The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval and Preprocessing
- All hyperlinks (“http://url”), hashtags (“# hashtag”), emojis, and username links (“@username”) that appeared in the tweets were removed;
- Punctuation marks and special characters were removed;
- Words were converted to lowercase;
- Words that could add noise to the text and that did not add content to the tweets (e.g., “a”, “and”, and “to”) were removed, using the stopword list that MATLAB’s text analytics toolbox (version 1.4) has by default;
- The words were standardized through a lemmatization process, by which a morphological analysis was carried out to reduce them to their roots. This process uses a predefined dictionary. To improve the process, part-of-speech details were added to indicate whether the word was a noun, verb, adjective, etc.
- Words with under 2 or over 20 characters and whose frequency in the corpus of documents were less than 2 were also deleted.
2.2. Quantitative Analysis
2.3. Qualitative Analysis
3. Results
3.1. Quantitative Results
3.1.1. Description of the Words Published in the Tweets (N-Gram) and Their Dynamics throughout the Study Period
3.1.2. Network of Mentioned Entities
3.1.3. Main Topics Found in the LDA Model
3.2. Qualitative Results
3.2.1. Social Impact and Significance
3.2.2. Sport Impact
3.2.3. Economic Impact
3.2.4. Health Impact
4. Discussion
4.1. Principal Findings
4.2. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Khanna, R.C.; Cicinelli, M.V.; Gilbert, S.S.; Honavar, S.G.; Murthy, G.V.S. COVID-19 Pandemic: Lessons Learned and Future Directions. Indian J. Ophthalmol. 2020, 68, 703–710. [Google Scholar] [CrossRef]
- Chopra, V.; Toner, E.; Waldhorn, R.; Washer, L.H.S.U.S. Hospitals Prepare for Coronavirus Disease 2019 (COVID-19)? Ann. Intern. Med. 2020, 172, 621–622. [Google Scholar] [CrossRef] [Green Version]
- Washer, P. Representations of SARS in the British Newspapers. Soc. Sci. Med. 2004, 59, 2561–2571. [Google Scholar] [CrossRef]
- Dijck, J.; Poell, T. Understanding Social Media Logic. Media Commun. 2013, 1, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.; Eysenbach, G. Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak. PLoS ONE 2010, 5, e14118. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Seo, D.-W.; An, J.; Kwak, H.; Kim, S.-H.; Gwack, J.; Jo, M.-W. High Correlation of Middle East Respiratory Syndrome Spread with Google Search and Twitter Trends in Korea. Sci. Rep. 2016, 6, 32920. [Google Scholar] [CrossRef] [PubMed]
- Fung, I.C.-H.; Duke, C.H.; Finch, K.C.; Snook, K.R.; Tseng, P.-L.; Hernandez, A.C.; Gambhir, M.; Fu, K.-W.; Tse, Z.T.H. Ebola Virus Disease and Social Media: A Systematic Review. Am. J. Infect. Control. 2016, 44, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Barata, G.; Shores, K.; Alperin, J.P. Local Chatter or International Buzz? Language Differences on Posts about Zika Research on Twitter and Facebook. PLoS ONE 2018, 13, e0190482. [Google Scholar] [CrossRef] [Green Version]
- Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hamdi, M.; Shah, Z. Top Concerns of Tweeters during the COVID-19 Pandemic: Infoveillance Study. J. Med. Internet Res. 2020, 22, e19016. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Sotomayor, M.R.; Gomez-Moreno, C.; Soto-Perez-de-Celis, E. Coronavirus, Ageism, and Twitter: An Evaluation of Tweets about Older Adults and COVID-19. J. Am. Geriatr Soc. 2020. [Google Scholar] [CrossRef]
- Kouzy, R.; Abi Jaoude, J.; Kraitem, A.; El Alam, M.B.; Karam, B.; Adib, E.; Zarka, J.; Traboulsi, C.; Akl, E.W.; Baddour, K. Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter. Cureus 2020, 12, e7255. [Google Scholar] [CrossRef] [Green Version]
- Park, H.W.; Park, S.; Chong, M. Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea. J. Med. Internet Res. 2020, 22, e18897. [Google Scholar] [CrossRef] [PubMed]
