Social-Emotional Learning Competencies and Problematic Internet Use among Chinese Adolescents: A Structural Equation Modeling Analysis
Abstract
:1. Social-Emotional Learning (SEL) Competencies and PIU
1.1. SEL Competencies
1.2. SEL Competencies in China
1.3. SEL Subfactor: Responsible Decision Making
1.4. SEL Subfactor: Social Awareness
1.5. SEL Subfactor: Relationship Skills
1.6. SEL Subfactor: Self-Management
1.7. SEL Subfactor: Self-Awareness
1.8. Associations between SEL and PIU
2. Demographic Factors and PIU
2.1. Age in PIU
2.2. Gender Difference in PIU
2.3. Influence of Family SES on PIU
2.4. Effect of Left-Behind Status on PIU
3. Theoretical Framework
4. Study Purpose
5. Materials & Methods
5.1. Participants
5.2. Data Collection Procedure
5.3. Measures
5.3.1. Modified Chinese Version of Delaware Social and Emotional Competencies Scale—Student Version (DSECS-S)
5.3.2. Modified Young’s Internet Addiction Test
5.3.3. Demographic Questionnaire
5.3.4. Analytic Plan
6. Results
6.1. Latent Mean Differences of PIU on Demographic Variables
6.2. Associations between SEL Competencies and PIU
7. Discussion
7.1. Association between Demographic Factors and PIU
7.2. Associations between SEL Competencies and PIU
Overall SEL Competencies
7.3. Responsible Decision-Making
7.4. Social Awareness
7.5. Self-Management
7.6. Self-Awareness
7.7. Relationship Skills
8. Limitations and Future Research Directions
9. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, R.L.; Lu, Z.; Liu, J.J.; You, Y.M.; Pan, Z.Q.; Wei, Z.; He, Q.; Wang, Z.Z. Features and predictors of problematic internet use in Chinese college students. Behav. Inf. Technol. 2009, 28, 485–490. [Google Scholar] [CrossRef]
- Cao, H.; Sun, Y.; Wan, Y.; Hao, J.; Tao, F. Problematic Internet use in Chinese adolescents and its relation to psychosomatic symptoms and life satisfaction. BMC Public Health 2011, 11, 802. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, X.; Lu, C.; Wu, J.; Deng, X.; Hong, L. Problematic Internet Use in High School Students in Guangdong Province, China. PLoS ONE 2011, 6, e19660. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.-S.A.; Subrahmanyam, K. Youth Internet use: Risks and opportunities. Curr. Opin. Psychiatry 2009, 22, 351–356. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Wang, Y.; Zhao, L.; Bao, Z.; Wen, F. School Connectedness and Problematic Internet Use in Adolescents: A Moderated Mediation Model of Deviant Peer Affiliation and Self-Control. J. Abnorm. Child Psychol. 2013, 41, 1231–1242. [Google Scholar] [CrossRef]
- Hsieh, Y.-P.; Wei, H.-S.; Hwa, H.-L.; Shen, A.C.-T.; Feng, J.-Y.; Huang, C.-Y. The Effects of Peer Victimization on Children’s Internet Addiction and Psychological Distress: The Moderating Roles of Emotional and Social Intelligence. J. Child Fam. Stud. 2019, 28, 2487–2498. [Google Scholar] [CrossRef]
- Thorsteinsson, E.B.; Davey, L. Adolescents’ compulsive Internet use and depression: A longitudinal study. Open J. Depress. 2014, 3, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.M.; Bouffard, S.M. Social and Emotional Learning in Schools: From Programs to Strategies and commentaries. Soc. Policy Rep. 2012, 26, 1–33. [Google Scholar] [CrossRef]
- Zins, J.E.; Elias, M.J. Social and emotional learning. In Children’s Needs III: Development, Prevention, and Intervention; Bear, G.G., Minke, K.M., Eds.; National Association of School Psychologist: Bethesda, MD, USA, 2006; pp. 1–13. [Google Scholar]
- Collaborative for Academic, Social and Emotional Learning. The 2013 CASEL Guide: Effecitive Social and Emotional Learning Programs-Preschool and Elementary School Edition; CASEL: Chicago, IL, USA, 2013. [Google Scholar]
- Collaborative for Academic, Social, and Emotional Learning (CASEL). Social Emotional Learning (SEL) Competencies; CASEL: Chicago, IL, USA, 2005; Available online: http://www.casel.org/about_sel/SELskills.php (accessed on 10 May 2020).
