The Effect of Sanitizing Treatments on Respirator Filtration Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach
2.2. Materials
2.2.1. Face Masks
2.2.2. Hand Sanitizer
- ‘Trafalgar’ by Brady Australia Pty Ltd., Greystanes, NSW, Australia, part no. 102606, containing 70% ethanol, 1 L dispenser
- ‘Germ Buster’ by Concept Laboratories Pty Ltd., Warana, QLD, Australia, code GB5LP, 70% ethanol/waterless, 5 L dispenser
2.2.3. Spray Sanitizing Solution
2.2.4. Other Chemicals
2.3. Methods
2.3.1. Equipment and Protocols
- Flat-sheet screening test:
- 2.
- Whole-mask screening test:
- 3.
- Whole-mask MPPS test:
2.3.2. Filtration Performance Indicators
2.3.3. Normalized Indicators
2.4. Exposure to Alcoholic Vapors
2.4.1. Exposure to Saturated Alcoholic Vapors
2.4.2. Hand Sanitizer Test Procedure
2.4.3. Spray Sanitizing Test Procedure
2.4.4. Mask Sanitization Test Procedure
3. Results
3.1. Exposure to Saturated Alcohol Vapor
3.1.1. Mask to Mask Variability
3.1.2. Differences between Makes
3.1.3. Particle Size Dependence
3.2. Exposure to Hand Sanitizer Vapor
3.3. Exposure to Spray Sanitizing
3.4. Exposure to Mask Sanitization
3.5. Statistical Analysis of Results
3.5.1. Statistical Model
3.5.2. Variability of Untreated Mask Samples
4. Discussion
4.1. Different Exposure Treatments
4.2. Future Research
5. Conclusions
- The use of gel hand sanitizer, as commonly provided in many places by automatic or manual dispenser units, to maintain good personal hygiene;
- The spraying of 70% isopropanol solution on table surfaces for general hygiene purposes and for the removal of fomites;
- Sanitizing respirators by spraying 70% isopropanol solution directly onto the face of the mask.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghebreyesus, T.A.; WHO Director-General. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 11 February 2021).
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Reese, A.L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere 2020, 5, e00441-20. [Google Scholar] [CrossRef] [PubMed]
- National Center for Immunization and Respiratory Diseases—Division of Viral Diseases (NCIRD). Hand Hygiene Recommendations, Guidance for Healthcare Providers about Hand Hygiene and COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html (accessed on 17 May 2020).
- WHO. Guide to Local Production: WHO-Recommended Handrub Formulations; WHO: Geneva, Switzerland, 2010; p. 9. Available online: https://www.who.int/gpsc/5may/Guide_to_Local_Production.pdf (accessed on 11 February 2021).
- Freitag, S.; Howell, S.G.; Jim, K.T.C. Why simple face masks are unexpectedly efficient in reducing viral aerosol transmissions. medRxiv 2020, 19. [Google Scholar] [CrossRef]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci. Technol. 2020, 54, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Booth, T.F.; Kournikakis, B.; Bastien, N.; Ho, J.; Kobasa, D.; Stadnyk, L.; Li, Y.; Spence, M.; Paton, S.; Henry, B.; et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 2005, 191, 1472–1477. [Google Scholar] [CrossRef]
- Clarke, A.; Baxter, C.-M.; Graydon, C. Re-Useable Respirators, the Overlooked Elastomeric Respirator. Available online: https://healthcareworkersaustralia.com/elastomeric-mask/ (accessed on 11 February 2021).
- ICEG. Recommended Minimum Requirements for the Use of Masks or Respirators by Health and Residential Care Workers in Areas with Significant Community Transmission of COVID-19; Infection Control Expert Group (ICEG), Department of Health, Australian Government, 2020; p. 3. Available online: https://www.health.gov.au/sites/default/files/documents/2020/11/coronavirus-covid-19-recommended-minimum-requirements-for-the-use-of-masks-or-respirators-by-health-and-residential-care-workers-in-areas-with-significant-community-transmission_0.pdf (accessed on 11 February 2021).
