Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Review of Secondary Data
2.3. Sample Collection and Processing
2.4. RNA Extraction and RT-PCR Analysis
2.5. Whole-Genome Sequencing
2.6. Bioinformatic Analysis
2.7. SNP Mapping and Tracking
3. Results
3.1. Site Characteristics
3.2. Physico-Chemical Parameters of Wastewater Samples
3.3. SARS-CoV-2 Detection in Wastewater
3.4. Epidemiologic Assessment of SARS-CoV-2 Wastewater Surveillance
3.5. SARS-CoV-2 Sequencing in Wastewater
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Non-Intrusive Wastewater Surveillance for Monitoring of a Residential Building for COVID-19 Cases. Available online: https://apps.who.int/iris/bitstream/handle/10665/337897/WHO-2019-nCoV-SurveillanceGuidance-2020.8-eng.pdf (accessed on 14 December 2021).
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef] [PubMed]
- Nsubuga, P.; White, M.E.; Thacker, S.B.; Anderson, M.A.; Blount, S.B.; Broome, C.V.; Chiller, T.M.; Espitia, V.; Imtiaz, R.; Sosin, D.; et al. Public Health Surveillance: A Tool for Targeting and Monitoring Interventions, Disease Control Priorities in Developing Countries. In Disease Control Priorities in Developing Countries; The International Bank for Reconstruction and Development; The World Bank: Washington, DC, USA, 2006; ISBN-10: 0-8213-6179-1. [Google Scholar]
- Chen, Y.; Chen, L.; Deng, Q.; Zhang, G.; Wu, K.; Ni, L.; Yang, Y.; Liu, B.; Wang, W.; Wei, C.; et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J. Med. Virol. 2020, 92, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-K.; Lee, C.-W.; Park, D.-I.; Woo, H.-Y.; Cheong, H.S.; Shin, H.C.; Ahn, K.; Kwon, M.-J.; Joo, E.-J. Detection of SARS-CoV-2 in Fecal Samples from Patients with Asymptomatic and Mild COVID-19 in Korea. Clin. Gastroenterol. Hepatol. 2021, 19, 1387–1394.e2. [Google Scholar] [CrossRef]
- Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Betancourt, W.Q.; Stark, E.R.; Foster, A.R.; Abraham, A.G.; Gerba, C.P.; Pepper, I.L. Enumerating Asymptomatic COVID-19 Cases and Estimating SARS-CoV-2 Fecal Shedding Rates via Wastewater-Based Epidemiology. Sci. Total Environ. 2021, 801, 149794. [Google Scholar] [CrossRef]
- Naughton, C.C.; Roman, F.A.; Grace, A.; Alvarado, F.; Tariqi, A.Q.; Deeming, M.A.; Bibby, K.; Bivins, A.; Rose, J.B.; Medema, G.; et al. Show Us the Data: Global COVID-19 Wastewater Monitoring Efforts, Equity, and Gaps. medRxiv 2021. [Google Scholar] [CrossRef]
- Wurtzer, S.; Waldman, P.; Ferrier-Rembert, A.; Frenois-Veyrat, G.; Mouchel, J.; Boni, M.; Maday, Y.; Marechal, V.; Moulin, L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. Water Res. 2021, 198, 117183. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 Titers in Wastewater Are Higher than Expected from Clinically Confirmed Cases. Msystems 2020, 5, e00614-20. [Google Scholar] [CrossRef]
- Larsen, D.A.; Wigginton, K.R. Tracking COVID-19 with Wastewater Wastewater Testing Captures the Rise and Fall of Novel Coronavirus Cases in a Mid-Sized Metropolitan Region. Nat. Biotechnol. 2020, 38, 1151–1153. [Google Scholar] [CrossRef]
- Bivins, A.; North, D.; Ahmad, A.; Ahmed, W.; Alm, E.; Been, F.; Bhattacharya, P.; Bijlsma, L.; Boehm, A.B.; Brown, J.; et al. Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight against COVID-19. Environ. Sci. Technol. 2020, 54, 7754–7757. [Google Scholar] [CrossRef]
- Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C.; Vanderwood, K.K.; Wilkinson, R.; Wiedenheft, B. Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Rep. Med. 2020, 1, 100098. [Google Scholar] [CrossRef] [PubMed]
