Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review
Abstract
:1. Introduction
1.1. Swiss Balls or Exercise Balls
1.2. Semi-Sphere of Balance
1.3. Suspension Training Devices
2. Materials and Methods
2.1. Study Selection and Eligibility Criteria
2.2. Literature Search
2.3. Systematic Review Protocol
2.4. Data Extraction and Management
2.5. Study Quality Assessment
3. Results
3.1. Synthesis of Findings (Qualitative Analysis)
3.2. Sample Characteristics
3.3. Tasks, Devices, and Training Parameters
3.4. Strength Results
3.5. Power Results
3.6. Speed Results
3.7. Study Selection and Assessment (Qualitative Analysis)
4. Discussion
5. Implications for Practice
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ignjatovic, A.M.; Radovanovic, D.S.; Kocić, J. Effects of eight weeks of bench press and squat power training on stable and unstable surfaces on 1RM and peak power in different testing conditions. Isokinet. Exerc. Sci. 2019, 27, 203–212. [Google Scholar] [CrossRef]
- Kohler, J.M.; Flanagan, S.P.; Whiting, W.C. Muscle activation patterns while lifting stable and unstable loads on stable and unstable surfaces. J. Strength Cond. Res. 2010, 24, 313–321. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Cormie, P.; Deane, R. Isometric squat force output and muscle activity in stable and unstable conditions. J. Strength Cond. Res. 2006, 20, 915–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, V.Y.S.; Torres, R.J.B.; Beltrão, N.B.; dos Santos, P.S.; Pirauá, A.L.T.; de Oliveira, V.M.A.; Pitangui, A.C.R.; de Araújo, R.C. Shoulder muscle activation levels during exercises with axial and rotational load on stable and unstable surfaces. J. Appl. Biomech. 2017, 33, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hoffman, J.R.; Sadres, E.; Bartolomei, S.; Muddle, T.W.; Fukuda, D.H.; Stout, J.R. Effects of different relative loads on power performance during the ballistic push-up. J. Strength Cond. Res. 2017, 31, 3411–3416. [Google Scholar] [CrossRef] [PubMed]
- Bompa, T.O.; Haff, G.G. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Champaign, IL, USA, 2009; ISBN 978-0-7360-7483-4. [Google Scholar]
- Arriscado Alsina, D.; Martínez, J. Muscular strength training in young football players. J. Sport Heal. Res. 2017, 9, 329–338. [Google Scholar]
- Billich, R.; Stvrtna, J.; Jelen, K. Optimal velocity to achieve maximum power. KInanthropologica 2014, 50, 37–46. [Google Scholar] [CrossRef]
- Dallas, G.; Kirialanis, P.; Mellos, V. The acute effect of whole body vibration training on flexibility and explosive strenght of young gymnasts. Biol. Sport 2014, 31, 233–237. [Google Scholar] [CrossRef]
- Górski, M.; Starczewski, M.; Pastuszak, A.; Mazur-Różycka, J.; Gajewski, J.; Buśko, K. Changes of strength and maximum power of lower extremities in adolescent handball players during a two-year training cycle. J. Hum. Kinet. 2018, 63, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.A.; Nimphius, S.; Kobal, R.; Kitamura, K.; Turisco, L.A.L.; Orsi, R.C.; Cal Abad, C.C.; Loturco, I. Relationship between change of direction, speed and power in male and female national olympic team handball athletes. J. Strength Cond. Res. 2018, 63, 1. [Google Scholar] [CrossRef]