- Pulido, C.M.; Villarejo-Carballido, B.; Redondo-Sama, G.; Gomez, A. COVID-19 Infodemic: More Retweets for Science-Based Information on Coronavirus than for False Information. Int. Sociol 2020. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, R.; Mehta, V.; Valkunde, T.; Moustakas, E. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. J. Med Internet Res. 2020, 22, e22624. [Google Scholar] [CrossRef]
- Ahmed, W.; Vidal-Alaball, J.; Downing, J.; López Seguí, F. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. J. Med. Internet Res. 2020, 22, e19458. [Google Scholar] [CrossRef]
- Sinnenberg, L.; Buttenheim, A.M.; Padrez, K.; Mancheno, C.; Ungar, L.; Merchant, R.M. Twitter as a Tool for Health Research: A Systematic Review. Am. J. Public Health 2017, 107, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.C.; McCullough, M.; Meng, H.; Paul, D.; Li, D.; Kath, S.; Loomis, G.; Nsoesie, E.O.; Wen, M.; Smith, K.R. Geotagged US Tweets as Predictors of County-Level Health Outcomes, 2015–2016. Am. J. Public Health 2017, 107, 1776–1782. [Google Scholar] [CrossRef]
- Thelwall, M.; Buckley, K.; Paltoglou, G. Sentiment in Twitter Events. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Simon, T.; Goldberg, A.; Adini, B. Socializing in Emergencies—A Review of the Use of Social Media in Emergency Situations. Int. J. Inf. Manag. 2015, 35, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Rajput, N.K.; Grover, B.A.; Rathi, V.K. Word Frequency and Sentiment Analysis of Twitter Messages during Coronavirus Pandemic. arXiv 2020, arXiv:2004.03925 [cs]. [Google Scholar]
- Vieweg, S.; Hughes, A.L.; Starbird, K.; Palen, L. Microblogging during Two Natural Hazards Events: What Twitter May Contribute to Situational Awareness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10 April 2010; Association for Computing Machinery: New York, NY, USA; pp. 1079–1088. [Google Scholar]
- Palen, L.; Liu, S.B. Citizen Communications in Crisis: Anticipating a Future of ICT-Supported Public Participation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 29 April 2007; Association for Computing Machinery: San Jose, CA, USA; pp. 727–736. [Google Scholar]
- Boyle, R. Power Play: Sport, the Media and Popular Culture: Sport, the Media and Popular Culture; Edinburgh University Press: Edinburgh, UK, 2009. [Google Scholar]
- Mirer, M.; Harker, J. Will the Crowd Go Wild?: Reimagining the Newspaper Sports Section for Digital Subscribers. J. Pract. 2019, 15, 63–79. [Google Scholar] [CrossRef]
- Brody, M.K. Institutionalized Sport as Quasi-Religion: Preliminary Considerations. J. Sport Soc. Issues 1979, 3, 17–27. [Google Scholar] [CrossRef]
- Elias, N.; Dunning, E. Quest for Excitement: Sport and Leisure in the Civilising Process; University College Dublin Press: Dublin, Ireland, 2008. [Google Scholar]
- Giulianotti, R. Football: A Sociology of the Global Game; Polity Press: Cambridge, UK, 1999; ISBN 978-0-7456-1769-5. [Google Scholar]
- Smart, B. The Sport Star: Modern Sport and the Cultural Economy of Sporting Celebrity; SAGE: London, UK, 2005; ISBN 978-0-7619-4351-8. [Google Scholar]
- Haynes, R. Sport Coverage. Int. Encycl. J. Stud. 2019, 1–9. [Google Scholar] [CrossRef]
- Tinati, R.; Halford, S.; Carr, L.; Pope, C. Big Data: Methodological Challenges and Approaches for Sociological Analysis. Sociology 2014, 48, 663–681. [Google Scholar] [CrossRef] [Green Version]
- Blok, A.; Pedersen, M.A. Complementary Social Science? Quali-Quantitative Experiments in a Big Data World. Big Data Soc. 2014, 1. [Google Scholar] [CrossRef]
- Mayring, P. Qualitative Content Analysis. Forum Qual. Soz. Forum Qual. Soc. Res. 2000, 1, 105–114. [Google Scholar]
- World Health Organization Coronavirus Press Conference 11 February. Available online: https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-full-press-conference-11feb2020-final.pdf?sfvrsn=e2019136_2 (accessed on 19 May 2020).