- Prado, T.; Fumian, T.M.; Mannarino, C.F.; Resende, P.C.; Motta, F.C.; Eppinghaus, A.L.F.; Vale, V.H.C.D.; Braz, R.M.S.; Andrade, J.D.S.R.D.; Maranhão, A.G.; et al. Wastewater-based epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Res. 2021, 191, 116810. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.C.C.; Tan, J.; Lim, Y.X.; Arivalan, S.; Hapuarachchi, H.C.; Mailepessov, D.; Griffiths, J.; Jayarajah, P.; Setoh, Y.X.; Tien, W.P.; et al. Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. Sci. Total Environ. 2021, 786, 147419. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Klapsa, D.; Wilton, T.; Zambon, M.; Bentley, E.; Bujaki, E.; Fritzsche, M.; Mate, R.; Majumdar, M. Tracking SARS-CoV-2 in Sewage: Evidence of Changes in Virus Variant Predominance during COVID-19 Pandemic. Viruses 2020, 12, 1144. [Google Scholar] [CrossRef]
- Crits-Christoph, A.; Kantor, R.S.; Olm, M.R.; Whitney, O.N.; Al-Shayeb, B.; Lou, Y.C.; Flamholz, A.; Kennedy, L.C.; Greenwald, H.; Hinkle, A.; et al. Genome Sequencing of Sewage Detects Regionally Prevalent SARS-CoV-2 Variants. MBio 2021, 12, e02703-20. [Google Scholar] [CrossRef]
- Napit, R.; Manandhar, P.; Chaudhary, A.; Shrestha, B.; Poudel, A.; Raut, R.; Pradhan, S.; Raut, S.; Mathema, S.; Rajbhandari, R.; et al. Rapid Genomic Surveillance of SARS-CoV-2 in a Dense Urban Community Using Environmental (Sewage) Samples. medRxiv 2021. [Google Scholar] [CrossRef]
- Philippine Statistics Authority Gross Regional Domestic Product by Year Published. Available online: https://psa.gov.ph/grdp/tables (accessed on 10 November 2021).
- Department of Health COVID-19 Tracker Philippines. Available online: https://doh.gov.ph/covid19tracker (accessed on 1 October 2021).
- Guerrero-Latorre, L.; Ballesteros, I.; Villacrés-Granda, I.; Granda, M.G.; Freire-Paspuel, B.; Ríos-Touma, B. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci. Total Environ. 2020, 743, 140832. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). Davao City Infrastructure Development Plan and Capacity Building Project; Final Report Summary; Japan International Cooperation Agency 2018. Available online: https://openjicareport.jica.go.jp/pdf/12308706.pdf (accessed on 29 June 2021).
- Wilder, M.L.; Middleton, F.; Larsen, D.A.; Du, Q.; Fenty, A.; Zeng, T.; Insaf, T.; Kilaru, P.; Collins, M.; Kmush, B. Co-Quantification of CrAssphage Increases Confidence in Wastewater-Based Epidemiology for SARS-CoV-2 in Low Prevalence Areas. Water Res. X 2021, 11, 100100. [Google Scholar] [CrossRef]
- City Government of Davao 27 December to 2 January 2021 Barangay Classifications [Facebook Update]. Available online: https://www.facebook.com/davaocitygov/ (accessed on 29 June 2021).
- Department of Health Davao Region DOH Davao COVID-19 Regional Daily Case Bulletin #294 [Facebook Update]. Available online: https://www.facebook.com/DOHdavao/?ref=page_internal (accessed on 20 June 2021).
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Joshua Quick NCoV-2019 Sequencing Protocol v3 (LoCost) V.3; protocols.io 2020. Available online: https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bp2l6n26rgqe/v3 (accessed on 18 August 2021).
- Loman, N.; Rowe, W.; Rambaut, A. NCoV-2019 Novel Coronavirus Bioinformatics Protocol. Available online: https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html (accessed on 30 June 2021).
