Machine Learning Approaches for the Frailty Screening: A Narrative Review
Abstract
:1. Introduction
1.1. Background
1.1.1. Decision Trees
1.1.2. K-Nearest Neighbours
1.1.3. Support Vector Machine
1.1.4. Artificial Neural Networks
1.1.5. Random Forest
1.1.6. Extreme Gradient Boosting
2. Methods
Search Strategy and Data Extraction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators, G.A. Global, regional, and national burden of diseases and injuries for adults 70 years and older: Systematic analysis for the Global Burden of Disease 2019 Study. BMJ 2022, 376, e068208. [Google Scholar] [CrossRef]
- Alves, S.; Teixeira, L.; Ribeiro, O.; Paúl, C. Examining Frailty Phenotype Dimensions in the Oldest Old. Front. Psychol. 2020, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- Pujos-Guillot, E.; Pétéra, M.; Jacquemin, J.; Centeno, D.; Lyan, B.; Montoliu, I.; Madej, D.; Pietruszka, B.; Fabbri, C.; Santoro, A.; et al. Identification of Pre-frailty Sub-Phenotypes in Elderly Using Metabolomics. Front. Physiol. 2019, 9, 1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouroubali, A.; Kondylakis, H.; Logothetidis, F.; Katehakis, D.G. Developing an AI-Enabled Integrated Care Platform for Frailty. Healthcare 2022, 10, 443. [Google Scholar] [CrossRef]
- Pogam, M.A.L.; Seematter-Bagnoud, L.; Niemi, T.; Assouline, D.; Gross, N.; Trächsel, B.; Rousson, V.; Peytremann-Bridevaux, I.; Burnand, B.; Santos-Eggimann, B. Development and validation of a knowledge-based score to predict Fried’s frailty phenotype across multiple settings using one-year hospital discharge data: The electronic frailty score. EClinicalMedicine 2022, 44, 101260. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Stewart, R.; White, H. Importance of frailty in patients with cardiovascular disease. Eur. Heart J. 2014, 35, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Duppen, D.; der Elst, M.C.J.V.; Dury, S.; Lambotte, D.; Donder, L.D. The Social Environment’s Relationship with Frailty: Evidence From Existing Studies. J. Appl. Gerontol. 2019, 38, 3–26. [Google Scholar] [CrossRef]
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.; Doehner, W.; Evans, J.; et al. Frailty Consensus: A Call to Action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Uchmanowicz, I.; Nessler, J.; Gobbens, R.; Gackowski, A.; Kurpas, D.; Straburzynska-Migaj, E.; Kałuzna-Oleksy, M.; Jankowska, E.A. Coexisting Frailty With Heart Failure. Front. Physiol. 2019, 10, 791. [Google Scholar] [CrossRef] [Green Version]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef]
- Oviedo-Briones, M.; Laso, Á.R.; Carnicero, J.A.; Cesari, M.; Grodzicki, T.; Gryglewska, B.; Sinclair, A.; Landi, F.; Vellas, B.; Checa-López, M.; et al. A Comparison of Frailty Assessment Instruments in Different Clinical and Social Care Settings: The Frailtools Project. J. Am. Med. Dir. Assoc. 2021, 22, 607.e7–607.e12. [Google Scholar] [CrossRef] [PubMed]
- Gobbens, R.J.; Boersma, P.; Uchmanowicz, I.; Santiago, L.M. The Tilburg Frailty Indicator (TFI): New Evidence for Its Validity. Clin. Interv. Aging 2020, 15, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soong, J.T.Y.; Ng, S.H.X.; Tan, K.X.Q.; Kaubryte, J.; Hopper, A. Variation in coded frailty syndromes in secondary care administrative data: An international retrospective exploratory study. BMJ Open 2022, 12, e052735. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Leung, J.; Morley, J.E. Comparison of Frailty Indicators Based on Clinical Phenotype and the Multiple Deficit Approach in Predicting Mortality and Physical Limitation. J. Am. Geriatr. Soc. 2012, 60, 1478–1486. [Google Scholar] [CrossRef]