- Pobiruchin, M.; Zowalla, R.; Wiesner, M. Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19–Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study. J. Med Internet Res. 2020, 22, e19629. [Google Scholar] [CrossRef]
- Jianqiang, Z.; Xiaolin, G. Comparison Research on Text Pre-Processing Methods on Twitter Sentiment Analysis. IEEE Access 2017, 5, 2870–2879. [Google Scholar] [CrossRef]
- Williams, M.L.; Burnap, P.; Sloan, L. Towards an Ethical Framework for Publishing Twitter Data in Social Research: Taking into Account Users’ Views, Online Context and Algorithmic Estimation. Sociology 2017, 51, 1149–1168. [Google Scholar] [CrossRef] [Green Version]
- Coronavirus Disease (COVID-19)—World Health Organization. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 7 May 2020).
- Borodin, A.; Roberts, G.O.; Rosenthal, J.S.; Tsaparas, P. Link Analysis Ranking: Algorithms, Theory, and Experiments. ACM Trans. Internet Technol. 2005, 5, 231–297. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Büschken, J.; Allenby, G.M. Sentence-Based Text Analysis for Customer Reviews. Mark. Sci. 2016, 35, 953–975. [Google Scholar] [CrossRef] [Green Version]
- Mimno, D.; Wallach, H.M.; Talley, E.; Leenders, M.; McCallum, A. Optimizing Semantic Coherence in Topic Models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27 July 2011; Association for Computational Linguistics: Edinburgh, UK; pp. 262–272. [Google Scholar]
- Griffiths, T.L.; Steyvers, M. Finding Scientific Topics. Proc. Natl. Acad. Sci. USA 2004, 101, 5228–5235. [Google Scholar] [CrossRef] [Green Version]
- Latour, B.; Jensen, P.; Venturini, T.; Grauwin, S.; Boullier, D. ‘The Whole Is Always Smaller than Its Parts’—A Digital Test of Gabriel Tardes’ Monads. Br. J. Sociol. 2012, 63, 590–615. [Google Scholar] [CrossRef]
- Vaismoradi, M.; Snelgrove, S. Theme in Qualitative Content Analysis and Thematic Analysis. In Proceedings of the Forum Qualitative Sozialforschung/Forum: Qualitative Social Research; Freie Universität Berlin: Berlin, Germany, 2019; Volume 20. [Google Scholar]
- Hsieh, H.-F.; Shannon, S.E. Three Approaches to Qualitative Content Analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An. Introduction to Its Methodology; SAGE Publications: Thousand Oaks, CA, USA, 2018; ISBN 978-1-5063-9567-8. [Google Scholar]
- Singh, L.; Bansal, S.; Bode, L.; Budak, C.; Chi, G.; Kawintiranon, K.; Padden, C.; Vanarsdall, R.; Vraga, E.; Wang, Y. A First Look at COVID-19 Information and Misinformation Sharing on Twitter. arXiv 2020, arXiv:2003.13907. [Google Scholar]
- Boccia, S.; Cascini, F.; McKee, M.; Ricciardi, W. How the Italian NHS Is Fighting Against the COVID-19 Emergency. Front. Public Health 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Gallegos, N.; Romero-García, L.E.; Martínez-González, E.G.; García-Sánchez, E.I.; Aguilar-Ávila, J. Dataset on Dynamics of Coronavirus on Twitter. Data Brief. 2020, 105684. [Google Scholar] [CrossRef]
- Shermak, J.L. Scoring Live Tweets on the Beat. Digit. J. 2018, 6, 118–136. [Google Scholar] [CrossRef]
- Porat, T.; Garaizar, P.; Ferrero, M.; Jones, H.; Ashworth, M.; Vadillo, M.A. Content and Source Analysis of Popular Tweets Following a Recent Case of Diphtheria in Spain. Eur J. Public Health 2019, 29, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Engesser, S.; Humprecht, E. Frequency or Skillfulness. J. Stud. 2015, 16, 513–529. [Google Scholar] [CrossRef]
- Kolata, G. Flu: The Story Of The Great Influenza Pandemic of 1918 and the Search for the Virus That Caused It; Simon and Schuster: New York, NY, USA, 2001; ISBN 978-0-7432-0398-2. [Google Scholar]
