Acute Effects of Handheld Loading on Standing Broad Jump in Youth Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Experimental Instruments and Equipment
2.4. Data Reduction and Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Butcher, M.; Bertram, J.A. Jump distance increases while carrying handheld weights: Impulse, history, and jump performance in a simple lab exercise. J. Sci. Educ. Technol. 2004, 13, 285–297. [Google Scholar] [CrossRef]
- Minetti, A. Passive tools for enhancing muscle-driven motion and locomotion. J. Exp. Biol. 2004, 207, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minetti, A.; Ardigo, L.P. Halteres used in ancient olympic long jump. Nature 2002, 420, 141–142. [Google Scholar] [CrossRef]
- Harris, H. Some problems of the greek pentathlon. Hist. Phys. Educ. Sport 1973, 1, 35–53. [Google Scholar]
- Ashby, B. Optimal control simulations demonstrate how using halteres (hand-held weights) can increase standing long jump performance. In Proceedings of the 20th Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics, Cleveland, OH, USA, 31 July–5 August 2005. [Google Scholar]
- Huang, C.; Chen, H.Y.; Peng, H. The effect of hand-held weights on standing long jump performance. In Proceedings of the 23rd International Symposium on Biomechanics in Sports, Beijing, China, 22–27 August 2005. [Google Scholar]
- Lenoir, M.; De Clercq, D.; Laporte, W. The “how” and “why” of the ancient Greek long jump with weights: A five-fold symmetric jump in a row? J. Sports Sci. 2005, 23, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, C.; Noussios, G.; Manolopoulos, E.; Kiritsi, O.; Ntones, G.; Gantiraga, E.; Gissis, I. Standing long jump and handheld halters; is jumping performance improved? J. Hum. Sport Exerc. 2011, 6, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.H.; Huang, C.F. Legend or history? A biomechanical analysis of extra weights on standing long jump. J. Biomech. 2007, 40, S609. [Google Scholar] [CrossRef]
- Provatidis, C.G. An overview of the mechanics of oscillating mechanisms. Am. J. Mech. Eng. 2013, 1, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Semprini, G.; Júdice, P.; Messina, G.; Toselli, S. Anthropometry, physical and movement features, and repeated-sprint ability in soccer players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Hammami, M.; Gaamouri, N.; Suzuki, K.; Aouadi, R.; Shephard, R.J.; Chelly, M.S. Effects of unloaded vs. ankle-loaded plyometric training on the physical fitness of U-17 male soccer players. Int. J. Environ. Res. Public Health 2020, 17, 7877. [Google Scholar] [CrossRef]
- Provatidis, C.G. On the maximum length of standing long jump using halters. Int. J. Multidiscip Res. Stud. 2018, 1, 153–169. [Google Scholar]
- Filush, A. Effect of Using Hand-Weights on Performance in the Standing Long Jump. Masters Theses, Grand Valley State University, Allendale, MI, USA, April 2012. [Google Scholar]
- McKenzie, C.R.; Brughelli, M.; Whatman, C.; Brown, S.R. Handheld loading to enhance horizontal jump performance in female netball players. J. Aust. Strength Cond. 2017, 25, 6–13. [Google Scholar]