- Spieszny, M.; Zubik, M. Modification of strength training programs in handball players and its influence on power during the competitive period. J. Hum. Kinet. 2018, 63, 149–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG activity and loss of force output with instability. J. Strength Cond. Res. 2004, 18, 637. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Behm, D.G. Trunk Muscle Activity Increases With Unstable Squat Movements. Can. J. Appl. Physiol. 2005, 30, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagesan, J. Effect of Instability Resistance Training of Abdominal Muscles in Healthy Young Females-An Experimental Study. Int. J. Pharm. Sci. Health Care 2012, 2, 91–97. [Google Scholar]
- Marinković, M.; Bratić, M.; Ignjatović, A.; Radovanović, D. Effects of 8-Week Instability Resistance Training on Maximal Strength in Inexperienced Young Individuals. Serbian J. Sport. Sci. 2012, 6, 17–21. [Google Scholar]
- Sukalinggam, C.; Sukalinggam, G.; Kasim, F.; Yusof, A. Stability ball training on lower back strength has greater effect in untrained female compared to male. J. Hum. Kinet. 2012, 33, 133–141. [Google Scholar] [CrossRef]
- Sparkes, R.; Behm, D.G. Training Adaptations Associated With an 8-Week Instability Resistance Training Program With Recreationally Active Individuals. J. Strength Cond. Res. 2010, 24, 1931–1941. [Google Scholar] [CrossRef]
- Cowley, P.; Swensen, T.; Sforzo, G. Efficacy of Instability Resistance Training. Int. J. Sports Med. 2007, 28, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Maté-Muñoz, J.L.; Antón, A.J.M.; Jiménez, P.J.; Garnacho-Castaño, M.V. Effects of instability versus traditional resistance training on strength, power and velocity in untrained men. J. Sport. Sci. Med. 2014, 13, 460–468. [Google Scholar] [CrossRef]
- Behm, D.G.; Colado Sanchez, J.C. Instability Resistance Training Across the Exercise Continuum. Sports Health 2013, 5, 500–503. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, M.; Sanada, K.; Yamamoto, K.; Kawano, H.; Gando, Y.; Tabata, I.; Ishii, N.; Miyachi, M. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J. Strength Cond. Res. 2008, 22, 1926–1938. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, H.; Nagareda, H.; Kawakami, Y.; Akima, H.; Masani, K.; Kouzaki, M.; Fukunaga, T. Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength. Eur. J. Appl. Physiol. 2002, 87, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The use of instability to train the core musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef]
- Behm, D.G.; Leonard, A.M.; Young, W.B.; Bonsey, W.A.C.; MacKinnon, S.N. Trunk muscle electromyographic activity with unstable and unilateral exercises. J. Strength Cond. Res. 2005, 19, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G. Neuromuscular Implications and Applications of Resistance Training. J. Strength Cond. Res. 1995, 9, 264–274. [Google Scholar] [CrossRef]
- Behm, D.G.; Anderson, K.G. The Role of Instability With Resistance Training. J. Strength Cond. Res. 2006, 20, 716. [Google Scholar] [CrossRef]
- Chapman, D.W.; Needham, K.J.; Allison, G.T.; Lay, B.; Edwards, D.J. Effects of experience in a dynamic environment on postural control. Br. J. Sports Med. 2007, 42, 16–21. [Google Scholar] [CrossRef]
- Drake, J.D.M.; Fischer, S.L.; Brown, S.H.M.; Callaghan, J.P. Do Exercise Balls Provide a Training Advantage for Trunk Extensor Exercises? A Biomechanical Evaluation. J. Manipulative Physiol. Ther. 2006, 29, 354–362. [Google Scholar] [CrossRef]
