The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Samples Collection
2.2. Isolation and Identification of Pectinolytic Strains
2.3. Phylogeny and Genomic Profiling-Based Identification of IFB5637
2.4. Phenotypic Characterization of the Collected IFB5637
2.4.1. Pathogenicity Assays
2.4.2. Activity of Plant-Cell-Wall-Degrading Enzymes
2.4.3. Biochemical Profile
2.4.4. Other Factors Involved in Virulence
2.5. Statistical Analysis
3. Results and Discussion
3.1. Genotypic Features of P. aquaticum IFB5637 Strain
3.2. Phenotypic Features of P. aquaticum IFB5637 Strain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pérombelon, M.C.M. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef] [PubMed]
- Charkowski, A.O. The soft rot Erwinia. Plant-Associated Bacteria; Springer: Dordrecht, The Netherlands, 2007; pp. 423–505. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Helias, V.; Pirhonen, M.; Tsror (Lahkim), L.; Elphinstone, J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- Motyka-Pomagruk, A.; Zoledowska, S.; Sledz, W.; Lojkowska, E. The occurrence of bacteria from different species of Pectobacteriaceae on seed potato plantations in Poland. Eur. J. Plant Pathol. 2021, 159, 309–325. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Nasser, W.; Reverchon, S. Regulation of pectinolysis in Erwinia chrysanthemi. Annu. Rev. Microbiol. 1996, 50, 213–257. [Google Scholar] [CrossRef] [PubMed]
- Expert, D. Withholding and exhanging iron: Interactions between Erwinia spp. and their plant hosts. Annu. Rev. Phytopathol. 1999, 37, 307–334. [Google Scholar] [CrossRef]
- Kubheka, G.C.; Coutinho, T.A.; Moleleki, N.; Moleleki, L.N. Colonization patterns of an mcherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology 2013, 103, 1268–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moleleki, L.N.; Pretorius, R.G.; Tanui, C.K.; Mosina, G.; Theron, J. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. Mol. Plant Pathol. 2017, 18, 32–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabhan, S.; De Boer, S.H.; Maiss, E.; Wydra, K. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J. Appl. Microbiol. 2012, 113, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Zoledowska, S.; Motyka, A.; Zukowska, D.; Sledz, W.; Lojkowska, E. Population structure and biodiversity of Pectobacterium parmentieri isolated from potato fields in temperate climate. Plant Dis. 2018, 102, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sledz, W.; Jafra, S.; Waleron, M.; Lojkowska, E. Genetic diversity of Erwinia carotovora strains isolated from infected plants grown in Poland. Bull. OEPP 2000, 30, 403–407. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Lojkowska, E. Occurrence of Pectobacterium wasabiae in potato field samples. Eur. J. Plant Pathol. 2013, 137, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Hibbing, M.E.; Kim, H.-S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; et al. Host Range and Molecular Phylogenies of the Soft Rot Enterobacterial Genera Pectobacterium and Dickeya. Phytopathology 2007, 97, 1150–1163. [Google Scholar] [CrossRef] [Green Version]
- Lebecka, R.; Flis, B.; Murawska, Z. Comparison of temperature effects on the in vitro growth and disease development in potato tubers inoculated with bacteria Pectobacterium atrosepticum, P carotovorum subsp. carotovorum and Dickeya solani. J. Phytopathol. 2018, 166, 654–662. [Google Scholar] [CrossRef]