- Yang, C.; Bear, G.G.; May, H. Multilevel Associations Between School-Wide Social–Emotional Learning Approach and Student Engagement Across Elementary, Middle, and High Schools. Sch. Psychol. Rev. 2018, 47, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Tobler, N.S.; Roona, M.R.; Ochshorn, P.; Marshall, D.G.; Streke, A.V.; Stackpole, K.M. School-Based Adolescent Drug Prevention Programs: 1998 Meta-Analysis. J. Prim. Prev. 2000, 20, 275–336. [Google Scholar] [CrossRef]
- Engelberg, E.; Sjöberg, L. Internet Use, Social Skills, and Adjustment. CyberPsychology Behav. 2004, 7, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, M.T.; Weissberg, R.P.; O’Brien, M.U.; Zins, J.E.; Fredericks, L.; Resnik, H.; Elias, M.J. Enhancing school-based prevention and youth development through coordinated social, emotional, and academic learning. Am. Psychol. 2003, 58, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chan, M.; Ma, T.L. School-wide Social Emotional Learning (SEL) and Bullying Victimization: Moderating Role of School Climate across Elementary, Middle, and High Schools. J. Sch. Psychol. 2020, 82, 49–69. [Google Scholar] [CrossRef]
- Elias, M.J. Social-Emotional and Character Development and Academics as a Dual Focus of Educational Policy. Educ. Policy 2009, 23, 831–846. [Google Scholar] [CrossRef]
- Collaborative for Academic, Social, and Emotional Learning (CASEL). Safe and Sound: An Educational Leader’s Guide to Evidence Based Social and Emotional Learning (SEL) Programs; CASEL: Chicago, IL, USA, 2003. [Google Scholar]
- LaRose, R.; Lin, C.A.; Eastin, M.S. Unregulated Internet Usage: Addiction, Habit, or Deficient Self-Regulation? Media Psychol. 2003, 5, 225–253. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Kaspar, V.; Noh, S. Adolescent Social, Emotional, and School Adjustment in Mainland China. Int. J. Group Tens. 2000, 29, 51–78. [Google Scholar] [CrossRef]
- Low, S.; Smolkowski, K.; Cook, C. What Constitutes High-Quality Implementation of SEL Programs? A Latent Class Analysis of Second Step® Implementation. Prev. Sci. 2016, 17, 981–991. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhang, Y.; Wang, F.; Liu, T.; Xin, T. The Effect of Social-Emotional Competency on Child Development in Western China. Front. Psychol. 2019, 10, 1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, J.; Gao, C.; Niu, G. The effect of internet use on empathy. Adv. Psychol. Sci. 2017, 25, 652–661. [Google Scholar] [CrossRef]
- Pawlikowski, M.; Brand, M. Excessive Internet gaming and decision making: Do excessive World of Warcraft players have problems in decision making under risky conditions? Psychiatry Res. 2011, 188, 428–433. [Google Scholar] [CrossRef]
- Chiou, W.-B.; Wan, C.-S. Using Cognitive Dissonance to Induce Adolescents’ Escaping From the Claw of Online Gaming: The Roles of Personal Responsibility and Justification of Cost. CyberPsychology Behav. 2007, 10, 663–670. [Google Scholar] [CrossRef]
- Ko, C.-H.; Hsiao, S.; Liu, G.-C.; Yen, J.-Y.; Yang, M.-J.; Yen, C.-F. The characteristics of decision making, potential to take risks, and personality of college students with Internet addiction. Psychiatry Res. 2010, 175, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, B.; Sindermann, C.; Sariyska, R.Y.; Luo, R.; Melchers, M.C.; Becker, B.; Cooper, A.J.; Montag, C. The Role of Empathy and Life Satisfaction in Internet and Smartphone Use Disorder. Front. Psychol. 2018, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Melchers, M.; Li, M.; Chen, Y.; Zhang, W.; Montag, C. Low empathy is associated with problematic use of the Internet: Empirical evidence from China and Germany. Asian J. Psychiatry 2015, 17, 56–60. [Google Scholar] [CrossRef]
- Wang, T.; Ge, Y.; Zhang, J.; Liu, J.; Luo, W. The capacity for pain empathy among urban Internet-addicted left-behind children in China: An event-related potential study. Comput. Hum. Behav. 2014, 33, 56–62. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Chen, S.-H.; Gau, S.S.-F. ADHD and autistic traits, family function, parenting style, and social adjustment for Internet addiction among children and adolescents in Taiwan: A longitudinal study. Res. Dev. Disabil. 2015, 39, 20–31. [Google Scholar] [CrossRef]
