Associations of Diet with Cardiometabolic and Inflammatory Profiles in Pregnant Women at Risk for Metabolic Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dietary Data
2.3. Clinical Variables and Serum Inflammatory Data
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, S.; Gupta, A. Hypertensive Disorders of Pregnancy. Cardiol. Clin. 2019, 37, 345–354. [Google Scholar] [CrossRef]
- Szmuilowicz, E.D.; Josefson, J.L.; Metzger, B.E. Gestational Diabetes Mellitus. Endocrinol. Metab. Clin. N. Am. 2019, 48, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Baz, B.; Riveline, J.P.; Gautier, J.F. ENDOCRINOLOGY OF PREGNANCY: Gestational diabetes mellitus: Definition, aetiological and clinical aspects. Eur. J. Endocrinol. 2016, 174, R43–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkerson, R.G.; Ogunbodede, A.C. Hypertensive Disorders of Pregnancy. Emerg. Med. Clin. N. Am. 2019, 37, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.K.; Garcia-Valdes, L.; Torres-Espinola, F.J.; Segura, M.T.; Martinez-Zaldivar, C.; Aguilar, M.J.; Agil, A.; Lorente, J.A.; Florido, J.; Padilla, C.; et al. Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: An observational cohort study (PREOBE). BMC Public Health 2016, 16, 207. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wang, S.; Ji, J.; Ge, A.; Chen, C.; Zhu, Y.; Xie, N.; Wang, Y. Risk factors and management of gestational diabetes. Cell Biochem. Biophys. 2015, 71, 689–694. [Google Scholar] [CrossRef]
- Kattah, A.G.; Garovic, V.D. The management of hypertension in pregnancy. Adv. Chronic Kidney Dis. 2013, 20, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Karumanchi, S.A.; Granger, J.P. Preeclampsia and Pregnancy-Related Hypertensive Disorders. Hypertension 2016, 67, 238–242. [Google Scholar] [CrossRef]
- Bokslag, A.; van Weissenbruch, M.; Mol, B.W.; de Groot, C.J. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Lende, M.; Rijhsinghani, A. Gestational Diabetes: Overview with Emphasis on Medical Management. Int. J. Environ. Res. Public Health 2020, 17, 9573. [Google Scholar] [CrossRef]
- Leeman, L.; Dresang, L.T.; Fontaine, P. Hypertensive Disorders of Pregnancy. Am. Fam. Physician 2016, 93, 121–127. [Google Scholar]
- Mission, J.F.; Marshall, N.E.; Caughey, A.B. Pregnancy risks associated with obesity. Obstet. Gynecol. Clin. N. Am. 2015, 42, 335–353. [Google Scholar] [CrossRef]
- Alfadhli, E.M. Gestational diabetes mellitus. Saudi Med. J. 2015, 36, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Zhao, B.; Wang, E.J.; Nimbal, V.; Osmundson, S.; Kunz, L.; Popat, R.A.; Chung, S.; Palaniappan, L.P. Racial/Ethnic Differences in Gestational Diabetes Prevalence and Contribution of Common Risk Factors. Paediatr. Perinat. Epidemiol. 2015, 29, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Creanga, A.A.; Syverson, C.; Seed, K.; Callaghan, W.M. Pregnancy-Related Mortality in the United States, 2011–2013. Obstet. Gynecol. 2017, 130, 366–373. [Google Scholar] [CrossRef]