- Singer, J.B.; Gifford, R.J.; Cotten, M.; Robertson, D. CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation. Preprints 2020, 2020060225. [Google Scholar] [CrossRef]
- Milne, I.; Stephen, G.; Bayer, M.; Cock, P.; Pritchard, L.; Cardle, L.; Shaw, P.D.; Marshall, D. Using Tablet for visual exploration of second-generation sequencing data. Briefings Bioinform. 2012, 14, 193–202. [Google Scholar] [CrossRef]
- Izquierdo-Lara, R.; Elsinga, G.; Heijnen, L.; Munnink, B.B.O.; Schapendonk, C.M.; Nieuwenhuijse, D.; Kon, M.; Lu, L.; Aarestrup, F.M.; Lycett, S.; et al. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg. Infect. Dis. 2021, 27, 1405–1415. [Google Scholar] [CrossRef]
- Elaswad, A.; Fawzy, M.; Basiouni, S.; Shehata, A.A. Mutational Spectra of SARS-CoV-2 Isolated from Animals. PeerJ 2020, 8, e10609. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. Wastewater surveillance for population-wide COVID-19: The present and future. Sci. Total Environ. 2020, 736, 139631. [Google Scholar] [CrossRef]
- Wannigama, D.L.; Amarasiri, M.; Hurst, C.; Phattharapornjaroen, P.; Abe, S.; Hongsing, P.; Rad, S.A.H.; Pearson, L.; Saethang, T.; Luk-In, S.; et al. Tracking COVID-19 with wastewater to understand asymptomatic transmission. Int. J. Infect. Dis. 2021, 108, 296–299. [Google Scholar] [CrossRef] [PubMed]
- City Government of Davao. Davao City Sets up 5 COVID-19 Facilities as SPMC Reaches Capacity. Byaheng DO30. 2020. Available online: https://byahengdo30.com/covid-19/davao-city-sets-up-5-covid-19-facilities-as-spmc-reaches-capacity/ (accessed on 29 June 2021).
- Trottier, J.; Darques, R.; Mouheb, N.A.; Partiot, E.; Bakhache, W.; Deffieu, M.S.; Gaudin, R. Post-lockdown detection of SARS-CoV-2 RNA in the wastewater of Montpellier, France. One Health 2020, 10, 100157. [Google Scholar] [CrossRef]
- City Government of Davao. Davao City Targets 1K Swab Tests per Day. Byaheng DO30. 2021. Available online: https://byahengdo30.com/covid-19/davao-city-targets-1k-swab-tests-per-day/ (accessed on 29 June 2021).
- Michael-Kordatou, I.; Karaolia, P.; Fatta-Kassinos, D. Sewage analysis as a tool for the COVID-19 pandemic response and management: The urgent need for optimised protocols for SARS-CoV-2 detection and quantification. J. Environ. Chem. Eng. 2020, 8, 104306. [Google Scholar] [CrossRef] [PubMed]
- Kantor, R.S.; Nelson, K.L.; Greenwald, H.D.; Kennedy, L.C. Challenges in Measuring the Recovery of SARS-CoV-2 from Wastewater. Environ. Sci. Technol. 2021, 55, 3514–3519. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total. Environ. 2020, 739, 139076. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in Wastewater Anticipated COVID-19 Occurrence in a Low Prevalence Area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Angel, N.; Bibby, K.; Bivins, A.; Dierens, L.; Edson, J.; Ehret, J.; Gyawali, P.; Hamilton, K.A.; et al. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: A surveillance tool for assessing the presence of COVID-19 infected travelers. J. Travel Med. 2020, 27, taaa116. [Google Scholar] [CrossRef]
- Bar-Or, I.; Yaniv, K.; Shagan, M.; Ozer, E.; Erster, O.; Mendelson, E.; Mannasse, B.; Shirazi, R.; Kramarsky-Winter, E.; Nir, O.; et al. Regressing SARS-CoV-2 Sewage Measurements onto COVID-19 Burden in the Population: A Proof-of-Concept for Quantitative Environmental SurveillanceRegressing SARS-CoV-2 Sewage Measurements onto COVID-19 Burden in the Population: A Proof-of-Concept for Quanti. medRxiv 2020, 1–11. [Google Scholar] [CrossRef]
- Kocamemi, B.A.; Kurt, H.; Hacıoglu, S.; Yaralı, C.; Saatci, A.M.; Pakdemirli, B. First Data-Set on SARS-CoV-2 Detection for Istanbul Wastewaters in Turkey Authors Marmara University, Department of Environmental Engineering, Istanbul, Turkey Saglik Bilimleri University, Faculty of Medicine, Department of Medical Biology, Istanbul. medRxiv 2020, 2–11. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Ferraro, G.B.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchardt, M.A.; Boehm, A.B.; Salit, M.; Spencer, S.K.; Wigginton, K.R.; Noble, R.T. The Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR Quality and Reporting for Environmental Microbiology. Environ. Sci. Technol. 2021, 55, 10210–10223. [Google Scholar] [CrossRef]
- Sharon, A. HKU Engineering-Led Team Co-Develops COVID-19 Sewage Monitoring System. OpenGov Asia. 2021. Available online: https://opengovasia.com/hku-engineering-led-team-co-develops-covid-19-sewage-monitoring-system/ (accessed on 29 June 2021).