- Vermeiren, S.; Vella-Azzopardi, R.; Beckwée, D.; Habbig, A.K.; Scafoglieri, A.; Jansen, B.; Bautmans, I.; Bautmans, I.; Verté, D.; Beyer, I.; et al. Frailty and the Prediction of Negative Health Outcomes: A Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1163.e1–1163.e17. [Google Scholar] [CrossRef]
- Boreskie, K.F.; Hay, J.L.; Boreskie, P.E.; Arora, R.C.; Duhamel, T.A. Frailty-aware care: Giving value to frailty assessment across different healthcare settings. BMC Geriatr. 2022, 22, 13. [Google Scholar] [CrossRef]
- Teixeira-Santos, L.; Bobrowicz-Campos, E.; Parola, V.; Coelho, A.; Gil, I.; de Lurdes Almeida, M.; Apóstolo, J.L. What Is the Relationship between Lifestyle and Frailty Status? Data from the Portuguese Multicentre Descriptive Study. Nurs. Rep. 2022, 12, 39–49. [Google Scholar] [CrossRef]
- Liotta, G.; Ussai, S.; Illario, M.; O’Caoimh, R.; Cano, A.; Holland, C.; Roller-Winsberger, R.; Capanna, A.; Grecuccio, C.; Ferraro, M.; et al. Frailty as the Future Core Business of Public Health: Report of the Activities of the A3 Action Group of the European Innovation Partnership on Active and Healthy aging (EIP on AHA). Int. J. Environ. Res. Public Health 2018, 15, 2843. [Google Scholar] [CrossRef] [Green Version]
- Salminen, M.; Viljanen, A.; Eloranta, S.; Viikari, P.; Wuorela, M.; Vahlberg, T.; Isoaho, R.; Kivelä, S.L.; Korhonen, P.; Irjala, K.; et al. Frailty and mortality: An 18-year follow-up study among Finnish community-dwelling older people. Aging Clin. Exp. Res. 2020, 32, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J.L.; Gould, R.L.; Daley, S.; Coulson, M.C.; Ward, E.V.; Butler, A.M.; Nunn, S.P.; Howard, R.J. Psychometric properties of multicomponent tools designed to assess frailty in older adults: A systematic review. BMC Geriatr. 2016, 16, 55. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.D.; Lekan, D.; McCoy, T.P.; Jenkins, M.; Manda, P. Machine learning for predicting readmission risk among the frail: Explainable AI for healthcare. Patterns 2022, 3, 100395. [Google Scholar] [CrossRef] [PubMed]
- Op het Veld, L.P.; van Rossum, E.; Kempen, G.I.; de Vet, H.C.; Hajema, K.; Beurskens, A.J. Fried phenotype of frailty: Cross-sectional comparison of three frailty stages on various health domains. BMC Geriatr. 2015, 15, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolenc, E.; Rotar-Pavlič, D. Frailty assessment scales for the elderly and their application in primary care: A systematic literature review. Slov. J. Public Health 2019, 58, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apóstolo, J.; Cooke, R.; Bobrowicz-Campos, E.; Santana, S.; Marcucci, M.; Cano, A.; Vollenbroek-Hutten, M.; Germini, F.; Holland, C. Predicting risk and outcomes for frail older adults: An umbrella review of frailty screening tools. JBI Database Syst. Rev. Implement. Rep. 2017, 15, 1154–1208. [Google Scholar] [CrossRef] [Green Version]
- Soong, J.T.Y. Frailty measurement in routinely collected data: Challenges and benefits. Lancet Healthy Longev. 2021, 2, e117–e118. [Google Scholar] [CrossRef]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C.; Arora, S.; Street, A.; Parker, S.; Roberts, H.C.; et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: An observational study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Challen, R.; Denny, J.; Pitt, M.; Gompels, L.; Edwards, T.; Tsaneva-Atanasova, K. Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 2019, 28, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Meskó, B.; Görög, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef]