- Wenger, N.K.; Arnold, A.; Bairey Merz, C.N.; Cooper-DeHoff, R.M.; Ferdinand, K.C.; Fleg, J.L.; Gulati, M.; Isiadinso, I.; Itchhaporia, D.; Light-McGroary, K.; et al. Hypertension Across a Woman’s Life Cycle. J. Am. Coll. Cardiol. 2018, 71, 1797–1813. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; England, L.; Wilson, H.G.; Bish, C.; Satten, G.A.; Dietz, P. Percentage of gestational diabetes mellitus attributable to overweight and obesity. Am. J. Public Health 2010, 100, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Callaghan, W.M.; Kim, S.Y.; Schmid, C.H.; Lau, J.; England, L.J.; Dietz, P.M. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007, 30, 2070–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Smith, G.N.; Rodger, M.; White, R.R.; Walker, M.C.; Wen, S.W. Comparison of risk factors and outcomes of gestational hypertension and pre-eclampsia. PLoS ONE 2017, 12, e0175914. [Google Scholar] [CrossRef] [Green Version]
- Barquiel, B.; Herranz, L.; Grande, C.; Castro-Dufourny, I.; Llaro, M.; Parra, P.; Burgos, M.A.; Pallardo, L.F. Body weight, weight gain and hyperglycaemia are associated with hypertensive disorders of pregnancy in women with gestational diabetes. Diabetes Metab. 2014, 40, 204–210. [Google Scholar] [CrossRef]
- Zhou, Z.; Deng, C.; Xiang, X. Blood glucose related to pregnancy induced hypertension syndrome. Am. J. Transl. Res. 2021, 13, 5301–5307. [Google Scholar]
- Mehmood, S.; Ye, C.; Connelly, P.W.; Hanley, A.J.; Zinman, B.; Retnakaran, R. Rising plasminogen activator inhibitor-1 and hypoadiponectinemia characterize the cardiometabolic biomarker profile of women with recent gestational diabetes. Cardiovasc. Diabetol. 2018, 17, 133. [Google Scholar] [CrossRef] [Green Version]
- Bohiltea, R.E.; Zugravu, C.A.; Nemescu, D.; Turcan, N.; Paulet, F.P.; Gherghiceanu, F.; Ducu, I.; Cirstoiu, M.M. Impact of obesity on the prognosis of hypertensive disorders in pregnancy. Exp. Ther. Med. 2020, 20, 2423–2428. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jaramillo, P. The Role of Adiponectin in Cardiometabolic Diseases: Effects of Nutritional Interventions. J. Nutr. 2016, 146, 422S–426S. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Bowers, K.; Tobias, D.K.; Olsen, S.F.; Chavarro, J.; Vaag, A.; Kiely, M.; Zhang, C. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: A prospective cohort study. Am. J. Clin. Nutr. 2014, 99, 1378–1384. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, E.G.; Reynolds, C.M.E.; Killalea, A.; O’Kelly, R.; Sheehan, S.R.; Turner, M.J. Maternal obesity and dyslipidemia associated with gestational diabetes mellitus (GDM). Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 246, 67–71. [Google Scholar] [CrossRef]
- Schoenaker, D.A.; Soedamah-Muthu, S.S.; Callaway, L.K.; Mishra, G.D. Prepregnancy dietary patterns and risk of developing hypertensive disorders of pregnancy: Results from the Australian Longitudinal Study on Women’s Health. Am. J. Clin. Nutr. 2015, 102, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjarimoghaddam, F.; Bahadori, F.; Bakhshimoghaddam, F.; Alizadeh, M. Association between quality and quantity of dietary carbohydrate and pregnancy-induced hypertension: A case-control study. Clin. Nutr. ESPEN 2019, 33, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Feng, D.; Planinic, P.; Ebersole, J.L.; Lyons, T.J.; Alexander, J.M. Dietary Blueberry and Soluble Fiber Supplementation Reduces Risk of Gestational Diabetes in Women with Obesity in a Randomized Controlled Trial. J. Nutr. 2021, 151, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowska, M.; Wieckowska, B.; Sajdak, S. Pre-Pregnancy Obesity, Excessive Gestational Weight Gain, and the Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus. J. Clin. Med. 2020, 9, 1980. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.L.; Kautz, A.; Lohse, B.; Groth, S.W. Associations between Dietary Patterns and Inflammatory Markers during Pregnancy: A Systematic Review. Nutrients 2021, 13, 834. [Google Scholar] [CrossRef] [PubMed]
- Saldana, T.M.; Siega-Riz, A.M.; Adair, L.S. Effect of macronutrient intake on the development of glucose intolerance during pregnancy. Am. J. Clin. Nutr. 2004, 79, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. J. Nutr. 2016, 146, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, M.Y.; Baik, S.H.; Woo, J.T.; Kwon, Y.J.; Daily, J.W.; Park, Y.M.; Yang, J.H.; Kim, S.H. Gestational diabetes is associated with high energy and saturated fat intakes and with low plasma visfatin and adiponectin levels independent of prepregnancy BMI. Eur. J. Clin. Nutr. 2013, 67, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, T.; Chen, Y.; Duan, R.; Chen, M.; Xue, H.; Tian, G.; Liang, Y.; Zhang, J.; He, F.; Yang, D.; et al. Beyond protein intake: Does dietary fat intake in the year preceding pregnancy and during pregnancy have an impact on gestational diabetes mellitus? Eur. J. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, Z. US dietary guidelines: Is saturated fat a nutrient of concern? Br. J. Sports Med. 2019, 53, 1393–1396. [Google Scholar] [CrossRef] [PubMed]
- Pantham, P.; Aye, I.L.; Powell, T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 2015, 36, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Liu, S.; Solomon, C.G.; Hu, F.B. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006, 29, 2223–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretorius, R.A.; Palmer, D.J. High-Fiber Diet during Pregnancy Characterized by More Fruit and Vegetable Consumption. Nutrients 2020, 13, 35. [Google Scholar] [CrossRef]
- Shin, D.; Lee, K.W.; Song, W.O. Dietary Patterns during Pregnancy Are Associated with Risk of Gestational Diabetes Mellitus. Nutrients 2015, 7, 9369–9382. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Schulze, M.B.; Solomon, C.G.; Hu, F.B. A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia 2006, 49, 2604–2613. [Google Scholar] [CrossRef] [Green Version]
- Torjusen, H.; Brantsaeter, A.L.; Haugen, M.; Alexander, J.; Bakketeig, L.S.; Lieblein, G.; Stigum, H.; Naes, T.; Swartz, J.; Holmboe-Ottesen, G.; et al. Reduced risk of pre-eclampsia with organic vegetable consumption: Results from the prospective Norwegian Mother and Child Cohort Study. BMJ Open 2014, 4, e006143. [Google Scholar] [CrossRef] [PubMed]