- Duarte, V.; De Boer, S.H.; Ward, L.J.; De Oliveira, A.M.R. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 2004, 96, 535–545. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, J.J.; Coutinho, T.A.; Korsten, L.; van der Waals, J.E. Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. Eur. J. Plant Pathol. 2010, 126, 175–185. [Google Scholar] [CrossRef] [Green Version]
- De Boer, S.H.; Li, X.; Ward, L.J. Pectobacterium spp. Associated with Bacterial Stem Rot Syndrome of Potato in Canada. Phytopathology 2012, 102, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Suárez, M.B.; Feria, F.J.; Martín-Robles, M.J.; del Rey, F.J.; Palomo, J.L. Pectobacterium parmentieri causing soft rot on potato tubers in Southern Europe. Plant Dis. 2017, 101, 1029. [Google Scholar] [CrossRef]
- Pitman, A.R.; Harrow, S.A.; Visnovsky, S.B. Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur. J. Plant Pathol. 2010, 126, 423–435. [Google Scholar] [CrossRef]
- Hauben, L.; Moore, E.R.B.; Vauterin, L.; Steenackers, M.; Mergaert, J.; Verdonck, L.; Swings, J. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 1998, 21, 384–397. [Google Scholar] [CrossRef]
- Gardan, L.; Gouy, C.; Christen, R.; Samson, R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 381–391. [Google Scholar] [CrossRef]
- Aremu, B.R.; Babalola, O.O. Classification and taxonomy of vegetable macergens. Front. Microbiol. 2015, 27. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Motyka, A.; Zoledowska, S.; Sledz, W.; Lojkowska, E. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. New Biotechnol. 2017, 39, 181–189. [Google Scholar] [CrossRef]
- Cappaert, M.R. Irrigation Water as a Source of Inoculum of Soft Rot Erwinias for Aerial Stem Rot of Potatoes. Phytopathology 1988, 78, 1668–1672. [Google Scholar] [CrossRef] [Green Version]
- Nykyri, J.; Fang, X.; Dorati, F.; Bakr, R.; Pasanen, M.; Niemi, O.; Palva, E.T.; Jackson, R.W.; Pirhonen, M. Evidence that nematodes may vector the soft rot-causing enterobacterial phytopathogens. Plant Pathol. 2014, 63, 747–757. [Google Scholar] [CrossRef]
- van der Wolf, J.M.; Nijhuis, E.H.; Kowalewska, M.J.; Saddler, G.S.; Parkinson, N.; Elphinstone, J.G.; Pritchard, L.; Toth, I.K.; Lojkowska, E.; Potrykus, M.; et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2014, 64, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossmann, S.; Dees, M.W.; Perminow, J.; Meadow, R.; Brurberg, M.B. Soft rot Enterobacteriaceae are carried by a large range of insect species in potato fields. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Perombelon, M.C.M.; Kelman, A. Ecology of the Soft Rot Erwinias. Annu. Rev. Phytopathol. 1980, 18, 361–387. [Google Scholar] [CrossRef]
- Thompson, D.L. Control of Bacterial Stalk Rot of Corn by Chlorination of Water in Sprinkler Irrigation. Crop. Sci. 1965, 5, 369–370. [Google Scholar] [CrossRef]
- McCarter-Zorner, N.J.; Franc, G.D.; Harrison, M.D.; Michaud, J.E.; Quinn, C.E.; Sells, I.A.; Graham, D.C. Soft rot Erwinia bacteria in surface and underground waters in southern Scotland and in Colorado, United States. J. Appl. Bacteriol. 1984, 57, 95–105. [Google Scholar] [CrossRef]
- Harrison, M.D.; Franc, G.D.; Maddox, D.A.; Michaud, J.E.; McCarter-Zorner, N.J. Presence of Erwinia carotovora in surface water in North America. J. Appl. Bacteriol. 1987, 62, 565–570. [Google Scholar] [CrossRef]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Pedron, J.; Bertrand, C.; Taghouti, G.; Portier, P.; Barny, M.A. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 2019, 69. [Google Scholar] [CrossRef]