- Dong, G.; Lu, Q.; Zhou, H.; Zhao, X. Precursor or Sequela: Pathological Disorders in People with Internet Addiction Disorder. PLoS ONE 2011, 6, e14703. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.-H.; Yen, J.-Y.; Chen, S.-H.; Yang, M.-J.; Lin, H.-C.; Yen, C.-F. Proposed diagnostic criteria and the screening and diagnosing tool of Internet addiction in college students. Compr. Psychiatry 2009, 50, 378–384. [Google Scholar] [CrossRef]
- Davis, R. A cognitive-behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Anderson, E.L.; Steen, E.; Stavropoulos, V. Internet use and Problematic Internet Use: A systematic review of longitudinal research trends in adolescence and emergent adulthood. Int. J. Adolesc. Youth 2017, 22, 430–454. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, D.; Newman, J. Parental Behavioral and Psychological Control and Problematic Internet Use among Chinese Adolescents: The Mediating Role of Self-Control. Cyberpsychology Behav. Soc. Netw. 2013, 16, 442–447. [Google Scholar] [CrossRef]
- Yu, J.J.; Kim, H.; Hay, I. Understanding adolescents’ problematic Internet use from a social/cognitive and addiction research framework. Comput. Hum. Behav. 2013, 29, 2682–2689. [Google Scholar] [CrossRef]
- Hong, S.; You, S.; Kim, E.; No, U. A group-based modeling approach to estimating longitudinal trajectories of Korean adolescents’ on-line game time. Pers. Individ. Differ. 2014, 59, 9–15. [Google Scholar] [CrossRef]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological Video Game Use Among Youths: A Two-Year Longitudinal Study. Pediatrics 2011, 127, e319–e329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydm, B.; San, S.V. Internet addiction among adolescents: The role of self-esteem. Procedia Soc. Behav. Sci. 2011, 15, 3500–3505. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.; Phillips, J.G.; Saling, L.L. Potential determinants of heavier internet usage. Int. J. Hum. Comput. Stud. 2000, 53, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.-H.; Yen, J.-Y.; Yen, C.-F.; Lin, H.-C.; Yang, M.-J. Factors Predictive for Incidence and Remission of Internet Addiction in Young Adolescents: A Prospective Study. CyberPsychology Behav. 2007, 10, 545–551. [Google Scholar] [CrossRef]
- Mei, S.; Yau, Y.H.; Chai, J.; Guo, J.; Potenza, M.N. Problematic Internet use, well-being, self-esteem and self-control: Data from a high-school survey in China. Addict. Behav. 2016, 61, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wu, A.M.S.; Lau, J.T.F. The health belief model and number of peers with internet addiction as inter-related factors of Internet addiction among secondary school students in Hong Kong. BMC Public Health 2016, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chong, W.H.; Chye, S.; Huan, V.S.; Ang, R.P. Generalized problematic Internet use and regulation of social emotional competence: The mediating role of maladaptive cognitions arising from academic expectation stress on adolescents. Comput. Hum. Behav. 2014, 38, 151–158. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Ko, C.-H.; Yen, C.-F.; Chen, S.-H.; Chung, W.-L.; Chen, C.-C. Psychiatric symptoms in adolescents with Internet addiction: Comparison with substance use. Psychiatry Clin. Neurosci. 2008, 62, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Coffey, C.; Carlin, J.B.; Lynskey, M.; Li, N.; Patton, G.C. Adolescent precursors of cannabis dependence: Findings from the Victorian Adolescent Health Cohort Study. Br. J. Psychiatry 2003, 182, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Lenhart, A.; Purcell, K.; Smith, A.; Zickuhr, K. Social Media and Mobile Internet Use among Teens and Young Adults. 2010. Available online: http://www.pewinternet.org/~/media//Files/Reports/2010/PIP_Social_Media_and_Young_Adults_Report.pdf (accessed on 2 April 2020).