- Lahoz, C.; Castillo, E.; Mostaza, J.M.; de Dios, O.; Salinero-Fort, M.A.; Gonzalez-Alegre, T.; Garcia-Iglesias, F.; Estirado, E.; Laguna, F.; Sanchez, V.; et al. Relationship of the Adherence to a Mediterranean Diet and Its Main Components with CRP Levels in the Spanish Population. Nutrients 2018, 10, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moosavian, S.P.; Rahimlou, M.; Saneei, P.; Esmaillzadeh, A. Effects of dairy products consumption on inflammatory biomarkers among adults: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 872–888. [Google Scholar] [CrossRef]
- Frederick, I.O.; Williams, M.A.; Dashow, E.; Kestin, M.; Zhang, C.; Leisenring, W.M. Dietary fiber, potassium, magnesium and calcium in relation to the risk of preeclampsia. J. Reprod. Med. 2005, 50, 332–344. [Google Scholar] [PubMed]
- Schoenaker, D.A.; Soedamah-Muthu, S.S.; Mishra, G.D. The association between dietary factors and gestational hypertension and pre-eclampsia: A systematic review and meta-analysis of observational studies. BMC Med. 2014, 12, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustad, V.A.; Huynh, D.T.T.; Lopez-Pedrosa, J.M.; Campoy, C.; Rueda, R. The Role of Dietary Carbohydrates in Gestational Diabetes. Nutrients 2020, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Choi, K.M. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients 2017, 9, 322. [Google Scholar] [CrossRef]
Variable | Value 1 |
---|---|
Age, y | 32 ± 4.2 |
Gestational age, weeks | 15 ± 4.2 |
Body weight, kg | 102 ± 4.4 |
BMI, kg/m2 | 36 ± 3.2 |
HbA1c, % | 5.1 ± 4.7 |
Systolic blood pressure, mm Hg | 131 ± 15 |
Diastolic blood pressure, mm Hg | 78 ± 9 |
Serum triglycerides, mg/dL | 204 ± 14 |
Serum HDL-cholesterol, mg/dL | 58 ± 12 |
Serum CRP, mg/L | 7.3 ± 5.2 |
Serum Adiponectin, µg/mL | 10.4 ± 6.3 |
Serum IL-6, pg/mL | 32 ± 11 |
Serum PAI-1, pg/mL | 6121 ± 1032 |
Serum TNF-α, pg/mL | 13 ± 6 |
Race | |
African American, % | 19 |
Hispanic, % | 81 |
Prenatal vitamin users, % | 42 |
History of GDM, % | 75 |
Family history of diabetes, % | 40 |
Nulliparous, % | 32 |
Energy intake, kcal | 2156 ± 834 |
Carbohydrates, g | 272 ± 102 |
Total fats, g | 85 ± 43 |
Saturated fats, g | 47 ± 18 |
Proteins, g | 75 ± 21 |
Fiber, g | 12 ± 8 |
Vitamin C, mg | 38 ± 21 |
Vitamin E, mg | 12 ± 7 |
Calcium, mg | 834 ± 81 |
Iron, mg | 12 ± 5 |
Zinc, mg | 8 ± 5 |
Dairy, cup | 1.2 ± 0.4 |
Fruits, cup | 0.5 ± 0.2 |
Vegetables, cup | 1.4 ± 0.6 |
Maternal Outcomes | |||||||
---|---|---|---|---|---|---|---|
Dietary Nutrients/Food Groups | Body Weight | BMI | HbA1c | SBP | DBP | TG | HDL-C |
β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | |
Carbohydrates | 0.14 ± 0.10 | 0.15 ± 0.08 | 0.22 ± 0.11 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.12 ± 0.07 | 0.15 ± 0.11 |
Total fats | 0.25 ± 0.13 | 0.28 ± 0.18 | 0.18 ± 0.12 | 0.08 ± 0.01 | 0.05 ± 0.01 | 0.15 ± 0.08 | 0.11 ± 0.09 |
Saturated fats | 0.16 ± 0.12 | 0.11 ± 0.12 | 0.32 ± 0.12 | 0.12 ± 0.05 | 0.08 ± 0.04 | 0.18 ± 0.05 | 0.10 ± 0.09 |
Proteins | 0.11 ± 0.12 | 0.08 ± 0.10 | 0.16 ± 0.12 | 0.12 ± 0.05 | 0.05 ± 0.02 | 0.18 ± 0.12 | 0.09 ± 0.06 |
Fiber | −0.26 ± 0.13 | −0.19 ± 0.15 | −0.22 ± 0.16 | 0.11 ± 0.06 | 0.07 ± 0.04 | 0.14 ± 0.12 | 0.11 ± 0.08 |
Vitamin C | 0.05 ± 0.02 | 0.08 ± 0.03 | 0.11 ± 0.12 | 0.07 ± 0.05 | 0.04 ± 0.02 | 0.13 ± 0.09 | 0.04 ± 0.06 |
Vitamin E | 0.10 ± 0.08 | 0.05 ± 0.04 | 0.04 ± 0.01 | 0.11 ± 0.05 | 0.06 ± 0.03 | 0.11 ± 0.12 | 0.06 ± 0.06 |