- Hügle, M.; Omoumi, P.; van Laar, J.M.; Boedecker, J.; Hügle, T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol. Adv. Pract. 2020, 4, rkaa005. [Google Scholar] [CrossRef]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Ambagtsheer, R.; Shafiabady, N.; Dent, E.; Seiboth, C.; Beilby, J. The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set. Int. J. Med. Inform. 2020, 136, 104094. [Google Scholar] [CrossRef] [PubMed]
- Ferizi, U.; Honig, S.; Chang, G. Artificial intelligence, osteoporosis and fragility fractures. Curr. Opin. Rheumatol. 2019, 31, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Akbari, G.; Nikkhoo, M.; Wang, L.; Chen, C.P.C.; Han, D.S.; Lin, Y.H.; Chen, H.B.; Cheng, C.H. Frailty Level Classification of the Community Elderly Using Microsoft Kinect-Based Skeleton Pose: A Machine Learning Approach. Sensors 2021, 21, 4017. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A. Artificial Intelligence and Machine Learning in Cardiovascular Health Care. Ann. Thorac. Surg. 2020, 109, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Aponte-Hao, S.; Wong, S.T.; Thandi, M.; Ronksley, P.; McBrien, K.; Lee, J.; Grandy, M.; Mangin, D.; Katz, A.; Singer, A.; et al. Machine learning for identification of frailty in Canadian primary care practices. Int. J. Popul. Data Sci. 2021, 6, 1650. [Google Scholar] [CrossRef]
- Eskandari-Nojehdehi, M.; Parvaneh, S.; Ehsani, H.; Fain, M.; Toosizadeh, N. Frailty Identification using Heart Rate Dynamics: A Deep Learning Approach. IEEE J. Biomed. Health Inform. 2022, 26, 3409–3417. [Google Scholar] [CrossRef]
- Tarekegn, A.; Ricceri, F.; Costa, G.; Ferracin, E.; Giacobini, M. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches. JMIR Med. Inform. 2020, 8, e16678. [Google Scholar] [CrossRef]
- Goyal, P.; Yum, B.; Navid, P.; Chen, L.; Kim, D.H.; Roh, J.; Jaeger, B.C.; Levitan, E.B. Frailty and Post-hospitalization Outcomes in Patients With Heart Failure With Preserved Ejection Fraction. Am. J. Cardiol. 2021, 148, 84–93. [Google Scholar] [CrossRef]
- Feng, Z.; Lugtenberg, M.; Franse, C.; Fang, X.; Hu, S.; Jin, C.; Raat, H. Risk factors and protective factors associated with incident or increase of frailty among community-dwelling older adults: A systematic review of longitudinal studies. PLoS ONE 2017, 12, e0178383. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Zhou, J.; Lee, S.; Tan, M.S.; Liu, T.; Bazoukis, G.; Jeevaratnam, K.; Chan, E.W.Y.; Wong, I.C.K.; Wei, L.; et al. Derivation of an electronic frailty index for predicting short-term mortality in heart failure: A machine learning approach. ESC Heart Fail. 2021, 8, 2837–2845. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; von Elm, E.; Langan, S.M. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef] [PubMed]
- Zak, M.; Sikorski, T.; Wasik, M.; Courteix, D.; Dutheil, F.; Brola, W. Frailty Syndrome—Fall Risk and Rehabilitation Management Aided by Virtual Reality (VR) Technology Solutions: A Narrative Review of the Current Literature. Int. J. Environ. Res. Public Health 2022, 19, 2985. [Google Scholar] [CrossRef] [PubMed]