- Liu, Y.; Lu, Z. The Chinese high school student’s stress in the school and academic achievement. Educ. Psychol. 2011, 31, 27–35. [Google Scholar] [CrossRef]
- Davey, G.; de Lian, C.; Higgins, L. The university entrance examination system in China. J. Furth. High. Educ. 2007, 31, 385–396. [Google Scholar] [CrossRef]
- Yu, L.; Shek, D.T.L. Internet Addiction in Hong Kong Adolescents: A Three-Year Longitudinal Study. J. Pediatr. Adolesc. Gynecol. 2013, 26, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.T.; Peng, Z.-W.; Mai, J.-C.; Jing, J. Factors Associated with Internet Addiction among Adolescents. CyberPsychology Behav. 2009, 12, 551–555. [Google Scholar] [CrossRef]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet Addiction: A Systematic Review of Epidemiological Research for the Last Decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Lai, F.T.; Kwan, J.L. Socioeconomic influence on adolescent problematic Internet use through school-related psychosocial factors and pattern of Internet use. Comput. Hum. Behav. 2017, 68, 121–136. [Google Scholar] [CrossRef]
- Shek, D.T.; Yu, L. Adolescent Internet Addiction in Hong Kong: Prevalence, Change, and Correlates. J. Pediatr. Adolesc. Gynecol. 2016, 29, S22–S30. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.; Lee, P.S.N. Impact of Internet Literacy, Internet Addiction Symptoms, and Internet Activities on Academic Performance. Soc. Sci. Comput. Rev. 2011, 30, 403–418. [Google Scholar] [CrossRef]
- Ge, Y.; Se, J.; Zhang, J. Research on Relationship among Internet-Addiction, Personality Traits and Mental Health of Urban Left-Behind Children. Glob. J. Health Sci. 2014, 7, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Lin, D. Child Development in Rural China: Children Left Behind by Their Migrant Parents and Children of Nonmigrant Families. Child Dev. 2012, 83, 120–136. [Google Scholar] [CrossRef]
- Ministry of Civil Affairs of the People’s Republic of China. Rural Left-Behind Children Data in 2018. 2018. Available online: http://www.mca.gov.cn/article/gk/tjtb/201809/20180900010882.shtml (accessed on 10 May 2020).
- UNICEF. Country Office Annual Report 2018 China. UNICEF. 2018. Available online: https://www.unicef.org/about/annualreport/files/China_2018_COAR.pdf (accessed on 25 March 2020).