- Sousan, S.; Garcia, N.; White, A.; Balanay, J.A. Filtration efficiency of surgical sterilization fabric for respiratory protection during COVID-19 pandemic. Am. J. Infect. Control 2021, 49, 1–7. [Google Scholar] [CrossRef]
- Rubio-Romero, J.C.; Pardo-Ferreira, M.d.C.; Torrecilla-García, J.A.; Calero-Castro, S. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Saf. Sci. 2020, 129, 104830. [Google Scholar] [CrossRef]
- Liao, L.; Xiao, W.; Zhao, M.; Yu, X.; Wang, H.; Wang, Q.; Chu, S.; Cui, Y. Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS Nano 2020, 14, 6348–6356. [Google Scholar] [CrossRef]
- Grinshpun, S.A.; Yermakov, M.; Khodoun, M. Autoclave sterilization and ethanol treatment of re-used surgical masks and N95 respirators during COVID-19: Impact on their performance and integrity. J. Hosp. Infect. 2020, 105, 608–614. [Google Scholar] [CrossRef]
- Lin, T.-H.; Tseng, C.-C.; Huang, Y.-L.; Lin, H.-C.; Lai, C.-Y.; Lee, S.-A. Effectiveness of N95 Facepiece Respirators in Filtering Aerosol Following Storage and Sterilization. Aerosol Air Qual. Res. 2020, 20, 833–843. [Google Scholar] [CrossRef]
- Fischer, R.; Morris, D.; van Doremalen, N.; Sarchette, S.; Matson, M.J.; Bushmaker, T.; Yinda, C.K.; Seifert, S.; Gamble, A.; Williamson, B.; et al. Effectiveness of N95 Respirator Decontamination and Reuse against SARS-CoV-2 Virus. Emerg. Infect. Dis. J. 2020, 26, 2253. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.P.; Löffler, F. The Collection Performance of Electret Filters in the Particle-Size Range 10 Nm-10 Mu-M. J. Aerosol Sci. 1986, 17, 438–445. [Google Scholar] [CrossRef]
- Lethimäki, M.; Heinonen, K. Reliability of Electret Filters. Build. Environ. 1994, 29, 353–355. [Google Scholar] [CrossRef]
- Brown, R.C. Effect of Electric Charge in Filter Materials. Filtr. Sep. 1989, 26, 46–51. [Google Scholar] [CrossRef]
- Scheuch, G. Breathing Is Enough: For the Spread of Influenza Virus and SARS-CoV-2 by Breathing Only. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.; Melekidis, S.; Koch, R.; Bauer, H.-J. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling. J. Aerosol Sci. 2021, 154, 105760. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Lo, L.J.; Waring, M.S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 2020, 10, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Kuo, Y.-M.; Lin, C.-W.; Ke, W.-R.; Chen, C.-C. Experimental Characterization of Aerosol Suspension in a Rotating Drum. Aerosol Air Qual. Res. 2019, 19, 688–697. [Google Scholar] [CrossRef]
- Tsuda, A.; Henry, F.S.; Butler, J.P. Particle transport and deposition: Basic physics and particle kinetics. Compr. Physiol. 2013, 3, 1437–1471. [Google Scholar]
- Jordan, D.W. The adhesion of dust particles. Br. J. Appl. Phys. 1954, 5, S194. [Google Scholar] [CrossRef]
- Wilson, N.M.; Marks, G.B.; Eckhardt, A.; Clarke, A.M.; Young, F.P.; Garden, F.L.; Stewart, W.; Cook, T.M.; Tovey, E.R. The effect of respiratory activity, non-invasive respiratory support and facemasks on aerosol generation and its relevance to COVID-19. Anaesthesia 2021, 76, 1465–1474. [Google Scholar] [CrossRef]
- Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2020, 592, 116–121. [Google Scholar] [CrossRef]
- Baric, R.S. Emergence of a Highly Fit SARS-CoV-2 Variant. N. Engl. J. Med. 2020, 383, 2684–2686. [Google Scholar] [CrossRef]
- van Oosterhout, C.; Hall, N.; Ly, H.; Tyler, K.M. COVID-19 evolution during the pandemic—Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence 2021, 12, 507–508. [Google Scholar] [CrossRef]
- Mwenda, M.; Saasa, N.; Sinyange, N.; Busby, G.; Chipimo, P.J.; Hendry, J.; Kapona, O.; Yingst, S.; Hines, J.Z.; Minchella, P.; et al. Detection of B.1.351 SARS-CoV-2 Variant Strain-Zambia, December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 280–282. [Google Scholar] [CrossRef]
- ISO 29463-1:2017(en); High Efficiency Filters and Filter Media for Removing Particles from Air—Part 1: Classification, Performance, Testing and Marking. ISO: Geneva, Switzerland, 2017; p. p. 26.
