Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden
Abstract
:1. Introduction
2. Methodology
2.1. Data Gathering
2.2. Statistical Analysis
2.2.1. Descriptive Statistics (Box Plots)
2.2.2. Principal Component Analysis (PCA)
2.2.3. Correlation Analysis
3. Results and Discussions
3.1. Relation between SARS-CoV-2 Cases and Water Parameters Considered in This Study
3.2. Correlation Analysis
4. Limitations
5. Future Recommendations and Conclusions
- Samples were collected from three different WWTPs (Henriksdal, Bromma and Käppala), which serve six different regions in Stockholm, and were analyzed for PMMoV levels (Ct value) and SARS-CoV-2 gene copy number/WWTP per week with consideration given to the bovine factor. Based on the statistical distribution of the obtained data and the flow rate (m3/day) for each WWTP, the difference in the dataset might be related to the capacity of the WWTP.
- By examining the PCA plot and loading plot for Stockholm, it is evident that the data from the wastewater samples exhibit random fluctuations instead of a continuous pattern. These fluctuations could be attributed to variances in the wastewater itself, the population that the WWTP serves, or the presence of various strains of SARS-CoV-2 in circulation.
- Upon correlating the parameters for Stockholm, a statistically significant positive correlation was observed between the wastewater characteristics and the available clinical data on SARS-CoV-2, with correlation coefficients ranging from 0.42 to 0.95. Nonetheless, the correlations were found to differ when conducting the analysis for specific regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVID Live—Coronavirus Statistics—Worldometer [WWW Document], n.d. Available online: https://www.worldometers.info/coronavirus/ (accessed on 26 November 2022).
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef] [PubMed]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Baluja, M.Q.; Graham, D.W.; Corbishley, A.; McDonald, J.E.; Malham, S.K.; Hillary, L.S.; Connor, T.R.; Gaze, W.H.; Moura, I.B.; et al. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Sci. Total Environ. 2020, 749, 141364. [Google Scholar] [CrossRef]
- Lescure, F.-X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.-H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Le Hingrat, Q.; et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020, 20, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Hokajärvi, A.-M.; Rytkönen, A.; Tiwari, A.; Kauppinen, A.; Oikarinen, S.; Lehto, K.-M.; Kankaanpää, A.; Gunnar, T.; Al-Hello, H.; Blomqvist, S.; et al. The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Sci. Total Environ. 2021, 770, 145274. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Westhaus, S.; Weber, F.-A.; Schiwy, S.; Linnemann, V.; Brinkmann, M.; Widera, M.; Greve, C.; Janke, A.; Hollert, H.; Wintgens, T.; et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany—Suitability for COVID-19 surveillance and potential transmission risks. Sci. Total Environ. 2021, 751, 141750. [Google Scholar] [CrossRef]
- Jafferali, M.H.; Khatami, K.; Atasoy, M.; Birgersson, M.; Williams, C.; Cetecioglu, Z. Benchmarking virus concentration methods for quantification of SARS-CoV-2 in raw wastewater. Sci. Total Environ. 2021, 755, 142939. [Google Scholar] [CrossRef]
- Stephens, N.; Béen, F.; Savic, D. An Analysis of SARS-CoV-2 in Wastewater to Evaluate the Effectiveness of Nonpharmaceutical Interventions against COVID-19 in The Netherlands. ACS EST Water 2022, 2, 2158–2166. [Google Scholar] [CrossRef]
- Wu, F.; Xiao, A.; Zhang, J.; Moniz, K.; Endo, N.; Armas, F.; Bushman, M.; Chai, P.R.; Duvallet, C.; Erickson, T.B.; et al. Wastewater Surveillance of SARS-CoV-2 across 40 U.S. states. medRxiv 2021. [Google Scholar] [CrossRef]
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef] [PubMed]
- Kankaanpää, A.; Ariniemi, K.; Heinonen, M.; Kuoppasalmi, K.; Gunnar, T. Current trends in Finnish drug abuse: Wastewater based epidemiology combined with other national indicators. Sci. Total Environ. 2016, 568, 864–874. [Google Scholar] [CrossRef]
- Dias, E.; Ebdon, J.; Taylor, H. The application of bacteriophages as novel indicators of viral pathogens in wastewater treatment systems. Water Res. 2018, 129, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Howard, I.; Espigares, E.; Lardelli, P.; Martín, J.L.; Espigares, M. Evaluation of microbiological and physicochemical indicators for wastewater treatment. Environ. Toxicol. 2004, 19, 241–249. [Google Scholar] [CrossRef]