- Ren, Y.; Yang, J.; Liu, L. Social anxiety and internet addiction among rural left-behind children: The mediating ef-fect of loneliness. Iran. J. Public Health 2017, 46, 1659–1668. [Google Scholar]
- Guo, J.; Chen, L.; Wang, X.; Liu, Y.; Chui, C.H.K.; He, H.; Qu, Z.; Tian, D. The Relationship between Internet Addiction and Depression Among Migrant Children and Left-Behind Children in China. Cyberpsychology Behav. Soc. Netw. 2012, 15, 585–590. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. The Average Annual Wage of Persons Employed in Urban Non-private Units in 2019. 2020. Available online: http://www.stats.gov.cn/english/PressRelease/202005/t20200518_1746112.html (accessed on 13 March 2021).
- Bear, G.; Yang, C.; Harris, A.; Mantz, L.; Hearn, S.; Boyer, D. Technical Manual for the Delaware School Survey: Scales of School Climate; Bullying Victimization; Student Engagement; Positive, Punitive and Social Emotional Learning Techniques; and Social and Emotional Competencies; Center for Disabilities Studies: Newark, DE, USA, 2019. [Google Scholar]
- Lai, M.C.-M.; Mak, K.-K.; Watanabe, H.; Ang, R.P.; Pang, J.S.; Ho, M.R.C.M. Psychometric Properties of the Internet Addiction Test in Chinese Adolescents. J. Pediatr. Psychol. 2013, 38, 794–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed. Los Angeles, CA, USA. 1998–2015. Available online: http://www.statmodel.com/download/usersguide/Mplus%20user%20guide%20Ver_7_r3_web.pdf (accessed on 3 February 2021).
- Wang, C.-W.; Ho, R.T.; Chan, C.L.; Tse, S. Exploring personality characteristics of Chinese adolescents with internet-related addictive behaviors: Trait differences for gaming addiction and social networking addiction. Addict. Behav. 2015, 42, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Yen, J.-Y.; Chen, C.-C.; Chen, S.-H.; Yen, C.-F. Gender Differences and Related Factors Affecting Online Gaming Addiction among Taiwanese Adolescents. J. Nerv. Ment. Dis. 2005, 193, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Lachmann, B.; Sariyska, R.; Kannen, C.; Cooper, A.; Montag, C. Life satisfaction and problematic Internet use: Evidence for gender specific effects. Psychiatry Res. 2016, 238, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Else-Quest, N.M.; Hyde, J.S.; Goldsmith, H.H.; van Hulle, C.A. Gender differences in temperament: A meta-analysis. Psychol. Bull. 2006, 132, 33–72. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhang, W.; Li, X.; Zhen, S.; Wang, Y. Stressful life events and problematic Internet use by adolescent females and males: A mediated moderation model. Comput. Hum. Behav. 2010, 26, 1199–1207. [Google Scholar] [CrossRef]
- Mikami, A.Y.; Szwedo, D.E.; Allen, J.P.; Evans, M.A.; Hare, A.L. Adolescent peer relationships and behavior problems predict young adults’ communication on social networking websites. Dev. Psychol. 2010, 46, 46–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.-T.; Eccles, J.S. Social Support Matters: Longitudinal Effects of Social Support on Three Dimensions of School Engagement from Middle to High School. Child Dev. 2012, 83, 877–895. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Bechara, A.; Cen, S.; Grenard, J.L.; Stacy, A.W.; Gallaher, P.; Wei, Y.; Jia, Y.; Johnson, C.A. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th-grade Chinese adolescent smokers. Nicotine Tob. Res. 2008, 10, 1085–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Almagor, R. Social responsibility on the Internet: Addressing the challenge of cyberbullying. Aggress. Violent Behav. 2018, 39, 42–52. [Google Scholar] [CrossRef]