- Kevill, J.L.; Pellett, C.; Farkas, K.; Brown, M.R.; Bassano, I.; Denise, H.; McDonald, J.E.; Malham, S.K.; Porter, J.; Warren, J. A Comparison of Precipitation and Filtration-Based SARS-CoV-2 Recovery Methods and the Influence of Temperature, Turbidity, and Surfactant Load in Urban Wastewater. Sci. Total Environ. 2022, 808, 151916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Duran, S.S.F.; Lim, W.Y.S.; Tan, C.K.I.; Cheong, W.C.D.; Suwardi, A.; Loh, X.J. SARS-CoV-2 in wastewater: From detection to evaluation. Mater. Today Adv. 2022, 13, 100211. [Google Scholar] [CrossRef]
- Bertels, X.; Demeyer, P.; Van den Bogaert, S.; Boogaerts, T.; van Nuijs, A.L.N.; Delputte, P.; Lahousse, L. Factors Influencing SARS-CoV-2 RNA Concentrations in Wastewater up to the Sampling Stage: A Systematic Review. Sci. Total Environ. 2022, 820, 153290. [Google Scholar] [CrossRef]
- Trygar, R. Nitrogen Control in Wastewater Treatment Plants, 2nd ed.; CET and the University of Florida Center for Training, Research and Education for Environmental Occupations: Daytona Beach, FL, USA, 2009; Available online: https://treeo.ufl.edu/media/treeoufledu/waterwastewater/student-resources/Nitrogen-control-in--wastewater-treatment-plants-v4.pdf (accessed on 10 February 2022).
- Weidhaas, J.; Aanderud, Z.T.; Roper, D.K.; VanDerslice, J.; Gaddis, E.B.; Ostermiller, J.; Hoffman, K.; Jamal, R.; Heck, P.; Zhang, Y. Correlation of SARS-CoV-2 RNA in Wastewater with COVID-19 Disease Burden in Sewersheds. Sci. Total Environ. 2021, 775, 145790. [Google Scholar] [CrossRef]
- Pinon, A.; Vialette, M. Survival of Viruses in Water. Intervirology 2018, 61, 214–222. [Google Scholar] [CrossRef]
- Paul, D.; Kolar, P.; Hall, S.G. A review of the impact of environmental factors on the fate and transport of coronaviruses in aqueous environments. npj Clean Water 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Claro, I.C.M.; Cabral, A.D.; Augusto, M.R.; Duran, A.F.A.; Graciosa, M.C.P.; Fonseca, F.L.A.; Speranca, M.A.; Bueno, R.D.F. Long-term monitoring of SARS-CoV-2 RNA in wastewater in Brazil: A more responsive and economical approach. Water Res. 2021, 203, 117534. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2014, 8, 23–39. [Google Scholar] [CrossRef]
- O’Brien, E.; Nakyazze, J.; Wu, H.; Kiwanuka, N.; Cunningham, W.; Kaneene, J.B.; Xagoraraki, I. Viral diversity and abundance in polluted waters in Kampala, Uganda. Water Res. 2017, 127, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.Y.; Reddy, M.V. Coliform MPN counts of municipal raw sewage and sewage treatment plant in relation to the water of Buckingham Canal at Kalpakkam (Tamil Nadu, India). J. Environ. Sci. Eng. 2008, 50, 51–54. [Google Scholar] [PubMed]
- Cabral, J.P.S. Water Microbiology. Bacterial Pathogens and Water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef]
- Goldman, D.; Domschke, K. Making sense of deep sequencing. Int. J. Neuropsychopharmacol. 2014, 17, 1717–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nag, A.; Arora, S.; Sinha, V.; Meena, E.; Sutaria, D.; Gupta, A.B.; Medicherla, K.M. Monitoring of SARS-CoV-2 Variants by Wastewater-Based Surveillance as a Sustainable and Pragmatic Approach—A Case Study of Jaipur (India). Water 2022, 14, 297. [Google Scholar] [CrossRef]
