R.; Yang, B. Sea buckthorn oils: Towards healthy mucous membranes. Agro Food Ind. Hi Tech 2003, 14, 53–59. [Google Scholar]
- Gupta, N.; Sharma, S.K.; Rana, J.C.; Chauhan, R.S. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. J. Plant Physiol. 2011, 168. [Google Scholar] [CrossRef]
- Traber, M.G. Vitamin E inadequacy in humans: Causes and consequences. Adv. Nutr. 2014, 5, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edraki, M.; Akbarzadeh, A.; Hosseinzadeh, M.; Tanideh, N.; Salehi, A.; Koohi-Hosseinabadi, O. Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds. Adv. Ski. Wound Care 2014, 27, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, N.K.; Kumar, R.; Mandotra, S.K.; Meena, R.N.; Siddiqui, M.S.; Sawhney, R.C.; Gupta, A. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food Chem. Toxicol. 2009, 47, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Rafalska, A.; Abramowicz, K.; Krauze, M. Sea buckthorn (Hippophae rhamnoides L.) as a plant for universal application. World Sci. News 2017, 72. [Google Scholar]
- Wang, J.; Zhang, W.; Zhu, D.; Zhu, X.; Pang, X.; Qu, W. Hypolipidaemic and hypoglycaemic effects of total flavonoids from seed residues of Hippophae rhamnoides L. in mice fed a high-fat diet. J. Sci. Food Agric. 2011, 91, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M. Evaluation of Antidiabetic and Antioxidant Effects of Seabuckthorn (Hippophae rhamnoides L.) in Streptozotocin-Nicotinamide Induced Diabetic Rats. Open Conf. Proc. J. 2011, 5, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Smida, I.; Pentelescu, C.; Pentelescu, O.; Sweidan, A.; Oliviero, N.; Meuric, V.; Martin, B.; Colceriu, L.; Bonnaure-Mallet, M.; Tamanai-Shacoori, Z. Benefits of sea buckthorn (Hippophae rhamnoides) pulp oil-based mouthwash on oral health. J. Appl. Microbiol. 2019, 126. [Google Scholar] [CrossRef]
- Koskovac, M.; Cupara, S.; Kipic, M.; Barjaktarevic, A.; Milovanovic, O.; Kojicic, K.; Markovic, M. Sea Buckthorn Oil-A valuable source for cosmeceuticals. Cosmetics 2017, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Bawa, A.; Khanum, F.; Singh, B. Seabuckthorn A Wonder Plant. Indian J. Nat. Prod. Resour. 2002, 1, 8–14. [Google Scholar]
- Bhartee, M.; Basistha, B.C.; Pradhan, S. Seabuckthorn—A secret wonder species: Review. SMU Med. J. 2014, 1, 102–115. [Google Scholar]
- Püssa, T.; Pällin, R.; Raudsepp, P.; Soidla, R.; Rei, M. Inhibition of lipid oxidation and dynamics of polyphenol content in mechanically deboned meat supplemented with sea buckthorn (Hippophae rhamnoides) berry residues. Food Chem. 2008, 107, 714–721. [Google Scholar] [CrossRef]
- Cenkowski, S.; Yakimishen, R.; Przybylski, R.; Muir, W.E. Quality of extracted sea buckthorn seed and pulp oil. Can. Biosyst. Eng./Le Genie Des Biosyst. Au Can. 2006, 48, 3. [Google Scholar]
- Terpou, A.; Gialleli, A.I.; Bosnea, L.; Kanellaki, M.; Koutinas, A.A.; Castro, G.R. Novel cheese production by incorporation of sea buckthorn berries (Hippophae rhamnoides L.) supported probiotic cells. LWT Food Sci. Technol. 2017, 79, 616–624. [Google Scholar] [CrossRef]
- Lee, M.H.; Cho, H.R.; Lee, K.G. Development of Sea Buckthorn Beer Using Mongolian Sea Buckthorn (Hippophae rhamnoides) Fruit. Food Eng. Prog. 2012, 16, 129–133. [Google Scholar]