- Nairn, B.C.; Sutherland, C.A.; Drake, J.D.M. Location of Instability During a Bench Press Alters Movement Patterns and Electromyographical Activity. J. Strength Cond. Res. 2015, 29, 3162–3170. [Google Scholar] [CrossRef]
- Paillard, T.; Margnes, E.; Portet, M.; Breucq, A. Postural ability reflects the athletic skill level of surfers. Eur. J. Appl. Physiol. 2011, 111, 1619–1623. [Google Scholar] [CrossRef]
- Hornsby, W.; Gentles, J.; MacDonald, C.; Mizuguchi, S.; Ramsey, M.; Stone, M. Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training. Sports 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieske, O.; Muehlbauer, T.; Borde, R.; Gube, M.; Bruhn, S.; Behm, D.G.; Granacher, U. Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability. Scand. J. Med. Sci. Sport. 2016, 26, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, S.M.; Frese, D.L.; Llewellyn, T.L. The effects of eccentric, velocity-based training on strength and power in collegiate athletes. Int. J. Exerc. Sci. 2016, 9, 657–666. [Google Scholar]
- Willardson, J.M.; Fontana, F.E.; Bressel, E. Effect of Surface Stability on Core Muscle Activity for Dynamic Resistance Exercises. Int. J. Sports Physiol. Perform. 2009, 4, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escamilla, R.F.; Lewis, C.; Bell, D.; Bramblet, G.; Daffron, J.; Lambert, S.; Pecson, A.; Imamura, R.; Paulos, L.; Andrews, J.R. Core Muscle Activation During Swiss Ball and Traditional Abdominal Exercises. J. Orthop. Sport. Phys. Ther. 2010, 40, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredericson, M.; Moore, T. Muscular Balance, Core Stability, and Injury Prevention for Middle- and Long-Distance Runners. Phys. Med. Rehabil. Clin. N. Am. 2005, 16, 669–689. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.B.; Press, J.; Sciascia, A. The Role of Core Stability in Athletic Function. Sport. Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Schwanbeck, S.; Chilibeck, P.D.; Binsted, G. A Comparison of Free Weight Squat to Smith Machine Squat Using Electromyography. J. Strength Cond. Res. 2009, 23, 2588–2591. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Solstad, T.E.J.; Behm, D.G.; Stien, N.; Shaw, M.P.; Pedersen, H.; Andersen, V. Muscle activity in asymmetric bench press among resistance-trained individuals. Eur. J. Appl. Physiol. 2020. [Google Scholar] [CrossRef]
- Miller, W.M.; Barnes, J.T.; Sofo, S.S.; Wagganer, J.D. Comparison of Myoelectric Activity During a Suspension-Based and Traditional Split Squat. J. Strength Cond. Res. 2019, 33, 3236–3241. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Muscle activity of the core during bilateral, unilateral, seated and standing resistance exercise. Eur. J. Appl. Physiol. 2012, 112, 1671–1678. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces. J. Strength Cond. Res. 2013, 27, 1101–1107. [Google Scholar] [CrossRef]
- Saeterbakken, A.; Andersen, V.; Brudeseth, A.; Lund, H.; Fimland, M.S. The effect of performing bi- and unilateral row exercises on core muscle activation. Int. J. Sports Med. 2015, 36, 900–905. [Google Scholar] [CrossRef]
- Dunnick, D.D.; Brown, L.E.; Coburn, J.W.; Lynn, S.K.; Barillas, S.R. Bench press upper-body muscle activation between stable and unstable loads. J. Strength Cond. Res. 2015, 29, 3279–3283. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Single-leg power output and between-limbs imbalances in team-sport players: Unilateral versus bilateral combined resistance training. Int. J. Sports Physiol. Perform. 2016, 12, 106–114. [Google Scholar] [CrossRef]