- Nayak, S.R.; Arora, V.; Sinha, U.; Poonia, R.C. A statistical analysis of COVID-19 using Gaussian and probabilistic model. J. Interdiscip. Math. 2021, 24, 19–32. [Google Scholar] [CrossRef]
- Schlickeiser, R.; Schlickeiser, F. A Gaussian model for the time development of the Sars-Cov-2 corona pandemic disease. Predict. Ger. Made March 2020, 30, 2020. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, S.; Ronquillo, N.; Belda-Ferre, P.; Alvarado, D.; Javidi, T.; Longhurst, C.A.; Knight, R. High throughput wastewater SARS-CoV-2 detection enables forecasting of community infection dynamics in San Diego county. ASM J. mSyst. 2021, 6, e00045-21. [Google Scholar] [CrossRef]
- Ceylan, Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci. Total Environ. 2020, 729, 138817. [Google Scholar] [CrossRef]
- Wang, D.-G.; Dong, Q.-Q.; Du, J.; Yang, S.; Zhang, Y.-J.; Na, G.-S.; Ferguson, S.G.; Wang, Z.; Zheng, T. Using Monte Carlo simulation to assess variability and uncertainty of tobacco consumption in a city by sewage epidemiology. BMJ Open 2016, 6, e010583. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, J.A.; Rumbo-Feal, S.; Conde-Pérez, K.; López-Oriona, Á.; Tarrío-Saavedra, J.; Reif, R.; Ladra, S.; Rodiño-Janeiro, B.K.; Nasser, M.; Cid, Á.; et al. Predicting the number of people infected with SARS-COV-2 in a population using statistical models based on wastewater viral load. Sci. Total Environ. 2022, 10, 152334. [Google Scholar] [CrossRef]
- Salvatore, S.; Bramness, J.G.; Reid, M.J.; Thomas, K.V.; Harman, C.; Røislien, J. Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods. PLoS ONE 2015, 10, e0138669. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, P.; Costa, S.; Brown, B.; Silva, S.; Rodrigues, R.; Valério, E. Quantitative PCR Detection of Enteric Viruses in Wastewater and Environmental Water Sources by the Lisbon Municipality: A Case Study. Water 2020, 12, 544. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.P.S.; Sena, K.; Hodgers, L.; Palmer, A.; Toze, S. Comparative enteric viruses and coliphage removal during wastewater treatment processes in a sub-tropical environment. Sci. Total Environ. 2018, 616–617, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Prado, T.; de Castro Bruni, A.; Barbosa, M.R.F.; Garcia, S.C.; de Jesus Melo, A.M.; Sato, M.I.Z. Performance of wastewater reclamation systems in enteric virus removal. Sci. Total Environ. 2019, 678, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Champredon, D.; Fazil, A.; Mangat, C.S.; Peterson, S.W.; Mejia, E.M.; Lu, X.; Chekouo, T. Statistical framework to support the epidemiological interpretation of SARS-CoV-2 concentration in municipal wastewater. Sci. Rep. 2022, 12, 13490. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Roguet, A.; McClary-Gutierrez, J.S.; Newton, R.J.; Kloczko, N.; Meiman, J.G.; McLellan, S.L. Evaluation of Sampling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 Burdens in Wisconsin Communities. ACS EST Water 2021, 1, 1955–1965. [Google Scholar] [CrossRef]
- Morvan, M.; Jacomo, A.L.; Souque, C.; Wade, M.J.; Hoffmann, T.; Pouwels, K.; Lilley, C.; Singer, A.C.; Porter, J.; Evens, N.P.; et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 2022, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Galani, A.; Aalizadeh, R.; Kostakis, M.; Markou, A.; Alygizakis, N.; Lytras, T.; Adamopoulos, P.G.; Peccia, J.; Thompson, D.C.; Kontou, A.; et al. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Sci. Total Environ. 2022, 804, 150151. [Google Scholar] [CrossRef]
- Perez-Zabaleta, M.; Archer, A.; Khatami, K.; Jafferali, M.H.; Nandy, P.; Atasoy, M.; Birgersson, M.; Williams, C.; Cetecioglu, Z. Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm: What lessons can be learned from the Swedish perspective? Sci. Total Environ. 2023, 858, 160023. [Google Scholar] [CrossRef]
- Potter, K. Methods for Presenting Statistical Information: The Box Plot. Vis. Large Unstructured Data Sets 2006, 4, 97–106. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correlation in Statistics: Correlation Analysis Explained [WWW Document]. Statistics How to. Available online: https://www.statisticshowto.com/probability-and-statistics/correlation-analysis/ (accessed on 1 June 2021).