- Potrykus, M.; Golanowska, M.; Sledz, W.; Zoledowska, S.; Motyka, A.; Anna, K.; Janina, B.; Ewa, L. Biodiversity of Dickeya spp. Isolated from potato plants and water sources in temperate climate. Plant Dis. 2016, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hélias, V.; Hamon, P.; Huchet, E.; Wolf, J.V.D.; Andrivon, D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 2012, 61, 339–345. [Google Scholar] [CrossRef]
- Kang, H.W.; Kwon, S.W.; Go, S.J. PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathol. 2003, 52, 127–133. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Lojkowska, E. Characterization of Pectobacterium carotovorum subsp. odoriferum causing soft rot of stored vegetables. Eur. J. Plant Pathol. 2014, 139, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Potrykus, M.; Sledz, W.; Golanowska, M.; Slawiak, M.; Binek, A.; Motyka, A.; Zoledowska, S.; Czajkowski, R.; Lojkowska, E. Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Ann. Appl. Biol. 2014, 165. [Google Scholar] [CrossRef]
- Ozturk, M.; Aksoy, H.M.; Potrykus, M.; Lojkowska, E. Genotypic and phenotypic variability of Pectobacterium strains causing blackleg and soft rot on potato in Turkey. Eur. J. Plant Pathol. 2018, 152, 143–155. [Google Scholar] [CrossRef]
- de Werra, P.; Bussereau, F.; Keiser, A.; Ziegler, D. First Report of Potato Blackleg Caused by Pectobacterium carotovorum subsp. brasiliense in Switzerland. Plant Dis. 2015, 99, 551. [Google Scholar] [CrossRef]
- Nykyri, J.; Niemi, O.; Koskinen, P.; Nokso-Koivisto, J.; Pasanen, M.; Broberg, M.; Plyusnin, I.; Törönen, P.; Holm, L.; Pirhonen, M.; et al. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 2012, 8, e1003013. [Google Scholar] [CrossRef] [Green Version]
- Holloway, B.W. Genetic recombination in Pseudomonas aeruginosa. J. Gen. Microbiol. 1955, 13, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sławiak, M.; van Beckhoven, J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.; Grabe, G.; van der Wolf, J.M. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 2009, 125, 245–261. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Podhajska, A.J.; Lojkowska, E. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene treatment. Microbiology 2002, 148, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Versalovic, J.; Schneider, M.; Bruijn, F. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. Biol. 1994. [Google Scholar] [CrossRef]
- Van Gijsegem, F.; Wlodarczyk, A.; Cornu, A.; Reverchon, S.; Hugouvieux-Cotte-Pattat, N. Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity. Mol. Plant. Microbe. Interact. 2008, 21, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Moran, F.; Nasuno, S.; Starr, M.P. Extracellular and intracellular polygalacturonic acid trans-eliminases of Erwinia carotovora. Arch. Biochem. Biophys. 1968, 123, 298–306. [Google Scholar] [CrossRef]
- Wood, P.J. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 1980, 2, 271–287. [Google Scholar] [CrossRef]
- Samad, M.Y.A.; Razak, C.N.A.; Salleh, A.B.; Zin Wan Yunus, W.M.; Ampon, K.; Basri, M. A plate assay for primary screening of lipase activity. J. Microbiol. Methods 1989, 9, 51–56. [Google Scholar] [CrossRef]
- Ji, J.; Hugouvieux-Cotte-Pattat, N.; Robert-Baudouy, J. Use of Mu-lac insertions to study the secretion of pectate lyases by Erwinia chrysanthemi. Microbiology 1987, 133. [Google Scholar] [CrossRef] [Green Version]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Harshey, R.M. Bacterial Motility on a Surface: Many Ways to a Common Goal. Annu. Rev. Microbiol. 2003, 57, 249–273. [Google Scholar] [CrossRef]