- Jakubek, M.D. Stability Balls: Reviewing the Literature Regarding Their Use and Effectiveness. Strength Cond. J. 2007, 29, 58–63. [Google Scholar] [CrossRef]
- Ruiz, R.; Richardson, M.T. Using a Domed Device. Strength Cond. J. 2005, 27, 50–55. [Google Scholar] [CrossRef]
- Bettendorf, B. TRX Suspension Training Bodyweight Exercises: Scientific Foundations and Practical Applications, 1st ed.; Fitness Anywhere Inc.: San Francisco, CA, USA, 2010. [Google Scholar]
- Imai, K.; Keele, L.; Tingley, D. A general approach to causal mediation analysis. Psychol. Methods 2010, 15, 309–334. [Google Scholar] [CrossRef] [Green Version]
- Lehman, G.J.; Gilas, D.; Patel, U. An unstable support surface does not increase scapulothoracic stabilizing muscle activity during push up and push up plus exercises. Man. Ther. 2008, 13, 500–506. [Google Scholar] [CrossRef]
- Vera-Garcia, F.J.; Grenier, S.G.; McGill, S.M. Abdominal muscle response during curl-ups on both stable and labile surfaces. Phys. Ther. 2000, 80, 564–569. [Google Scholar] [CrossRef]
- Czaprowski, D.; Afeltowicz, A.; Gebicka, A.; Pawłowska, P.; Kedra, A.; Barrios, C.; Hadała, M. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces. Phys. Ther. Sport 2014, 15, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Feldwieser, F.M.; Sheeran, L.; Meana-Esteban, A.; Sparkes, V. Electromyographic analysis of trunk-muscle activity during stable, unstable and unilateral bridging exercises in healthy individuals. Eur. Spine J. 2012, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, P.W.M.; Murphy, B.A. Increased Deltoid and Abdominal Muscle Activity During Swiss Ball Bench Press. J. Strength Cond. Res. 2006, 20, 745. [Google Scholar] [CrossRef] [Green Version]
- Norwood, J.T.; Anderson, G.S.; Gaetz, M.B.; Twist, P.W. Electromyographic activity of the trunk stabilizers during stable and unstable bench press. J. Strength Cond. Res. 2007, 21, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Barros Beltrão, N.; Torres Pirauá, A.L. Analysis of muscle activity during the bench press exercise performed with the pre-activation method on stable and unstable surfaces. Kinesiology 2017, 49, 161–168. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, A.S.; de Morais Carvalho, M.; de Brum, D.P.C. Activation of the shoulder and arm muscles during axial load exercises on a stable base of support and on a medicine ball. J. Electromyogr. Kinesiol. 2008, 18, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Uribe, B.P.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Nguyen, D. Muscle Activation When Performing the Chest Press and Shoulder Press on a Stable Bench vs. a Swiss Ball. J. Strength Cond. Res. 2010, 24, 1028–1033. [Google Scholar] [CrossRef]
- Lehman, G.J.; Hoda, W.; Oliver, S. Trunk muscle activity during bridging exercises on and off a swissball. Chiropr. Osteopat. 2005, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Brooks, D.; Brooks, C. BOSU Balance Trainer: Integrated Balance Training; DW Fitness LLC: Greater Manchester, UK, 2002. [Google Scholar]
- Anderson, G.S.; Gaetz, M.; Holzmann, M.; Twist, P. Comparison of EMG activity during stable and unstable push-up protocols. Eur. J. Sport Sci. 2013, 13, 42–48. [Google Scholar] [CrossRef]