- Rios, G.; Lacoux, C.; Leclercq, V.; Diamant, A.; Lebrigand, K.; Lazuka, A.; Soyeux, E.; Lacroix, S.; Fassy, J.; Couesnon, A. Monitoring SARS-CoV-2 Variants Alterations in Nice Neighborhoods by Wastewater Nanopore Sequencing. Lancet Reg. Health 2021, 10, 100202. [Google Scholar]
- Swift, C.L.; Isanovic, M.; Correa Velez, K.E.; Sellers, S.C.; Norman, R.S. Wastewater Surveillance of SARS-CoV-2 Mutational Profiles at a University and Its Surrounding Community Reveals a 20G Outbreak on Campus. PLoS ONE 2022, 17, e0266407. [Google Scholar] [CrossRef] [PubMed]
- Coil, D.A.; Albertson, T.; Banerjee, S.; Brennan, G.; Campbell, A.J.; Cohen, S.H.; Dandekar, S.; Díaz-Muñoz, S.L.; Eisen, J.A.; Goldstein, T. SARS-CoV-2 Detection and Genomic Sequencing from Hospital Surface Samples Collected at UC Davis. PLoS ONE 2021, 16, e0253578. [Google Scholar] [CrossRef] [PubMed]
- Omotoso, O.E.; Olugbami, J.O.; Gbadegesin, M.A. Assessment of Intercontinents Mutation Hotspots and Conserved Domains within SARS-CoV-2 Genome. Infect. Genet. Evol. 2021, 96, 105097. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294. [Google Scholar] [CrossRef]
- Salpini, R.; Alkhatib, M.; Costa, G.; Piermatteo, L.; Ambrosio, F.A.; Di Maio, V.C.; Scutari, R.; Duca, L.; Berno, G.; Fabeni, L. Key Genetic Elements, Single and in Clusters, Underlying Geographically Dependent SARS-CoV-2 Genetic Adaptation and Their Impact on Binding Affinity for Drugs and Immune Control. J. Antimicrob. Chemother. 2021, 76, 396–412. [Google Scholar] [CrossRef]
- Wu, H.; Xing, N.; Meng, K.; Fu, B.; Xue, W.; Dong, P.; Tang, W.; Xiao, Y.; Liu, G.; Luo, H.; et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 2021, 29, 1788–1801.e6. [Google Scholar] [CrossRef]
- Velasco, J.M.; Chinnawirotpisan, P.; Joonlasak, K.; Manasatienkij, W.; Huang, A.; Valderama, M.T.; Diones, P.C.; Leonardia, S.; Timbol, M.L.; Navarro, F.C. Coding-Complete Genome Sequences of 23 SARS-CoV-2 Samples from the Philippines. Microbiol. Resour. Announc. 2020, 9, e01031-20. [Google Scholar] [CrossRef]
- Das, J.K.; Sengupta, A.; Choudhury, P.P.; Roy, S. Characterizing Genomic Variants and Mutations in SARS-CoV-2 Proteins from Indian Isolates. Gene Rep. 2021, 25, 101044. [Google Scholar] [CrossRef]
- Duerr, R.; Dimartino, D.; Marier, C.; Zappile, P.; Wang, G.; Lighter, J.; Elbel, B.; Troxel, A.B.; Heguy, A. Dominance of Alpha and Iota Variants in SARS-CoV-2 Vaccine Breakthrough Infections in New York City. J. Clin. Investig. 2021, 131, e152702. [Google Scholar] [CrossRef]
- Nagy, Á.; Pongor, S.; Győrffy, B. Different Mutations in SARS-CoV-2 Associate with Severe and Mild Outcome. Int. J. Antimicrob. Agents 2021, 57, 106272. [Google Scholar] [CrossRef]
- Zinzula, L. Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020, 538, 116–124. [Google Scholar] [CrossRef]
- Santerre, M.; Arjona, S.P.; Allen, C.N.; Shcherbik, N.; Sawaya, B.E. Why do SARS-CoV-2 NSPs rush to the ER? J. Neurol. 2020, 268, 2013–2022. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Almela, E.G.; García-Moreno, M.; Marina, A.I.; Carrasco, L. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. RNA 2019, 25, 431–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins-Filho, P.R. Relationship between population density and COVID-19 incidence and mortality estimates: A county-level analysis. J. Infect. Public Health 2021, 14, 1087–1088. [Google Scholar] [CrossRef]