- Goto, M.; Matsumoto, K. Erwinia carotovora subsp. wasabiae subsp. nov. Isolated from Diseased Rhizomes and Fibrous Roots of Japanese Horseradish (Eutrema wasabi Maxim.). Int. J. Syst. Bacteriol. 1987, 37, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Nykyri, J.; Mattinen, L.; Niemi, O.; Adhikari, S.; Kõiv, V.; Somervuo, P.; Fang, X.; Auvinen, P.; Mäe, A.; Palva, E.T.; et al. Role and regulation of the Flp/Tad pilus in the virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS ONE 2013, 8, e73718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laemmli, U.K.; Favre, M. Maturation of the head of bacteriophage T4: I. DNA packaging events. J. Mol. Biol. 1973, 80, 575–599. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Szpakowska, N.; Sledz, W.; Motyka-Pomagruk, A.; Ossowska, K.; Lojkowska, E.; Kaczynski, Z. The structure of the O-polysaccharide isolated from pectinolytic gram-negative bacterium Dickeya aquatica IFB0154 is different from the O-polysaccharides of other Dickeya species. Carbohydr. Res. 2020, 497, 108135. [Google Scholar] [CrossRef] [PubMed]
- Cieslinski, R. Komentarz Do Mapy Hydrologicznej w Skali 1:50 000, Arkusz N-33-72-A Bytów Wschodni; University of Gdansk: Gdansk, Poland, 2009; ISBN 978-83-254-0436-9. [Google Scholar]
- Golanowska, M.; Kielar, J.; Lojkowska, E. The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. Eur. J. Plant Pathol. 2017, 147, 803–817. [Google Scholar] [CrossRef]
- Potrykus, M.; Golanowska, M.; Hugouvieux-Cotte-Pattat, N.; Lojkowska, E. Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. Mol. Plant Microbe Interact. 2014, 27, 700–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerwicka, M.; Marszewska, K.; Bychowska, A.; Dziadziuszko, H.; Brzozowski, K.; Lojkowska, E.; Stepnowski, P.; Kaczynski, Z. Chemical structure of the O-polysaccharide isolated from Pectobacterium atrosepticum SCRI 1039. Carbohydr. Res. 2011, 346, 2978–2981. [Google Scholar] [CrossRef] [PubMed]
- Ossowska, K.; Czerwicka, M.; Sledz, W.; Zoledowska, S.; Motyka, A.; Szulta, S.; Lojkowska, E.; Kaczynski, Z. The structure of O-polysaccharides isolated from plant pathogenic bacteria Pectobacterium wasabiae IFB5408 and IFB5427. Carbohydr. Res. 2016, 426. [Google Scholar] [CrossRef] [PubMed]
Species | Strain a | Source, Country of Isolation | Year of Isolation | Reference |
---|---|---|---|---|
Pectobacterium atrosepticum | SCRI 1086 IFB5103 | Solanum tuberosum, Canada | 1985 | [39] |
Pectobacterium carotovorum | SCRI 136 IFB5118 | Solanum tuberosum, USA | NA | [40] |
IFB5369 | Solanum tuberosum, Poland | 2011 | [41] | |
Pectobacterium brasiliense | CFBP 6617 LMG 21371 IFB5390 | Solanum tuberosum, Brazil | 1999 | [16] |
HAFL05 IFB5527 | Solanum tuberosum, Switzerland | 2013 | [42] | |
Pectobacterium parmentieri | SCC3193 IFB5308 | Solanum tuberosum, Finland | 1980s | [43] |
Pseudomonas aeruginosa | ATCC 15692 PAO1 IFB9036 | infected wound, Australia | 1955 | [44] |
Pectobacterium aquaticum | CFBP 8637T NCPPB 4640 A212-S19-A16 | fresh water, France | 2016 | [35] |
CFBP 8636 A127-S21-F16 | 2015 | |||
CFBP 8632 A35-S23-M15 | 2015 | |||
CFBP 8633 A101-S19-F16 | 2016 | |||
CFBP 8634 A104-S21-F16 | 2015 | |||
CFBP 8635 A105-S21-F16 | 2016 | |||
IFB5637 | fresh water, Poland | 2016 | this study |
Activities | P. aquaticum IFB5637 | P. brasiliense CFBP 6617 | P. brasiliense HAFL05 | P. carotovorum SCRI 136 | P. carotovorum IFB5369 | P. parmentieri SCC3193 | P. atrosepticum SCRI 1086 |