- Aguilera-Castells, J.; Buscà, B.; Fort-Vanmeerhaeghe, A.; Montalvo, A.M.; Peña, J. Muscle activation in suspension training: A systematic review. Sport. Biomech. 2020, 19, 55–75. [Google Scholar] [CrossRef]
- Aguilera-Castells, J.; Buscà, B.; Morales, J.; Solana-Tramunt, M.; Fort-Vanmeerhaeghe, A.; Rey-Abella, F.; Bantulà, J.; Peña, J. Muscle activity of Bulgarian squat. Effects of additional vibration, suspension and unstable surface. PLoS ONE 2019, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Snarr, R.L.; Esco, M.R. Electromyographic comparison of traditional and suspension push-ups. J. Hum. Kinet. 2013, 39, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Coswig, V.S.; Dall’Agnol, C.; Del Vecchio, F.B. Anthropometric measurements usage to control the exercise intensity during the performance of suspension rowing and back squats. Rev. Andaluza Med. Deport. 2016, 9, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.A.; Elliott, J.J.; Fraboni, D.F.; McWilliams, T.J.; Rebhan, R.L.; Hollman, J.H. Electromyography of the hip and thigh muscles during two variations of the lunge exercise: A cross-sectional study. Int. J. Sports Phys. Ther. 2018, 13, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliaropoulos, N.; Panagiotis, T.; Jurdan, M.; Vasilis, K.; Debasish, P.; Peter, M.; Tsapralis, K. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: Implications for exercise selection during rehabilitation. Open Access J. Sport. Med. 2015, 209. [Google Scholar] [CrossRef] [Green Version]
- Borreani, S.; Calatayud, J.; Colado, J.C.; Moya-Nájera, D.; Triplett, N.T.; Martin, F. Muscle activation during push-ups performed under stable and unstable conditions. J. Exerc. Sci. Fit. 2015, 13, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.M.; Bishop, N.S.; Caines, A.M.; Crane, K.A.; Feaver, A.M.; Pearcey, G.E.P. Effect of Using a Suspension Training System on Muscle Activation During the Performance of a Front Plank Exercise. J. Strength Cond. Res. 2014, 28, 3049–3055. [Google Scholar] [CrossRef]
- Calatayud, J.; Borreani, S.; Colado, J.C.; Martin, F.; Batalha, N.; Silva, A. Muscle activation differences between stable push-ups and push-ups with a unilateral v-shaped suspension system at different heights. Motricidade 2014, 10, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Snarr, R.L.; Hallmark, A.V.; Nickerson, B.S.; Esco, M.R. Electromyographical comparison of pike variations performed with and without instability devices. J. Strength Cond. Res. 2016, 30, 3436–3442. [Google Scholar] [CrossRef]
- Cugliari, G.; Boccia, G. Core muscle activation in suspension training exercises. J. Hum. Kinet. 2017, 56, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Nairn, B.C.; Sutherland, C.A.; Drake, J.D.M. Motion and muscle activity are affected by instability location during a squat exercise. J. Strength Cond. Res. 2017, 31, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G.; Muehlbauer, T.; Kibele, A.; Granacher, U. Effects of strength training using unstable surfaces on strength, power and balance performance across the lifespan: A systematic review and meta-analysis. Sport. Med. 2015, 45, 1645–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B. Variables to Optimize Maximum Strength in Men: A Review. J. Strength Cond. Res. 1999, 13, 289–304. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, 1628–1654. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.; Anderson, K.G.; Curnew, R.S. Muscle force and activation under stable and unstable conditions. J. Strength Cond. Res. 2002, 16, 416–422. [Google Scholar] [CrossRef]