- Sy, K.T.L.; White, L.F.; Nichols, B.E. Population density and basic reproductive number of COVID-19 across United States counties. PLoS ONE 2021, 16, e0249271. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.; Ahmed, S.N.; Opu, R.R.; Daullah, M.U.; Khan, S.; Talukder, A.A.; Okitsu, S.; Ushijima, H.; Zhang, M.; Dey, S.K. Impact of Meteorological Parameters and Population Density on Variants of SARS-CoV-2 and Outcome of COVID-19 Pandemic in Japan. Epidemiol. Infect. 2021, 149, E103. [Google Scholar] [CrossRef]
- Can, H.; Köseoğlu, A.E.; Alak, S.E.; Güvendi, M.; Döşkaya, M.; Karakavuk, M.; Gürüz, A.Y.; Ün, C. Analysis of the Full Genome Sequences of SARS-CoV-2 Isolates to Determine Antigenic Proteins and Epitopes to Be Used for the Development of a Vaccine or a Diagnostic Approach for COVID-19. Sci. Rep. 2020, 10, 22387. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Regidor-Cerrillo, J.; Checa, R.; Diezma-Díaz, C.; Montoya, A.; García-Cantalejo, J.; Botías, P.; Arroyo, J.; Ortega-Mora, L.-M. SARS-CoV-2 Infection in One Cat and Three Dogs Living in COVID-19-Positive Households in Madrid, Spain. Front. Vet. Sci. 2021, 8, 1292. [Google Scholar] [CrossRef]
- Klaus, J.; Meli, M.L.; Willi, B.; Nadeau, S.; Beisel, C.; Stadler, T.; Egberink, H.; Zhao, S.; Lutz, H.; Riond, B. Detection and Genome Sequencing of SARS-CoV-2 in a Domestic Cat with Respiratory Signs in Switzerland. Viruses 2021, 13, 496. [Google Scholar] [CrossRef]
- Department of Health Philippines. PH Genomic Biosurveillance Detects SARS-COV-2 UK Variant 2021. Department of Health, Philippines. Available online: https://doh.gov.ph/doh-press-release/PH-GENOMIC-BIOSURVEILLANCE-DETECTS-SARS-COV-2-UK-VARIANT (accessed on 29 June 2021).
- Koyama, T.; Parida, L. Identification of a Low Pathogenicity Clade of SARS-CoV-2. Preprints 2020. [Google Scholar] [CrossRef]
- Muttineni, R.; Kammili, N.; Bingi, T.C.; Rao M, R.; Putty, K.; Dholaniya, P.S.; Puli, R.K.; Pakalapati, S.; Doodipala, M.R.; Upadhyay, A.A. Clinical and Whole Genome Characterization of SARS-CoV-2 in India. PLoS ONE 2021, 16, e0246173. [Google Scholar] [CrossRef]
- Tablizo, F.A.; Lapid, C.M.; Maralit, B.A.; Yap, J.M.C.; Destura, R.V.; Alejandria, M.A.; Petronio-Santos, J.A.; Morado, E.K.D.; Dizon, J.G.A.; Llames, J.-H.S.; et al. Analysis of Sars-Cov-2 Genome Sequences from the Philippines: Genetic Surveillance and Transmission Dynamics. medRxiv 2020, 1–30. [Google Scholar] [CrossRef]
- Kamikubo, Y.; Takahashi, A. Paradoxical Dynamics of SARS-CoV-2 by Herd Immunity and Antibody-Dependent Enhancement. Camb. Open Engag. 2020. [Google Scholar] [CrossRef]
- Maitra, A.; Sarkar, M.C.; Raheja, H.; Biswas, N.K.; Chakraborti, S.; Singh, A.K.; Ghosh, S.; Sarkar, S.; Patra, S.; Mondal, R.K. Mutations in SARS-CoV-2 Viral RNA Identified in Eastern India: Possible Implications for the Ongoing Outbreak in India and Impact on Viral Structure and Host Susceptibility. J. Biosci. 2020, 45, 1–18. [Google Scholar] [CrossRef]
- Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R. Spike Mutation D614G Alters SARS-CoV-2 Fitness. Nature 2021, 592, 116–121. [Google Scholar] [CrossRef]
- Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. The D614G Mutation in the SARS-CoV-2 Spike Protein Reduces S1 Shedding and Increases Infectivity. BioRxiv 2020. [Google Scholar] [CrossRef]