- Melvin, R.G.; Hendrickson, E.N.; Chaudhry, N.; Georgewill, O.; Freese, R.; Schacker, T.W.; Simmons, G.E., Jr. A novel wastewater-based epidemiology indexing method predicts SARS-CoV-2 disease prevalence across treatment facilities in met-ropolitan and regional populations. Sci. Rep. 2021, 11, 21368. [Google Scholar] [CrossRef]
- How to Read PCA Biplots and Scree Plots. 2018. BioTuring’s Blog. Available online: https://blog.bioturing.com/2018/06/18/how-to-read-pca-biplots-and-scree-plots/ (accessed on 1 June 2021).
Method | Significance of Method | Reference |
---|---|---|
ANOVA and t-TEST | These methods can be applied to test the significance of differences between the two means. Significance level refers to the likelihood that the random variable chosen is not representative of the population. The lower the significance level, the more confident you can be in replicating your data. | [15,16] |
Gaussian Distribution | The data should follow an exponential rise in each of the parameters so that the data follows a bell-shaped curve. The area under the curve plotted between “gene copy no./ wastewater treatment plant (WWTP) and weeks” will tell us how effective the method is in quantifying the viral loads. A comparative Gaussian graph can be formed to validate the method used. | [17,18] |
ARIMA Models | These models are time-series models, which are used to reveal a reliable and meaningful statistical model that can be used for future analysis. They are instrumental for modelling the temporal dependency structure of time-series data, especially for series that have a cyclic or repeating pattern, given that the data changes with trends, periodic changes, and other random distortions. This model is used for fitting the time series data for hepatitis, influenza, and even SARS-CoV-2. | [19,20] |
Monte Carlo Method | A probabilistic model to assess the uncertainty of a parameter, for example in wastewater analysis. The most effective quantification method for uncertainty and variability is to assign a probability density function to each parameter. This method allows us to perform sensitivity analysis, which will represent the % of influence of each experimental parameter of the outcome. | [21] |
Regression Analysis (using GAM and LOESS) | A method to explore which independent parameter has a significant effect on the outcome. | [22] |
Functional Distribution Analysis (FDA) | A statistical method was specifically developed to analyze temporal data. | [23] |
Functional Principal Component Analysis (FPCA) | Used to analyze temporal patterns. The patterns can help us understand the extent of the accuracy of the outcome or the accuracy of the experimental data. | [23] |
FANOVA | A suggested way to analyze the association between the functional data (outcome) and the co-variates. | [23] |
Fisher’s Exact Test | Used to form a correlation matrix between each of the parameters selected to the presence of a positive or negative correlation. | [24,25] |
Generalized Additive Model for Location, Scale and Shape (GAMLSS) | This is a regression model selected if the data do not follow a Gaussian distribution. | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chekkala, A.; Atasoy, M.; Williams, C.; Cetecioglu, Z. Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden. Int. J. Environ. Res. Public Health 2023, 20, 4181. https://doi.org/10.3390/ijerph20054181
Chekkala A, Atasoy M, Williams C, Cetecioglu Z. Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden. International Journal of Environmental Research and Public Health. 2023; 20(5):4181. https://doi.org/10.3390/ijerph20054181
Chicago/Turabian StyleChekkala, Aashlesha, Merve Atasoy, Cecilia Williams, and Zeynep Cetecioglu. 2023. "Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden" International Journal of Environmental Research and Public Health 20, no. 5: 4181. https://doi.org/10.3390/ijerph20054181
APA StyleChekkala, A., Atasoy, M., Williams, C., & Cetecioglu, Z. (2023). Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden. International Journal of Environmental Research and Public Health, 20(5), 4181. https://doi.org/10.3390/ijerph20054181