- Chen, E.; Lerman, K.; Ferrara, E. Tracking Social Media Discourse About the COVID-19 Pandemic: Development of a Public Coronavirus Twitter Data Set. JMIR Public Health Surveill 2020, 6, e19273. [Google Scholar] [CrossRef]
- Feng, S.; Shen, C.; Xia, N.; Song, W.; Fan, M.; Cowling, B.J. Rational Use of Face Masks in the COVID-19 Pandemic. Lancet Respir. Med. 2020, 8, 434–436. [Google Scholar] [CrossRef]
- Jain, V.K.; Kumar, S. An Effective Approach to Track Levels of Influenza-A (H1N1) Pandemic in India Using Twitter. Procedia Comput. Sci. 2015, 70, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Signorini, A.; Segre, A.M.; Polgreen, P.M. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Murthy, D.; Longwell, S.A. Twitter and Disasters. Inf. Commun. Soc. 2013, 16, 837–855. [Google Scholar] [CrossRef]
- Lopez-Villegas, A.; Catalan-Matamoros, D. The Potential of Specialized Media in Public Health: Analysis of Health-Related Content in Sports Newspapers. Int. J. Environ. Res. Public Health 2019, 16, 1202. [Google Scholar] [CrossRef] [Green Version]
- Dunning, E.; Malcolm, D.; Waddington, I. Sport Histories: Figurational Studies in the Development of Modern Sports; Routledge: London, UK, 2004; ISBN 978-1-134-44748-0. [Google Scholar]
- Parnell, D.; Bond, A.J.; Widdop, P.; Cockayne, D. Football Worlds: Business and Networks during COVID-19. Soccer Soc. 2020, 1–8. [Google Scholar] [CrossRef]
- Coakley, J. Socialization and Sport. In The Blackwell Encyclopedia of Sociology; Ritzer, G., Ed.; Blackwell Publishing: Oxford, UK, 2015; ISBN 978-1-4051-6551-8. [Google Scholar]
- Delaney, T. The functionalist perspective on sport. In Routledge Handbook of the Sociology of Sport; Routledge: London, UK, 2015; pp. 42–52. [Google Scholar]
- Evans, A.B.; Blackwell, J.; Dolan, P.; Fahlén, J.; Hoekman, R.; Lenneis, V.; McNarry, G.; Smith, M.; Wilcock, L. Sport in the Face of the COVID-19 Pandemic: Towards an Agenda for Research in the Sociology of Sport; Taylor & Francis: London, UK, 2020. [Google Scholar]
- Ehrlich, J.A.; Ghimire, S.; Khraiche, M.; Raza, M.F. COVID-19 Countermeasures, Sporting Events, and the Financial Impacts to the North American Leagues. Manag. Financ. 2020. [Google Scholar] [CrossRef]
- Futterman, M.; Draper, K.; Belson, K.; Blinder, A. The Financial Blow of the Coronavirus on Sports. The New York Times. 14 March 2020. Available online: https://www.nytimes.com/2020/03/14/sports/sports-coronavirus-impact.html(accessed on 18 March 2021).
- Bas, D.; Martin, M.; Pollack, C.; Venne, R. The Impact of COVID-19 on Sport, Physical Activity and Well-Being and Its Effects on Social Development|Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-73-the-impact-of-covid-19-on-sport-physical-activity-and-well-being-and-its-effects-on-social-development/ (accessed on 25 September 2020).
- EOC EOC EU Office Coordinates a Multi-Stakeholder Covid-19 Position Paper Asking the EU to Support Sport Organisations|EOC EU Office. Available online: https://euoffice.eurolympic.org/blog/eoc-eu-office-coordinates-multi-stakeholder-covid-19-position-paper-asking-eu-support-sport (accessed on 25 September 2020).
- EU2020HR The Impact of COVID-19 on the Sport Sector Is Much Broader than Just Cancelling Sport Events—EU 2020 HR. Available online: https://eu2020.hr/Home/OneNews?id=251&utm_source=DSMS&utm_medium=email&utm_campaign=Video+conference+of+sport+ministers,+21/04/2020&utm_term=952.22757.42570.0.22757&utm_content=Direct+Meetings (accessed on 25 September 2020).