- ISO 16890-4:2016(en); Air Filters for General Ventilation—Part 4: Conditioning Method to Determine the Minimum Fractional Test Efficiency. ISO: Geneva, Switzerland, 2016; p. p. 20.
- EN779:2012(E); Particulate Air Filters for General Ventilation—Determination of the Filtration Performance. CEN: Brussels, Belgium, 2012; p. p. 74.
- Deng, X.; Gong, G.; He, X.; Shi, X.; Mo, L. Control of exhaled SARS-CoV-2-laden aerosols in the interpersonal breathing microenvironment in a ventilated room with limited space air stability. J. Environ. Sci. 2021, 108, 175–187. [Google Scholar] [CrossRef] [PubMed]
- AS/NZS 1716:2012; Respiratory Protective Devices. Standards_Australia: Sydney, Australia, 2012; p. p. 130.
- TEB-APR-STP-0059; Determination of Particulate Filter Efficiency Level for N95 Series Filters against Solid Particulates for Non-Powered, Air-Purifying Respirators Standard Testing Procedure (STP). NIOSH: Pittsburgh, PA, USA, 2019; p. p. 9.
- TEB-APR-STP-0007; Determination of Inhalation Resistance Test, Air-Purifying Respirators Standard Testing Procedure (STP). NIOSH: Pittsburgh, PA, USA, 2019; p. p. 7.
- He, W.; Guo, Y.; Liu, J.; Yue, Y.; Wang, J. Filtration Performance Degradation of In-Use Masks by Vapors from Alcohol-Based Hand Sanitizers and the Mitigation Solutions. Glob. Chall. 2020, 5, 2100015. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. What It Means to Be NIOSH-Approved: A Look into N95 Certification Testing. Knowits.Niosh.Gov. 2013. Available online: https://www.youtube.com/watch?v=-sY47zdE47YA (accessed on 7 February 2021).
- EN149:2001+A1; Respiratory Protective Devices—Filtering Half Masks to Protect against Particles—Requirements, Testing, Marking. CEN: Berlin, Germany, 2009; p. p.44.
- NIOSH. 42 CFR Part 84 Respiratory Protective Devices. Available online: https://www.cdc.gov/niosh/npptl/topics/respirators/pt84abs2.html (accessed on 18 February 2021).
- GB 2626-2006. Respiratory Protective Equipment—Non-Powered Air-Purifying Particle Respirator. AQSIQ: People’s Republic of China. 2006. Available online: https://www.chinesestandard.net/PDF.aspx/GB2626-2006 (accessed on 18 February 2021).