- Chulvi-Medrano, I.; García-Massó, X.; Colado, J.C.; Pablos, C.; de Moraes, J.A.; Fuster, M.A. Deadlift muscle force and activation under stable and unstable conditions. J. Strength Cond. Res. 2010, 24, 2723–2730. [Google Scholar] [CrossRef]
- Goodman, C.A.; Pearce, A.J.; Nicholes, C.J.; Gatt, B.M.; Fairweather, I.H. No difference in 1RM strength and muscle activation during the barbell chest press on a stable and unstable surface. J. Strength Cond. Res. 2008, 22, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Koshida, S.; Urabe, Y.; Miyashita, K.; Iwai, K.; Kagimori, A. Muscular outputs during dynamic bench press under stable versus unstable conditions. J. Strength Cond. Res. 2008, 22, 1584–1588. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Muscle force output and electromyographic activity in squats with various unstable surfaces. J. Strength Cond. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef]
- Sannicandro, I.; Cofano, G.; Rosa, A.R. Strength and power analysis in half squat exercise with suspension training tools. J. Phys. Educ. Sport 2015, 15, 433–440. [Google Scholar] [CrossRef]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Power outputs in the concentric phase of resistance exercises performed in the interval mode on stable and unstable surfaces. J. Strength Cond. Res. 2012, 26, 3230–3236. [Google Scholar] [CrossRef]
- Zemkova, E.; Jelen, M.; Radman, I.; Svilar, L.; Hamar, D. L’effetto delle condizioni di sollevamento stabili e instabili sulla forza muscolare e sul tasso di affaticamento durante esercizi di resistenza. Med. Dello Sport 2017, 70, 36–49. [Google Scholar] [CrossRef]
- Kornecki, S.; Kebel, A.; Siemieński, A. Muscular co-operation during joint stabilisation, as reflected by EMG. Eur. J. Appl. Physiol. 2001, 84, 453–461. [Google Scholar] [CrossRef]
- Carpenter, M.; Frank, J.; Silcher, C.; Peysar, G. The influence of postural threat on the control of upright stance. Exp. Brain Res. 2001, 138, 210–218. [Google Scholar] [CrossRef]
- Stone, M.H.; Sanborn, K.; O’Bryant, H.S.; Hartman, M.; Stone, M.E.; Proulx, C.; Ward, B.; Hruby, J. Maximum Strength-Power-Performance Relationships in Collegiate Throwers. J. Strength Cond. Res. 2003, 17, 739. [Google Scholar] [CrossRef]
- Häkkinen, K. Neuromuscular and hormonal adaptations during strength and power training. A review. J. Sports Med. Phys. Fitness 1989, 29, 9–26. [Google Scholar]
- Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sports Exerc. 1993, 25, 1279–1286. [Google Scholar] [CrossRef]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar]
- González Badillo, J.J.; Gorostiaga Ayestarán, E. Fundamentos del Entrenamiento de La Fuerza. Aplicación al Alto Rendimiento Deportivo; INDE: Barcelona, Spain, 1995; ISBN 9788487330384. [Google Scholar]
- Adkin, A.L.; Frank, J.S.; Carpenter, M.G.; Peysar, G.W. Fear of falling modifies anticipatory postural control. Exp. Brain Res. 2002, 143, 160–170. [Google Scholar] [CrossRef]
- Kornecki, S.; Zschorlich, V. The nature of the stabilizing functions of skeletal muscles. J. Biomech. 1994, 27, 215–225. [Google Scholar] [CrossRef]