- Sogin, S.R.; Pallak, M.S. Bad decisions, responsibility, and attitude change: Effects of volition, foreseeability, and locus of causality of negative consequences. J. Pers. Soc. Psychol. 1976, 33, 300–306. [Google Scholar] [CrossRef]
- Duckworth, A.L. The significance of self-control. Proc. Natl. Acad. Sci. USA 2011, 108, 2639–2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luthar, S.S. Resilience in development: A synthesis of research across five decades. In Developmental Psychopathology: Risk, Disorder, and Adaptation, 2nd ed.; Cicchetti, D., Cohen, D.J., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 739–795. [Google Scholar]
- Aboujaoude, E.; Koran, L.M.; Gamel, N.; Large, M.D.; Serpe, R.T. Potential Markers for Problematic Internet Use: A Telephone Survey of 2,513 Adults. CNS Spectrums 2006, 11, 750–755. [Google Scholar] [CrossRef]
- Özdemir, Y.; Kuzucu, Y.; Ak, Ş. Depression, loneliness and Internet addiction: How important is low self-control? Comput. Hum. Behav. 2014, 34, 284–290. [Google Scholar] [CrossRef]
- Fioravanti, G.; Dèttore, D.; Casale, S. Adolescent Internet Addiction: Testing the Association between Self-Esteem, the Perception of Internet Attributes, and Preference for Online Social Interactions. Cyberpsychology, Behav. Soc. Netw. 2012, 15, 318–323. [Google Scholar] [CrossRef]
- Ryan, R.M.; Rigby, C.S.; Przybylski, A.K. The Motivational Pull of Video Games: A Self-Determination Theory Approach. Motiv. Emot. 2006, 30, 344–360. [Google Scholar] [CrossRef]
- Yao, M.Z.; He, J.; Ko, D.M.; Pang, K. The Influence of Personality, Parental Behaviors, and Self-Esteem on Internet Addiction: A Study of Chinese College Students. Cyberpsychology Behav. Soc. Netw. 2014, 17, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Morahan-Martin, J.; Schumacher, P. Loneliness and social uses of the Internet. Comput. Hum. Behav. 2003, 19, 659–671. [Google Scholar] [CrossRef]
- Van Rooij, A.J.; Meerkerk, G.-J.; Schoenmakers, T.M.; Griffiths, M.; van de Mheen, D. Video game addiction and social responsibility. Addict. Res. Theory 2010, 18, 489–493. [Google Scholar] [CrossRef]
- Leung, L. Stressful Life Events, Motives for Internet Use, and Social Support among Digital Kids. CyberPsychology Behav. 2007, 10, 204–214. [Google Scholar] [CrossRef]
- Shaw, L.H.; Gant, L.M. In Defense of the Internet: The Relationship between Internet Communication and Depression, Loneliness, Self-Esteem, and Perceived Social Support. CyberPsychology Behav. 2002, 5, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.-S.; Jiang, W.; Vance, A. Longer Term Effect of Randomized, Controlled Group Cognitive Behavioural Therapy for Internet Addiction in Adolescent Students in Shanghai. Aust. N. Z. J. Psychiatry 2010, 44, 129–134. [Google Scholar] [CrossRef]
Characteristics | N | % |
---|---|---|
11th Grade | 1141 | 100% |
Sex | ||
Male | 545 | 47.8% |
Female | 583 | 51.1% |
Ethnicity in China | ||
Han ethnicity | 1117 | 97.9% |
Ethnic minorities | 15 | 1.3% |
Left-behind Status | ||
Both parents working outside | 226 | 19.8% |
Only father working outside | 188 | 16.5% |
Only mother working outside | 30 | 2.6% |
Not left-behind | 685 | 60% |
Family monthly income | ||
Lower than ¥3000 | 291 | 25.5% |
¥3000–10,000 | 723 | 63.4% |
Greater than ¥10,000 | 114 | 10% |
Parents’ educational degrees | ||