- Gâtlan, A.M.; Gutt, G.; Naghiu, A. Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink. J. Food Process. Preserv. 2020, 44, e14565. [Google Scholar] [CrossRef]
- Ruan, C.J.; Rumpunen, K.; Nybom, H. Advances in improvement of quality and resistance in a multipurpose crop: Sea buckthorn. Crit. Rev. Biotechnol. 2013, 33, 126–144. [Google Scholar] [CrossRef]
Characteristic (U.M.) | Range of Variation of the Values | Mean Value | Species/Variety |
---|---|---|---|
Fruit weight (mg) | 270–480 | 350 | Indian Summer subsp. |
Moisture (%) | 73.60–85.30 | 82.30 | Indian Summer subsp. |
72.20–75.50 | 74.20 | China var. | |
pH | 2.50–2.73 | 2.65 | Carpatica subsp. |
Acidity (% malic acid) | 1.64–1.74 | 1.69 | Carpatica subsp. |
Juice oil content (%) | 0.26–1.43 | 0.90 | China var. |
1.80–2.90 (pulp) | 2.00 | China var. | |
Unit weight | 1.03–1.05 | 1.04 | China var. |
Conductivity (μΩ/m) | 0.30–0.54 | 0.36 | China var. |
Surface tension (N/m) | 46.23–55.14 | 50.74 | China var. |
Refractive index | 1.35–1.36 | 1.35 | China var. |
Soluble sugars (°Brix) | 9.30–17.30 | 11.40 | Indian Summer subsp. |
10.19–22.74 | 15.98 | China var. | |
6.40–12.70 (reducing sugars) | 9.00 | China var. | |
Crude protein (g/kg dry weight) | 86–100 | 93 | Poland var. |
Crude fiber (g/kg dry weight) | 62–73 | 67.5 | Poland var. |
Ash (g/kg dry weight) | 40–41 | 40.5 | Poland var. |
Phytosterol | Pulp Oil | Seed Oil | Reference |
---|---|---|---|
β-sitosterol | 5.2–5.7 | 5.9–7.9 | [2,10] |
9.9 | [38] | ||
11.8 | [15] | ||
Δ5-Avenasterol | 3.3 | [38] | |
Cycloartenol | 1.9 | [38] | |
Stigmasterol | 1.0–1.2 | 1.2 | [15] |
Gramisterol | 0.6 | [38] | |
Citrostadienol | 0.5 | [15] | |
Campesterol | 0.3 | [15,38] | |
Total sterols | 20–30 | 10–20 | [10] |
Amino Acid | Content (mg/100 g) | Variety | Reference |
---|---|---|---|
Aspartic acid/Asparagine | 426.6 | H. rhamnoides L. | [50] |
3.7 | H. rhamnoides subsp. sinensis | [51] | |
427 | - | [10] | |
Proline | 45.2 | H. rhamnoides L. | [50] |
12.3 | H. rhamnoides subsp. sinensis | [51] | |
45 | - | [10] | |
Threonine | 36.8 | H. rhamnoides L. | [50] |
6.2 | H. rhamnoides subsp. sinensis | [51] | |
37 | - | [10] | |
Serine | 28.1 | H. rhamnoides L. | [50] |
5.3 | H. rhamnoides subsp. sinensis | [51] | |
28 | - | [10] | |
Lysine | 27.2 | H. rhamnoides L. | [50] |
3.5 | H. rhamnoides subsp. sinensis | [51] | |
Valine | 21.8 | H. rhamnoides L. | [50] |
2.9 | H. rhamnoides subsp. sinensis | [51] | |
Alanine | 21.2 | H. rhamnoides L. | [50] |
2.5 | H. rhamnoides subsp. sinensis | [51] | |
Phenylalanine | 20 | H. rhamnoides L. | [50] |
3.2 | H. rhamnoides subsp. sinensis | [51] | |
Glutamine | 19.4 | H. rhamnoides L. | [50] |
2.7 | H. rhamnoides subsp. sinensis | [51] | |
Isoleucine | 17.4 | H. rhamnoides L. | [50] |
1 | H. rhamnoides subsp. sinensis | [51] | |
Glycine | 16.7 | H. rhamnoides L. | [50] |
0.6 | H. rhamnoides subsp. sinensis | [51] | |
Histidine | 13.7 | H. rhamnoides L. | [50] |
1.1 | H. rhamnoides subsp. sinensis | [51] | |
Tyrosine | 13.4 | H. rhamnoides L. | [50] |
1.8 | H. rhamnoides subsp. sinensis | [51] | |
Arginine | 11.3 | H. rhamnoides. L. | [50] |
0.5 | H. rhamnoides subsp. sinensis | [51] | |