Reference (A) | Sample | Variables (E) | ||
---|---|---|---|---|
Experience (B) | Size and Sex (C) | Characteristics (D) | ||
Anderson et al. (2004) [13] | Trained in strength, Instability 1 year earlier | 10 (M) | a: 26.2 ± 6.0 years | Strength |
h: 177.3 ± 6.0 cm | ||||
w: 87.3 ± 12.2 kg | ||||
Behm et al. (2002) [79] | Trained | 8 (M) | a: 24.3 ± 6.7 years | Strength |
h:178.1 ± 6.1 cm | ||||
w: 82.3 ± 8.9 kg | ||||
Chulvi-Medrano (2010) [80] | Trained in strength Experience with instability | 31 (M) | a: 24.29 ± 0.48 years | Strength |
h: 167.98 ± 8,11 cm | ||||
w: 79.08 ± 2,37 kg | ||||
Goodman et al. (2008) [81] | Recreational | 13 (10 M, 3 W) | a: 24.1 ± 1.6 years | Strength |
h: 176.7 ± 3.0 cm | ||||
w: 76.0 ± 3.9 kg | ||||
Koshida et al. (2008) [82] | Trained | 20 (M) | a: 21.3 ± 1.5 years | Strength |
h: 167.7 ± 7.7 cm | Power | |||
w: 75.9 ± 17.5 kg | Speed | |||
Saeterbakken & Fimland (2013) [83] | Trained | 15 (M) | a: 23.3 ± 2.7 | Strength |
h: 181 ± 0.09 cm | ||||
w: 80.5 ± 8.5 kg | ||||
Sannicandro et al. (2015) [84] | No previous experience in strength or instability is indicated | 24 (M) | a: 17.8 ± 0.8 years | Strength Power |
h: 179.1 ± 5.6 cm | ||||
w: 73 ± 4.9 kg | ||||
Zemkova (2012) [85] | Trained in strength, no experience in instability | 16 (M) | a: 23.4 ± 1.9 years | Power |
h: 181.5 ± 6.1cm | ||||
w: 75.1 ± 6.1 kg | ||||
Zemkova et al. (2017) [86] | Trained in strength, no experience in instability | 24 (M) | a: 22.1 ± 1.8 years | Power |
h: 184.5 ± 8.3 cm | ||||
w: 79.8 ± 9.4 kg |
Reference (A) | Tasks (F) | Situations (G) | Devices (H) | Volume Training (I) | Intensity Training (J) |
---|---|---|---|---|---|
Anderson et al. (2004) [13] | Bench Press | Stable and unstable device | Swiss ball | 1 set | 75% 1 RM |
2 rps | |||||
2–3 min rest | |||||
Behm et al. (2002) [79] | Leg Extension Plantar Flexors | Stable and unstable device | Swiss ball | 1 set | No external load |
2–3 rps isometric | |||||
3 min rest | |||||
Chulvi-Medrano (2010) [80] | Deadweight | Stable and unstable device | Semi-sphere ball | 1 set | 70% 1 RM |
6 rps | |||||
5 min rest | |||||
Goodman et al. (2008) [81] | Bench Press | Stable and unstable device | Swiss ball | 1 set | 1 RM |
3–6 rps | |||||
3 min rest | |||||
Koshida et al. (2008) [82] | Bench Press | Stable and unstable device | Swiss ball | 1 set | 50% 1 RM |
3 rps | |||||
Saeterbakken & Fimland (2013) [83] | Squat | Stable and unstable device | Semi-sphere ball | 1 set | 20 kg |
Isometrics | |||||
Sannicandro et al. (2015) [84] | Squat | Stable and unstable device | Suspension device | 1 set | No external load |
3 rps | |||||
Zemkova (2012) [85] | Bench Press | Stable and unstable device | Swiss ball | 6 sets | 75% 1 RM |
Squat | Semi-sphere ball | 8 rps | |||
Zemkova et al. (2017) [86] | Bench Press | Stable and unstable device | Swiss ball | 1 set | 75% 1 RM |
Squat | Semi-sphere ball | 25 rps |
Reference (A) | Performance Measures | ||
---|---|---|---|
Strength Results in Newtons (K) | Power Results in Watios (L) | Speed Results in cm/s (M) | |
Anderson et al. (2004) [13] | INS (S) = ↓59.4% MIVC | ||
Behm et al. (2002) [79] | INS (LE-S) = ↓75.4% MVC | ||
INS (PF-S) = ↓20.2% MVC | |||
Chulvi-Medrano (2010) [80] | INS (B) = ↓10.2% MIVC | ||
Goodman et al. (2008) [81] | INS (S) = No Differences MáxS | ||
Koshida et al. (2008) [82] | INS (S) = ↓5.9% MS | INS (S) = ↓9.9% MP | INS (S) = ↓9.1% MV |