Father’s educational degree | ||
Elementary school degree and below | 195 | 17.1% |
Junior high school degree | 532 | 46.6% |
High school degree and special degree | 298 | 26.1% |
Undergraduate degree | 1000 | 8.8% |
Graduate degree and above | 4 | 0.4% |
Mother’s educational degree | ||
Primary school degree and below | 270 | 23.7% |
Junior middle school degree | 507 | 44.4% |
High school degree and special degree | 282 | 24.7% |
Undergraduate degree | 65 | 5.7% |
Graduate degree and above | 1 | 0.1% |
Latent Mean and Differences | Observed Means | ||||
---|---|---|---|---|---|
MV1.-MV2 | V1 | V2 | |||
Estimates | d | d | M (SD) | M (SD) | |
(95% CIs) | |||||
Problematic Internet Use (PIU) | |||||
Male (V1)−Female (V2) | 0.15 ** | 0.15 | [0.03, 0.31] | 2.36 (1.07) | 2.24 (0.98) |
Low income (V1)−Middle income (V2) | −0.10 | −0.10 | [−0.26, 0.04] | 2.22 (0.97) | 2.32 (1.02) |
Middle income (V1)−High income (V2) | 0.04 | 0.04 | [−0.21, 0.24] | 2.32 (1.02) | 2.27 (1.15) |
Low income (V1)−High income (V2) | −0.06 | −0.06 | [−0.35, 0.16] | 2.22 (0.97) | 2.27 (1.15) |
Left-behind (V1)−Not left-behind (V2) | 0.05 | 0.05 | [−0.08, 0.17] | 2.32 (1.05) | 2.26 (1.01) |
Time Management & Performance | |||||
Male (V1)−Female (V2) | 0.27 ** | 0.29 | [0.18, 0.37] | 2.60 (1.18) | 2.56 (1.16) |
Withdrawal & Social Problems | |||||
Male (V1)−Female (V2) | 0.02 | 0.02 | [−0.13, 0.13] | 2.10 (1.07) | 1.84 (0.87) |
Reality Substitute | |||||
Male (V1)−Female (V2) | 0.11 | 0.10 | [−0.04, 0.21] | 2.36 (1.25) | 2.26 (1.19) |
Outcome | Predictor | PIU Coefficients | |
---|---|---|---|
β (SE) | B (SE) | ||
Problematic Internet Use (PIU) | Sex (0 as male) | −0.10 (0.03) ** | −0.18 (0.06) ** |
Family Income | 0.01 (0.03) | 0.02 (0.05) | |
Left-behind Status | −0.02 (0.03) | −0.02 (0.02) | |
Father Education Level | −0.01 (0.04) | −0.02 (0.04) | |
Mother Education Level | 0.01 (0.04) | 0.01 (0.04) | |
SEL Competencies | −0.34 (0.04) *** | −0.81 (0.09) *** | |
Responsible Decision-making | −0.34 (0.04) *** | −0.73 (0.09) *** | |
Social Awareness | −0.17 (0.04) *** | −0.33 (0.07) *** | |
Self-management | −0.36 (0.04) *** | −0.59 (0.06) *** | |
Relationship Skills | −0.28 (0.04) *** | −0.47 (0.06) *** | |
Self-awareness | −0.32 (0.04) *** | −0.62 (0.07) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Yang, C.; Nie, Q. Social-Emotional Learning Competencies and Problematic Internet Use among Chinese Adolescents: A Structural Equation Modeling Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3091. https://doi.org/10.3390/ijerph18063091
Chen C, Yang C, Nie Q. Social-Emotional Learning Competencies and Problematic Internet Use among Chinese Adolescents: A Structural Equation Modeling Analysis. International Journal of Environmental Research and Public Health. 2021; 18(6):3091. https://doi.org/10.3390/ijerph18063091
Chicago/Turabian StyleChen, Chun, Chunyan Yang, and Qian Nie. 2021. "Social-Emotional Learning Competencies and Problematic Internet Use among Chinese Adolescents: A Structural Equation Modeling Analysis" International Journal of Environmental Research and Public Health 18, no. 6: 3091. https://doi.org/10.3390/ijerph18063091
APA StyleChen, C., Yang, C., & Nie, Q. (2021). Social-Emotional Learning Competencies and Problematic Internet Use among Chinese Adolescents: A Structural Equation Modeling Analysis. International Journal of Environmental Research and Public Health, 18(6), 3091. https://doi.org/10.3390/ijerph18063091