- Kobal, R.; Pereira, L.A.; Zanetti, V.; Ramirez-Campillo, R.; Loturco, I. Effects of unloaded vs. loaded plyometrics on speed and power performance of elite young soccer players. Front. Physiol. 2017, 8, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronin, J.B.; Brughelli, M.; Gamble, P.; Brown, S.R.; McKenzie, C. Acute kinematic and kinetic augmentation in horizontal jump performance using haltere type handheld loading. J. Strength Cond. Res. 2014, 28, 1559–1564. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley: New York, NY, USA, 2009. [Google Scholar]
- Wakai, M.; Linthorne, N.P. Optimum take-off angle in the standing long jump. Hum. Mov. Sci. 2005, 24, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2011, 141, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Ashby, B.M.; Delp, S.L. Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance. J. Biomech. 2006, 39, 1726–1734. [Google Scholar] [CrossRef]
- Ashby, B.M.; Heegaard, J.H. Role of arm motion in the standing long jump. J. Biomech. 2002, 35, 1631–1637. [Google Scholar] [CrossRef]
- Cheng, K.B.; Wang, C.H.; Chen, H.C.; Wu, C.D.; Chiu, H.T. The mechanisms that enable arm motion to enhance vertical jump performance—A simulation study. J. Biomech. 2008, 41, 1847–1854. [Google Scholar] [CrossRef]
- Feltner, M.E.; Bishop, E.J.; Perez, C.M. Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Res. Q. Exerc. Sport 2004, 75, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Domire, Z.J.; Challis, J.H. An induced energy analysis to determine the mechanism for performance enhancement as a result of arm swing during jumping. Sports Biomech. 2010, 9, 38–46. [Google Scholar] [CrossRef]
- Hara, M.; Shibayama, A.; Arakawa, H.; Fukashiro, S. Effect of arm swing direction on forward and backward jump performance. J. Biomech. 2008, 41, 2806–2815. [Google Scholar] [CrossRef]
- McKenzie, C.R.; Brughelli, M.; Whatman, C.; Brown, S.R. The influence of optimal handheld load on the technical ability to apply ground reaction forces during horizontal jumping in female netball players. Int. J. Sports Med. 2015, 37, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F.; Gerritsen, K.G.M.; Litjens, M.C.A.; Van Soest, A.J. Why is countermovement jump height greater than squat jump height? Med. Sci. Sport Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Veligekas, P.; Tsoukos, A.; Bogdanis, G. Determinants of standing long jump performance in 9–12 years old children. Serb. J. Sports Sci. 2012, 6, 147–155. [Google Scholar]
- Ruan, M.; Li, L. Influence of a horizontal approach on the mechanical output during drop jumps. Res. Q. Exerc. Sport 2008, 77, 1–9. [Google Scholar] [CrossRef]
- Lees, A.; Vanrenterghem, J.; De Clercq, D. Understanding how an arm swing enhances performance in the vertical jump. J. Biomech. 2004, 37, 1929–1940. [Google Scholar] [CrossRef]
- Leontijevic, B.; Pazin, N.; Bozic, P.R.; Kukolj, M.; Ugarkovic, D.; Jaric, S. Effects of loading on maximum vertical jumps: Selective effects of weight and inertia. J. Electromyogr. Kinesiol. 2012, 22, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Wakeling, J.M.; Blake, O.M.; Chan, H.K. Muscle coordination is key to the power output and mechanical efficiency of limb movements. J. Exp. Biol. 2010, 213, 487–492. [Google Scholar] [CrossRef] [Green Version]
Variables | Unloaded | Loaded | Z | p (95% CI) | r2 | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
Horizontal distance (cm) * | 206 | 20 | 223 | 23 | −3.352 | 0.001 (−22.29, −11.85) | 0.749 |