Calcium | 0.06 ± 0.05 | 0.08 ± 0.11 | 0.11 ± 0.12 | 0.09 ± 0.05 | 0.05 ± 0.02 | 0.12 ± 0.10 | 0.09 ± 0.11 |
Iron | 0.01 ± 0.02 | 0.04 ± 0.03 | 0.10 ± 0.10 | 0.09 ± 0.06 | 0.03 ± 0.02 | 0.11 ± 0.12 | 0.07 ± 0.06 |
Zinc | 0.05 ± 0.06 | 0.08 ± 0.10 | 0.13 ± 0.12 | 0.10 ± 0.07 | 0.05 ± 0.02 | 0.12 ± 0.11 | 0.09 ± 0.06 |
Dairy | −0.14 ± 0.13 | −0.11 ± 0.14 | 0.15 ± 0.16 | −0.18 ± 0.15 | −0.11 ± 0.06 | 0.11 ± 0.12 | 0.09 ± 0.11 |
Fruits | 0.08 ± 0.06 | 0.12 ± 0.10 | 0.09 ± 0.12 | 0.09 ± 0.07 | 0.05 ± 0.02 | 0.12 ± 0.09 | 0.05 ± 0.06 |
Vegetables | −0.13 ± 0.07 | 0.09 ± 0.10 | 0.10 ± 0.12 | 0.08 ± 0.07 | 0.04 ± 0.02 | 0.01 ± 0.02 | 0.04 ± 0.05 |
Maternal Outcomes | |||||
---|---|---|---|---|---|
Dietary Nutrients/Food Groups | CRP | Adiponectin | PAI-1 | IL-6 | TNF-α |
β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | |
Carbohydrates | 0.10 ± 0.08 | 0.11 ± 0.07 | 0.09 ± 0.11 | 0.04 ± 0.01 | 0.03 ± 0.01 |
Total fats | 0.29 ± 0.14 | 0.11 ± 0.08 | 0.06 ± 0.04 | 0.08 ± 0.04 | 0.06 ± 0.03 |
Saturated fats | 0.15 ± 0.13 | 0.08 ± 0.11 | 0.12 ± 0.12 | 0.07 ± 0.05 | 0.06 ± 0.04 |
Proteins | 0.10 ± 0.09 | 0.11 ± 0.10 | 0.10 ± 0.12 | 0.13 ± 0.05 | 0.06 ± 0.02 |
Fiber | −0.19 ± 0.14 | 0.14 ± 0.12 | 0.12 ± 0.13 | 0.11 ± 0.07 | 0.07 ± 0.04 |
Vitamin C | 0.04 ± 0.02 | 0.03 ± 0.03 | 0.10 ± 0.12 | 0.05 ± 0.04 | 0.04 ± 0.02 |
Vitamin E | 0.12 ± 0.10 | 0.05 ± 0.04 | 0.02 ± 0.01 | 0.10 ± 0.06 | 0.05 ± 0.03 |
Calcium | 0.04 ± 0.02 | 0.06 ± 0.07 | 0.11 ± 0.10 | 0.11 ± 0.09 | 0.06 ± 0.02 |
Iron | 0.01 ± 0.01 | 0.05 ± 0.03 | 0.09 ± 0.10 | 0.05 ± 0.06 | 0.04 ± 0.02 |
Zinc | 0.04 ± 0.03 | 0.07 ± 0.10 | 0.11 ± 0.12 | 0.09 ± 0.07 | 0.08 ± 0.10 |
Dairy | −0.10 ± 0.09 | 0.13 ± 0.12 | 0.08 ± 0.06 | −0.22 ± 0.17 | −0.12 ± 0.07 |
Fruits | 0.12 ± 0.08 | 0.14 ± 0.10 | 0.06 ± 0.05 | 0.11 ± 0.07 | 0.04 ± 0.02 |
Vegetables | −0.17 ± 0.12 | 0.11 ± 0.10 | 0.13 ± 0.12 | 0.09 ± 0.07 | 0.03 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworsky, K.; Ebersole, J.L.; Planinic, P.; Basu, A. Associations of Diet with Cardiometabolic and Inflammatory Profiles in Pregnant Women at Risk for Metabolic Complications. Int. J. Environ. Res. Public Health 2021, 18, 11105. https://doi.org/10.3390/ijerph182111105
Jaworsky K, Ebersole JL, Planinic P, Basu A. Associations of Diet with Cardiometabolic and Inflammatory Profiles in Pregnant Women at Risk for Metabolic Complications. International Journal of Environmental Research and Public Health. 2021; 18(21):11105. https://doi.org/10.3390/ijerph182111105
Chicago/Turabian StyleJaworsky, Kataryna, Jeffrey L. Ebersole, Petar Planinic, and Arpita Basu. 2021. "Associations of Diet with Cardiometabolic and Inflammatory Profiles in Pregnant Women at Risk for Metabolic Complications" International Journal of Environmental Research and Public Health 18, no. 21: 11105. https://doi.org/10.3390/ijerph182111105
APA StyleJaworsky, K., Ebersole, J. L., Planinic, P., & Basu, A. (2021). Associations of Diet with Cardiometabolic and Inflammatory Profiles in Pregnant Women at Risk for Metabolic Complications. International Journal of Environmental Research and Public Health, 18(21), 11105. https://doi.org/10.3390/ijerph182111105