- Volz, E.; Hill, V.; McCrone, J.T.; Price, A.; Jorgensen, D.; O’Toole, Á.; Southgate, J.; Johnson, R.; Jackson, B.; Nascimento, F.F. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 2021, 184, 64–75. [Google Scholar] [CrossRef]
- Wang, R.; Hozumi, Y.; Yin, C.; Wei, G.W. Decoding SARS-CoV-2 Transmission and Evolution and Ramifications for COVID-19 Diagnosis, Vaccine, and Medicine. J. Chem. Inf. Model. 2020, 60, 5853–5865. [Google Scholar] [CrossRef]
- Koyama, T.; Weeraratne, D.; Snowdon, J.L.; Parida, L. Emergence of Drift Variants That May Affect COVID-19 Vaccine Development and Antibody Treatment. Pathogens 2020, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Oulas, A.; Zanti, M.; Tomazou, M.; Zachariou, M.; Minadakis, G.; Bourdakou, M.M.; Pavlidis, P.; Spyrou, G.M. Generalized Linear Models Provide a Measure of Virulence for Specific Mutations in SARS-CoV-2 Strains. PLoS ONE 2021, 16, e0238665. [Google Scholar] [CrossRef] [PubMed]
Community | 2020 Est. Population | Land Area (sq. km.) | Population Density (Persons/sq. km.) | Source of Wastewater | Water Body Receiving Wastewater | New COVID-19 Cases 1 | Active COVID-19 Cases 1 |
---|---|---|---|---|---|---|---|
23-C | 18,474 | 0.20 | 94,111 | Sewer pipe | Davao Gulf | 17 | 23 |
76-A Bucana | 94,074 | 4.02 | 23,409 | Sewer pipe | Davao River | 198 | 264 |
Leon Garcia | 15,296 | 0.22 | 68,224 | Sewer pipe | Davao Gulf | 44 | 59 |
Matina Crossing | 36,342 | 5.29 | 6866 | Sewer pipe | Matina River | 149 | 196 |
Mintal | 14,820 | 7.68 | 1929 | Natural creek | Talomo River | 22 | 31 |
Monteverde | 6404 | 0.21 | 31,042 | Natural creek reinforced with boulders | Davao Gulf | 20 | 26 |
Entire Davao City | 1,816,987 | 2440.00 | 744.67 | - | - | 3120 | 4379 |
Gene Marker | Communities 1 | |
---|---|---|
Positive (%) | Ct Range 2 | |
E | 15/24 (62.5%) | 29.95–39.73 |
N | 20/24 (83.3%) | 29.41–38.74 |
RdRP | 21/24 (87.5%) | 31.26–38.89 |
Overall | 22/24 (91.7%) | 29.41–39.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero, M.C.B.; Murao, L.A.E.; Limen, M.A.G.; Caalim, D.R.A.; Gaite, P.L.A.; Bacus, M.G.; Acaso, J.T.; Miguel, R.M.; Corazo, K.; Knot, I.E.; et al. Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 8789. https://doi.org/10.3390/ijerph19148789
Otero MCB, Murao LAE, Limen MAG, Caalim DRA, Gaite PLA, Bacus MG, Acaso JT, Miguel RM, Corazo K, Knot IE, et al. Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study. International Journal of Environmental Research and Public Health. 2022; 19(14):8789. https://doi.org/10.3390/ijerph19148789
Chicago/Turabian StyleOtero, Maria Catherine B., Lyre Anni E. Murao, Mary Antoinette G. Limen, Daniel Rev A. Caalim, Paul Lorenzo A. Gaite, Michael G. Bacus, Joan T. Acaso, Refeim M. Miguel, Kahlil Corazo, Ineke E. Knot, and et al. 2022. "Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study" International Journal of Environmental Research and Public Health 19, no. 14: 8789. https://doi.org/10.3390/ijerph19148789
APA StyleOtero, M. C. B., Murao, L. A. E., Limen, M. A. G., Caalim, D. R. A., Gaite, P. L. A., Bacus, M. G., Acaso, J. T., Miguel, R. M., Corazo, K., Knot, I. E., Sajonia, H., II, de los Reyes, F. L., III, Jaraula, C. M. B., Baja, E. S., & Del Mundo, D. M. N. (2022). Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study. International Journal of Environmental Research and Public Health, 19(14), 8789. https://doi.org/10.3390/ijerph19148789