Horizontal velocity of CoM (m/s) * | 3.05 | 0.29 | 3.23 | 0.33 | −3.108 | 0.002 (−0.25, −0.10) | 0.644 |
Vertical velocity of CoM (m/s) * | 1.84 | 0.21 | 1.56 | 0.21 | −3.296 | 0.001 (0.13, 0.43) | 0.724 |
Resultant velocity of CoM (m/s) | 3.58 | 0.17 | 3.59 | 0.31 | −0.597 | 0.551 (−0.13, 0.11) | 0.024 |
Take-off angle (degree) * | 29.64 | 4.22 | 24.95 | 3.60 | −3.296 | 0.004 (2.80, 6.57) | 0.724 |
Take-off distance (cm) * | 56 | 7 | 63 | 6 | −2.884 | 0.001 (−0.10, −0.03) | 0.539 |
Air distance (cm) | 125 | 12 | 124 | 14 | −1.131 | 0.258 (−0.40, 0.07) | 0.085 |
Landing distance (cm) * | 24 | 5 | 36 | 9 | −3.011 | 0.003 (−0.18, −0.06) | 0.604 |
CoM vertical displacement To-Td (cm) | 24 | 5 | 26 | 2 | −1.762 | 0.078 (−0.47, 0.01) | 0.207 |
Peak ankle angular velocity (°/s) * | 588.7 | 86.9 | 561.3 | 73.2 | −1.988 | 0.047 (−3.20, 58.05) | 0.263 |
Peak knee angular velocity (°/s) * | 684.5 | 66.4 | 627.9 | 59.9 | −3.294 | 0.001 (30.31, 82.83) | 0.723 |
Peak hip angular velocity (°/s) * | 374.6 | 44.7 | 332.7 | 56.5 | −2.669 | 0.008 (12.89, 70.75) | 0.475 |
Variables | Unloaded | Loaded | Z | p (95% CI) | r2 | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
Push-off time (ms) * | 41 | 3 | 47 | 5 | −3.411 | 0.001 (−7.76, −4.37) | 0.776 |
Horizontal impulse (N·s) | 125.7 | 19.9 | 134.2 | 23.5 | −1.817 | 0.069 (−17.37, 0.36) | 0.220 |
Vertical impulse (N·s) * | 241.0 | 37.6 | 260.9 | 52.3 | −2.982 | 0.003 (−32.84, −7.10) | 0.593 |
Peak horizontal GRF (N) * | 597.7 | 76.2 | 712.3 | 106.0 | −3.296 | 0.001 (−148.66, −80.60) | 0.724 |
Peak vertical GRF (N) * | 1200.4 | 220.2 | 1307.1 | 213.5 | −2.341 | 0.019 (−192.69, −20.49) | 0.365 |
Peak moment (Nm) | |||||||
Ankle * | 136.7 | 26.3 | 127.5 | 26.9 | −2.556 | 0.011 (3.06, 15.31) | 0.436 |
Knee | 208.5 | 52.4 | 203.3 | 68.9 | −1.477 | 0.140 (−13.23, 23.77) | 0.145 |
Hip * | 138.1 | 19.1 | 125.7 | 23.4 | −2.669 | 0.008 (3.82, 21.03) | 0.475 |
Peak power generation (Watt) | |||||||
Ankle | 897.2 | 179.9 | 845.6 | 206.5 | −1.590 | 0.112 (−7.66, 110.95) | 0.169 |
Knee | 1613.3 | 341.7 | 1667.1 | 485.9 | −0.625 | 0.532 (−192.14, 84.72) | 0.026 |
Hip * | 1046.1 | 148.4 | 927.2 | 214.1 | −2.499 | 0.012 (30.61, 207.19) | 0.416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, W.-H.; Tang, R.-H.; Huang, C.-F.; Lo, S.-L.; Sung, Y.-C.; Peng, H.-T. Acute Effects of Handheld Loading on Standing Broad Jump in Youth Athletes. Int. J. Environ. Res. Public Health 2021, 18, 5046. https://doi.org/10.3390/ijerph18095046
Tai W-H, Tang R-H, Huang C-F, Lo S-L, Sung Y-C, Peng H-T. Acute Effects of Handheld Loading on Standing Broad Jump in Youth Athletes. International Journal of Environmental Research and Public Health. 2021; 18(9):5046. https://doi.org/10.3390/ijerph18095046
Chicago/Turabian StyleTai, Wei-Hsun, Ray-Hsien Tang, Chen-Fu Huang, Shin-Liang Lo, Yu-Chi Sung, and Hsien-Te Peng. 2021. "Acute Effects of Handheld Loading on Standing Broad Jump in Youth Athletes" International Journal of Environmental Research and Public Health 18, no. 9: 5046. https://doi.org/10.3390/ijerph18095046
APA StyleTai, W. -H., Tang, R. -H., Huang, C. -F., Lo, S. -L., Sung, Y. -C., & Peng, H. -T. (2021). Acute Effects of Handheld Loading on Standing Broad Jump in Youth Athletes. International Journal of Environmental Research and Public Health, 18(9), 5046. https://doi.org/10.3390/ijerph18095046