Cysteine | 3.3 | H. rhamnoides L. | [50] |
0.8 | H. rhamnoides subsp. sinensis | [51] | |
Methionine | 2.3 | H. rhamnoides L. | [50] |
1.1 | H. rhamnoides subsp. sinensis | [51] | |
Leucine | 1.9 | H. rhamnoides subsp. sinensis | [51] |
Tryptophan | 0.5 | H. rhamnoides subsp. sinensis | [51] |
Essential | 155.9 | H. rhamnoides L. | [50] |
21.6 | H. rhamnoides subsp. sinensis | [51] | |
Total | 724.4 | H. rhamnoides L. | [50] |
51.6 | H. rhamnoides subsp. sinensis | [51] |
Mineral Element | Content Variation Range or Median (mg/kg) | Origin of the Variety | Reference |
---|---|---|---|
K | 100–806 | Chinese | [53] |
590–2070 | Not indicated | [51] | |
636–1192 | Turkish | [50] | |
3020 | German | [54] | |
3790 | Romanian | [54] | |
Ca | 64–256 | Chinese | [53] |
120–720 | Not indicated | [51] | |
126–547 | Turkish | [50] | |
46.70 | German | [54] | |
47.50 | Romanian | [54] | |
P | 58–95 | Not indicated | [51] |
610–990 | Turkish | [50] | |
Mg | 53.30–165 | Chinese | [53] |
300 | Not indicated | [51] | |
187–190 | Turkish | [50] | |
123 | German | [54] | |
85.50 | Romanian | [54] | |
Na | 18–89.80 | Chinese | [53] |
10–40 | Not indicated | [51] | |
172–208 | Turkish | [50] | |
12.50 | German | [54] | |
20.60 | Romanian | [54] | |
Co | <0.10 | Chinese | [48] |
0.01–0.09 | Chinese | [53] | |
Cr | 0.11–0.29 | Chinese | [48] |
0.47–1.00 | Chinese | [53] | |
Cu | 0.16–0.65 | Chinese | [48] |
2.30–3.40 | Turkish | [50] | |
1.01 | German | [54] | |
0.99 | Romanian | [54] | |
Mn | 1.17–2.60 | Chinese | [48] |
0.81–3.86 | Chinese | [53] | |
2.70–4.00 | Turkish | [50] | |
3.20 | German | [54] | |
2.76 | Romanian | [54] | |
Ni | 0.12–0.36 | Chinese | [48] |
0.39–0.09 | Chinese | [53] | |
0.38 | German | [54] | |
0.62 | Romanian | [54] | |
Sr | 0.19–0.62 | Chinese | [48] |
0.08–0.45 | Chinese | [53] | |
V | 0.002–0.01 | Chinese | [48] |
Fe | 4.13–10.90 | Chinese | [48] |
5.93–161 | Chinese | [53] | |
4.40 | Not indicated | [51] | |
0.46–1.27 | Turkish | [50] | |
3.70 | German | [54] | |
2.47 | Romanian | [54] | |
Mo | 0.03–0.06 | Chinese | [48] |
1.18 | Chinese | [53] | |
0.15 | German | [54] | |
0.083 | Romanian | [54] | |
Zn | 0.43–1.25 | Chinese | [48] |
2.09–6.31 | Chinese | [53] | |
3.00–3.90 | Turkish | [50] | |
1.78 | German | [54] | |
2.24 | Romanian | [54] | |
Sn | 0.05–0.26 | Chinese | [48] |
Se | 7.96–11.30 | Chinese | [48] |
B | 0.43–1.38 | Chinese | [48] |
2.90 | German | [54] | |
Ba | 0.17–0.36 | Chinese | [48] |
Al | 2.20–16.70 | Chinese | [48] |
Ti | 0.10–0.81 | Chinese | [48] |
Li | 0.13–0.30 | Chinese | [48] |
0.06–0.15 | Chinese | [53] | |
Cd | <0.05 | Chinese | [48] |
0.002–0.015 | Chinese | [53] | |
As | <0.5 | Romanian | [56] |
Pb | 0.43–0.76 | Chinese | [48] |
0.06–0.27 | Chinese | [53] |
Part of the Plant | Antioxidant Compounds | Reference |
---|---|---|
Berries | Carotenoids, flavonoids, and organic acids | [79] |
Seeds | Catechin, epicatechin, gallocatechin, and epigallocatechin | [83] |
Catechin(4α-8)catechin and catechin(4α-8)epicatechin | [84] | |
Oil | Carotenoids and β-sitosterol | [55] |
Monounsaturated fatty acids | [4] | |
Tocopherols and tocotrienols | [33] | |