- Clarkson, B.G.; Culvin, A.; Pope, S.; Parry, K.D. Covid-19: Reflections on Threat and Uncertainty for the Future of Elite Women’s Football in England. Manag. Sport Leis. 2020, 1–12. [Google Scholar] [CrossRef]
- Sparkes, A.C.; Pérez-Samaniego, V.; Smith, B. Social Comparison Processes, Narrative Mapping and Their Shaping of the Cancer Experience: A Case Study of an Elite Athlete. Health 2012, 16, 467–488. [Google Scholar] [CrossRef] [PubMed]
- De Coninck, D.; d’Haenens, L.; Matthijs, K. Perceived Vulnerability to Disease and Attitudes towards Public Health Measures: COVID-19 in Flanders, Belgium. Personal. Individ. Differ. 2020, 166, 110220. [Google Scholar] [CrossRef] [PubMed]
- La Torre, G.; Lia, L.; Dorelli, B.; Marte, M.; Chiappetta, M.; Faticoni, A.; Lucaccini Paoli, L.; Grassucci, D.; Gelardini, M.; Ardizzone, C. How Much Do Young Italians Know About COVID-19 and What Are Their Attitudes Toward SARS-CoV-2? Results of a Cross-Sectional Study. Disaster Med. Public Health Prep. 2020, 1–7. [Google Scholar] [CrossRef]
- López-Bueno, R.; Calatayud, J.; Andersen, L.L.; Balsalobre-Fernández, C.; Casaña, J.; Casajús, J.A.; Smith, L.; López-Sánchez, G.F. Immediate Impact of the COVID-19 Confinement on Physical Activity Levels in Spanish Adults. Sustainability 2020, 12, 5708. [Google Scholar] [CrossRef]
- Maugeri, G.; Castrogiovanni, P.; Battaglia, G.; Pippi, R.; D’Agata, V.; Palma, A.; Di Rosa, M.; Musumeci, G. The Impact of Physical Activity on Psychological Health during Covid-19 Pandemic in Italy. Heliyon 2020, 6, e04315. [Google Scholar] [CrossRef]
- di Fronso, S.; Costa, S.; Montesano, C.; Gruttola, F.D.; Ciofi, E.G.; Morgilli, L.; Robazza, C.; Bertollo, M. The Effects of COVID-19 Pandemic on Perceived Stress and Psychobiosocial States in Italian Athletes. Int. J. Sport Exerc. Psychol. 2020, 0, 1–13. [Google Scholar] [CrossRef]
- Takhteyev, Y.; Gruzd, A.; Wellman, B. Geography of Twitter Networks. Soc. Netw. 2012, 34, 73–81. [Google Scholar] [CrossRef]
Top Words | Number of Topics | ||||
---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | |
10 | –51.645 | –51.580 | –51.137 | –52.367 | –54.028 |
Uni-Gram | Freq. | Bi-Gram | Freq. | Tri-Gram | Freq. |
---|---|---|---|---|---|
coronavirus | 57,482 | premier league | 5573 | test positive coronavirus | 1675 |
sport | 32,232 | due coronavirus | 4428 | behind close door | 1637 |
league | 10,346 | coronavirus pandemic | 3598 | bbc sport coronavirus | 1185 |
covid-19 | 9552 | amid coronavirus | 3079 | premier league club | 744 |
football | 7754 | coronavirus crisis | 2833 | amid coronavirus crisis | 695 |
player | 7441 | test positive | 2786 | play behind close | 635 |
due | 7040 | bbc sport | 2692 | amid coronavirus pandemic | 633 |
season | 6164 | coronavirus outbreak | 2581 | due coronavirus pandemic | 578 |
premier | 5945 | sport coronavirus | 2074 | cancel due coronavirus | 548 |
club | 5860 | positive coronavirus | 1878 | coronavirus premier league | 542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, L.-M.; Devís-Devís, J.; Pellicer-Chenoll, M.; Pans, M.; Pardo-Ibañez, A.; García-Massó, X.; Peset, F.; Garzón-Farinós, F.; Pérez-Samaniego, V. The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4554. https://doi.org/10.3390/ijerph18094554
González L-M, Devís-Devís J, Pellicer-Chenoll M, Pans M, Pardo-Ibañez A, García-Massó X, Peset F, Garzón-Farinós F, Pérez-Samaniego V. The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis. International Journal of Environmental Research and Public Health. 2021; 18(9):4554. https://doi.org/10.3390/ijerph18094554
Chicago/Turabian StyleGonzález, Luis-Millán, José Devís-Devís, Maite Pellicer-Chenoll, Miquel Pans, Alberto Pardo-Ibañez, Xavier García-Massó, Fernanda Peset, Fernanda Garzón-Farinós, and Víctor Pérez-Samaniego. 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis" International Journal of Environmental Research and Public Health 18, no. 9: 4554. https://doi.org/10.3390/ijerph18094554
APA StyleGonzález, L. -M., Devís-Devís, J., Pellicer-Chenoll, M., Pans, M., Pardo-Ibañez, A., García-Massó, X., Peset, F., Garzón-Farinós, F., & Pérez-Samaniego, V. (2021). The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis. International Journal of Environmental Research and Public Health, 18(9), 4554. https://doi.org/10.3390/ijerph18094554