---|---|---|---|---|---|---|---|
Pectinases activity | 11.0 ± 2.7 | 19.3 ± 1.2 | 22.0 ± 1.5 | 22.0 ± 1.7 | 22.3 ± 0.8 | 16.9 ± 1.7 | 10.8 ± 0.7 |
Proteases activity | 6.3 ± 1.4 | 14.3 ± 1.5 | 16.4 ± 1.4 | 13.0 ± 1.4 | 19.7 ± 1.3 | 5.7 ± 1.2 | 2.9 ± 1.5 |
Cellulases activity | 13.5 ± 0.8 | 6.0 ± 1.4 | 12.1 ± 0.7 | 11.7 ± 0.8 | 13.6 ± 0.9 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Lipases activity | 13.4 ± 0.5 | 16.8 ± 0.5 | 19.3 ± 0.6 | 17.5 ± 0.6 | 13.5 ± 0.9 | 15.3 ± 0.4 | 9.3 ± 0.5 |
Siderophores activity | 7.1 ± 0.2 | 10.8 ± 0.3 | 2.8 ± 1.2 | 4.5 ± 1.0 | 7.8 ± 0.7 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Swimming | 22.8 ± 1.7 | 39.8 ± 3.2 | 41.6 ± 1.5 | 34.2 ± 1.6 | 39.4 ± 2.2 | 13.0 ± 0.7 | 5.2 ± 0.4 |
Swarming | 4.0 ± 0.4 | 10.5 ± 4.1 | 9.3 ± 3.5 | 4.8 ± 0.7 | 14.4 ± 5.6 | 9.7 ± 3.6 | 4.1 ± 0.2 |
Biofilm formation * | + | +++ | ++ | + | + | ++ | + |
Biochemical Features | P. aquaticum IFB5637 T | P. brasiliense CFBP 6617 | P. brasiliense HAFL05 | P. carotovorum SCRI 136 | P. carotovorum IFB5369 | P. parmentieri SCC3193 | P. atrosepticum SCRI 1086 |
---|---|---|---|---|---|---|---|
ß-galactosidase production | + | + | + | + | + | + | + |
Arginine dihydrolase production | − | + | − | − | + | − | − |
Lysine decarboxylase production | − | − | − | − | − | − | − |
Ornithine decarboxylase production | − | − | − | − | − | − | − |
Utilization of citrate | + | + | + | + | + | − | + |
H2S production | − | − | − | − | − | − | − |
Urease production | − | − | − | − | − | − | − |
Utilization of tartrate | + | + | + | + | + | + | + |
Indole production | − | − | + | − | − | − | − |
Production of acetoin | + | + | + | + | + | + | + |
Gelatinase production | − | + | + | − | + | − | − |
Glucose fermentation | − | − | − | − | − | − | − |
Mannitol fermentation | + | + | + | + | + | + | + |
Inositol fermentation | − | − | − | − | − | − | − |
Sorbitol fermentation | − | − | − | − | − | − | − |
Rhamnose fermentation | + | + | + | + | + | + | + |
Saccharose fermentation | + | + | + | + | + | + | + |
Melibiose fermentation | − | + | + | + | + | + | − |
Amygdalin fermentation | + | + | + | + | + | + | + |
Arabinose fermentation | + | + | + | + | + | + | + |
Growth in 5% NaCl | − | + | + | − | + | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babinska, W.; Motyka-Pomagruk, A.; Sledz, W.; Kowalczyk, A.; Kaczynski, Z.; Lojkowska, E. The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake. Int. J. Environ. Res. Public Health 2021, 18, 5041. https://doi.org/10.3390/ijerph18095041
Babinska W, Motyka-Pomagruk A, Sledz W, Kowalczyk A, Kaczynski Z, Lojkowska E. The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake. International Journal of Environmental Research and Public Health. 2021; 18(9):5041. https://doi.org/10.3390/ijerph18095041
Chicago/Turabian StyleBabinska, Weronika, Agata Motyka-Pomagruk, Wojciech Sledz, Agnieszka Kowalczyk, Zbigniew Kaczynski, and Ewa Lojkowska. 2021. "The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake" International Journal of Environmental Research and Public Health 18, no. 9: 5041. https://doi.org/10.3390/ijerph18095041
APA StyleBabinska, W., Motyka-Pomagruk, A., Sledz, W., Kowalczyk, A., Kaczynski, Z., & Lojkowska, E. (2021). The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake. International Journal of Environmental Research and Public Health, 18(9), 5041. https://doi.org/10.3390/ijerph18095041