- Ganea, R.; Paraschiv-Ionescu, A.; Salarian, A.; Bula, C.; Martin, E.; Rochat, S.; Hoskovec, C.; Piot-Ziegler, C.; Aminian, K. Kinematics and dynamic complexity of postural transitions in frail elderly subjects. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Paris, France, 29–31 August 2007; pp. 6117–6120. [Google Scholar] [CrossRef]
- Simpson, L.; Maharaj, M.M.; Mobbs, R.J. The role of wearables in spinal posture analysis: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Lin, C.C.; Lin, P.H.; Chen, C.C.; Lee, R.G.; Huang, J.S.; Tsai, T.H. eFurniture for home-based frailty detection using artificial neural networks and wireless sensors. Med. Eng. Phys. 2013, 35, 263–268. [Google Scholar] [CrossRef]
- Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and Big Data. Procedia Comput. Sci. 2018, 130, 603–610. [Google Scholar] [CrossRef]
- Bian, C.; Ye, B.; Chu, C.H.; McGilton, K.S.; Mihailidis, A. Technology for home-based frailty assessment and prediction: A systematic review. Gerontechnology 2020, 19, 1–13. [Google Scholar] [CrossRef]
First Author and Year | Sample Size and Age | Methods | Type of Data | Instrument (s) | Main Outcomes |
---|---|---|---|---|---|
Ambagtsheer 2020 [31] | 592; ≥75 | SVM; DT; KNN | Administrative records | Electronic Frailty Index | Arthritis; diabetes; hypertension; osteoporosis; vision issues; PAS score; Cornell scale; VBC; PBC; WC. |
Aponte-Hao 2021 [36] | 5466; ≥65 | ENLR; SVM; KNN; NB; DT; RF; XGBoost; ANN | Electronic medical record | Rockwood Clinical Frailty Scale | Older; female; less likely to have no known CD. |
Eskandari 2022 [37] | 88; ≥65 | LR; MLP; XGBoost; LSTM | Time-series ECG | Frailty Phenotype | HR dynamics. |
Le Pogam 2022 [5] | 469 int valid; 54,815 ext valid; 71.6 (mean) | BS-LR; Lasso-LR; RF; SVM | IR Lc65+ CHUV | Electronic frailty score | Older; female. |
Mohanty 2022 [21] | 76,000; ≥50 | LR; RF; XGBoost; CatBoost; SC | electronic record data | Demo; FRS-26-ICD; ECI; H-RM; HIU | Prior readmissions; discharge to a rehabilitation facility; length of stay; comorbidities; frailty indicators (30-day readmission). |
Tarekegn 2020 [38] | 1,095,612; ≥65 | ANN; GP; SVM; RF; LR; DT | administrative records | a set of variables (64) | Age (all problems); CI (mortality); number of urgent hospitalizations, femur and neck fracture (fracture problem); mental disease, poly-prescription and disease of the circulatory system (urgent hospitalization and preventable hospitalization); CI and number of urgent hospitalizations (emergency admission with red code). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliosi, E.; Guede-Fernández, F.; Londral, A. Machine Learning Approaches for the Frailty Screening: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 8825. https://doi.org/10.3390/ijerph19148825
Oliosi E, Guede-Fernández F, Londral A. Machine Learning Approaches for the Frailty Screening: A Narrative Review. International Journal of Environmental Research and Public Health. 2022; 19(14):8825. https://doi.org/10.3390/ijerph19148825
Chicago/Turabian StyleOliosi, Eduarda, Federico Guede-Fernández, and Ana Londral. 2022. "Machine Learning Approaches for the Frailty Screening: A Narrative Review" International Journal of Environmental Research and Public Health 19, no. 14: 8825. https://doi.org/10.3390/ijerph19148825
APA StyleOliosi, E., Guede-Fernández, F., & Londral, A. (2022). Machine Learning Approaches for the Frailty Screening: A Narrative Review. International Journal of Environmental Research and Public Health, 19(14), 8825. https://doi.org/10.3390/ijerph19148825