Saeterbakken & Fimland (2013) [83] | INS (B) = −19% MS | ||
Sannicandro et al. (2015) [84] | INS (EF-LF-T) = ↓13.8 MS | ||
INS (EF-LF-T) = ↓46.8 MáxS | |||
INS (CF-LF-T) = ↓12.8 MS | |||
INS (CF-LF-T) = ↓12.6 MáxS | |||
INS (EF-RF-T) = ↓11.7 MS | |||
INS (EF-RF-T) = ↓42.9 MáxS | |||
INS (CF-RF-T) = ↓13.2 MS | |||
INS (CF-RF-T) = ↓11.9 MáxS | |||
Zemkova (2012) [85] | INS (BP-S) = ↓10.3% MP | ||
INS (BP-S) = ↓7.3% Pmáx | |||
INS (BP-S) = ↓11.5% CF | |||
INS (SQ-B) = ↓15.7% MP | |||
INS (SQ-B) = ↓17% Pmáx | |||
INS (SQ-B) = ↓15.1% CF | |||
Zemkova et al. (2017) [86] | INS (BP-S) = ↓12.9% MP (1–3 rps) | ||
INS (BP-S) = ↑5.6% MP (22–25 rps) | |||
INS (BP-S) = ↓6.9% MP (25 rps) | |||
INS (BP-S) = ↓13.8% CF (1–3 rps) | |||
INS (BP-S) = ↑13.2% CF (22–25 rps) | |||
INS (BP-S) = ↓4.6% CF (25 rps) | |||
INS (SQ-B) = ↓17.1% MP (1–3 rps) | |||
INS (SQ-B) = ↓21.4% MP (22–25 rps) | |||
INS (SQ-B) = ↓19.3% MP (25 rps) | |||
INS (SQ-B) = ↓16.2% CF (1–3 rps) | |||
INS (SQ-B) = ↓20.6% CF (22–25 rps) | |||
INS (SQ-B) = ↓18% CF (25 rps) |
Reference | Title and Abstract | Introduction | Methods | Results | Other Analysis | Discussion | Other Information | Strobe Points | Study Quality | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |||
Anderson et al. (2004) [13] | + | + | + | - | - | + | + | + | - | - | + | + | - | - | + | + | - | + | - | + | + | - | 13 | FAIR |
Behm et al. (2002) [79] | + | + | + | - | - | + | + | + | - | - | + | + | - | - | + | + | + | + | - | + | + | - | 14 | FAIR |
Chulvi-Medrano (2010) [80] | + | + | + | + | + | + | + | + | - | - | + | + | - | - | + | + | - | + | + | + | + | - | 16 | GOOD |
Goodman et al. (2008) [81] | + | + | + | + | + | + | + | + | - | - | + | + | - | - | + | + | + | + | - | + | + | - | 16 | GOOD |
Koshida et al. (2008) [82] | + | + | + | + | - | + | + | + | - | - | + | + | - | - | + | + | - | + | + | + | + | - | 15 | GOOD |
Saeterbakken & Fimland (2013) [83] | + | + | + | + | - | + | + | + | - | - | + | + | - | - | + | + | - | + | - | + | + | - | 13 | FAIR |
Sannicandro et al. (2015) [84] | + | + | + | - | - | + | + | + | - | - | + | + | - | - | + | + | + | + | - | + | + | + | 15 | GOOD |
Zemkova (2012) [85] | + | + | + | - | - | + | + | + | - | - | + | + | - | - | + | + | - | + | + | + | + | + | 14 | FAIR |
Zemkova et al. (2017) [86] | + | + | + | - | - | + | + | + | - | - | + | + | - | - | + | + | - | + | - | + | + | - | 13 | FAIR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquina, M.; Lorenzo-Calvo, J.; Rivilla-García, J.; García-Aliaga, A.; Refoyo Román, I. Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1026. https://doi.org/10.3390/ijerph18031026
Marquina M, Lorenzo-Calvo J, Rivilla-García J, García-Aliaga A, Refoyo Román I. Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(3):1026. https://doi.org/10.3390/ijerph18031026
Chicago/Turabian StyleMarquina, Moisés, Jorge Lorenzo-Calvo, Jesús Rivilla-García, Abraham García-Aliaga, and Ignacio Refoyo Román. 2021. "Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 3: 1026. https://doi.org/10.3390/ijerph18031026
APA StyleMarquina, M., Lorenzo-Calvo, J., Rivilla-García, J., García-Aliaga, A., & Refoyo Román, I. (2021). Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review. International Journal of Environmental Research and Public Health, 18(3), 1026. https://doi.org/10.3390/ijerph18031026