Leaves | Kaempferol-3-O-β-D-(6″-O-coumaryl)glycoside, 1-feruloyl-β-D-glucopyranoside, isorhamnetin-3-O-glucoside, quercetin-3-O-β-D-glucopyranoside, quercetin-3-O-β-Dglucopyranosyl-7-O-α-L-rhamnopyranoside and isorhamnetin-3-O-rutinoside | [85] |
Medicinal Property | Sea Buckthorn Type | Place of Origin | Reference |
---|---|---|---|
Anticarcinogenic | Hippophae rhamnoides (L.) | Uchacg, France | [76] |
Lund, Sweden | [93] | ||
Québec, Canada | [94] | ||
Antimutagenic | Hippophae rhamnoides (L.) | Ulan-Ude, Siberia | [95] |
Antitumor | Hippophae rhamnoides (L.) | Tianjin, China | [96] |
Immunomodulating | Hippophae rhamnoides (L.) | Western Himalayas, India | [79] |
Sokołka, Poland | [97] | ||
Radiation protection | Hippophae rhamnoides (L.) | Himachal Pradesh, India | [98] |
Cardiovascular disease | Hippophae rhamnoides (L.) | Ladakh, India | [99] |
Antibacterial, antiviral | Hippophae rhamnoides (L.) | Kaza, India | [100] |
Antioxidative and weight loss | Hippophae rhamnoides ssp. turkestanica | Turku, Finland | [101] |
Arterial thrombosis | Hippophae rhamnoides (L.) | Shenyang, China | [69] |
Antiatherogenic | Hippophae rhamnoides (L.) | Western Himalayas, India | [102] |
Gastric ulcer | Hippophae rhamnoides ssp. rhamnoides | Romania | [18] |
Hippophae rhamnoides (L.) | Tortum, Turkey | [103] | |
Infections of the digestive tract | Hippophae rhamnoides spp. mongolica | Ostrobothnia, Finland | [104] |
Hepatic fibrosis | Granules of sea buckthorn extract | Sichuan Pharmaceutical Co., Ltd., China | [105] |
Dermatological conditions | Hippophae rhamnoides (L.) | Skardu, Pakistan | [106] |
Hippophae rhamnoides (L.) (sea buckthorn oil) | Dongning Pharmceutical Co., Ltd., China | [107] | |
Common cold | Hippophae rhamnoides (L.) | Olsztyn, Poland and Belorussia | [64,104] |
Hippophae rhamnoides spp. mongolica | Ostrobothnia, Finland | [104] | |
Ophthalmic conditions | Hippophae rhamnoides (L.) (oil capsules) | Aromtech Ltd., Finland | [108] |
Chronic vaginal inflammation | Hippophae rhamnoides (L.) (oil capsules) | Aromtech Ltd., Finland | [109,110] |
Healing effect on acute and chronic wounds | Hippophae rhamnoides ssp. rhamnoides | Romania | [18] |
Hippophae rhamnoides (L.) | Kazeroon, Iran | [111,112] | |
Hippophae rhamnoides (L.) | Western Himalayas, India | [113] | |
Anti-inflammatory | Hippophae rhamnoides (L.) | Olsztyn, Poland and Belorussia | [114] |
Antidiabetic | Hippophae rhamnoides (L.) | Chifeng, Inner Mongolia | [115] |
Hippophae rhamnoides (L.) | New Delhi, India | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gâtlan, A.-M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. https://doi.org/10.3390/ijerph18178986
Gâtlan A-M, Gutt G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. International Journal of Environmental Research and Public Health. 2021; 18(17):8986. https://doi.org/10.3390/ijerph18178986
Chicago/Turabian StyleGâtlan, Anca-Mihaela, and Gheorghe Gutt. 2021. "Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits" International Journal of Environmental Research and Public Health 18, no. 17: 8986. https://doi.org/10.3390/ijerph18178986
APA StyleGâtlan, A. -M., & Gutt, G. (2021). Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. International Journal of Environmental Research and Public Health, 18(17), 8986. https://doi.org/10.3390/ijerph18178986