- Schütz, J.A.; Humphries, W. A Study of Wool/Polypropylene Nonwovens as an Alternative to the Hansen Filter. Text. Res. J. 2010, 80, 1265–1277. [Google Scholar] [CrossRef]
- Al-Attabi, R.; Dumee, L.F.; Kong, L.X.; Schutz, J.A.; Morsi, Y. High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Adv. Eng. Mater. 2018, 20, 10. [Google Scholar] [CrossRef]
- Schutz, J.; Halliburton, B. Synthetic aerosols from fine carbon nanotubes of 10 nanometres diameter. In Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology (ICONN), Sydney, NSW, Australia, 22–26 February 2010; pp. 7–9. [Google Scholar] [CrossRef]
- Schutz, J.A.; Church, J.S. Respiratory protection for physiologically straining environments. Text. Res. J. 2011, 81, 1367–1380. [Google Scholar] [CrossRef]
- Dorman, R.G. Filter Materials. In High-Efficiency Air Filtration; White, P.A.F., Smith, S.E., Eds.; Butterworths: London, UK, 1964. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
Filter Mask | Manufacturer | Retail | Type | Manufacturing Date | Rating | Sample Reference |
---|---|---|---|---|---|---|
Respirator with ear loops | Fujian Nuomigao Medical Technology Co., Ltd., Jinjiang, Fujian, China | Bunnings | SOJO DR20V (Box 1) | 13 April 2020 | KN95 | KN95-FN1 |
(Box 2) | 4 May 2020 | KN95 | KN95-FN2 | |||
Respirator with ear loops | Zhejiang Shunfa Safety Technology Co., Ltd., Jinhua City, Zhejiang, China 321200 | Seton | SF-K01 | July 2020 | KN95 | KN95-ZS |
Respirator mask, elastic band straps | Shanghai Da Sheng Health Products Co., Ltd., Songjiang, Shanghai, China 201613 | Bunnings (Protector) | DTC3B P2 (RP2FR20) | February 2020 | P2 | P2-SD |
Sample Reference | Thickness | Basis Wt. | Packing Density | Pressure Drop | Protection Factor (0.3) | Quality Factor (0.3) | |
---|---|---|---|---|---|---|---|
(mm) | (g/m2) | (%) | (Pa) | (−) | (10−9 m) | ||
KN95-FN1 | Overall | 1.93 (0.17) | 174 (6) | 10.0 (0.8) | 219 (8) | 29–69 | 41–55 |
Box 1 (A/B) | 1.78 (0.04) | 174 (10) | 10.7 (0.8) | A: 47 (2) B: 30 (1) | A: 48 (2) B: 43 (2) | ||
Box 2 (A/B) | 2.10 (0.14) | 176 (3) | 9.3 (0.5) | A: 66 (3) B: 42 (3) | A: 54 (1) B: 50 (2) | ||
KN95-FN2 | Overall | 2.59 (0.32) | 219 (14) | 9.4 (0.9) | 282 (49) | 25–37 | 30–39 |
A | 2.59 (0.33) | 220 (16) | 9.4 (0.9) | 33 (4) | 36 (3) | ||
B | 2.58 (0.34) | 217 (13) | 9.3 (1.0) | 28 (3) | 34 (4) | ||
KN95-ZS | Overall | 1.78 (0.10) | 205 (4) | 12.7 (0.8) | 289 (11) | 78–128 | 36–54 |
A | 1.80 (0.08) | 204 (4) | 12.5 (0.7) | 86 (8) | 45 (3) | ||
B | 1.76 (0.11) | 205 (4) | 12.9 (0.9) | 107 (21) | 45 (9) | ||
P2-SD | Overall | 2.85 (0.22) | 233 (5) | 9.0 (0.7) | 209 (6) | 64–83 | 53–63 |
A | 2.82 (0.20) | 231 (4) | 9.1 (0.5) | 207 (5) | 70 (6) | 58 (5) | |
B | 2.91 (0.26) | 236 (4) | 9.0 (1.0) | 214 (6) | 76 (7) | 57 (4) |
Performance Indicator | Unit | Formula | Typical Range for Charge State | |
---|---|---|---|---|
Discharged | Charged | |||
Normalized Penetration Pn0.3 | (−) | 0.1–0.4 | 0.9–1.1 | |
Normalized Quality Factor Qxn0.3 | (−) | 0.1–0.4 | 0.9–1.1 |
Test Parameter | Values | or Range | Units | |
---|---|---|---|---|
Test type | Whole-mask | Flat-sheet | Flat-sheet | |
Duration of exposure | 5 (high) | 1 (medium) | 0.1 (low) | Hours |
Post-treatment desorption (fume hood) | 30 | 30 | 30 | Minutes |
Alcohol types | Ethanol Isopropanol | (EtOH) (IPA) | ||
Treatment ambient temperature | 25 ± 0.5 | 25 ± 0.5 | 25 ± 0.5 | °C |
Circular sample outer/active diameter | - | 109/89 | 109/89 | mm |
Filter test airflow rate through sample | 64 | 55 | 55 | L/min |
Filter test face velocity | - | 0.15 | 0.15 | m/s |
Number of samples tested | 5 | 3 | 3 |
Exposure Level | Exposure Duration | No. of Releases | Release Period | Hand Rubbing | Total Mass Dispensed |
---|---|---|---|---|---|
(min) | (-) | (s) | (s) | (g) | |
1 | 2 | 10 | 12 | 5–8 | 7.8 |
2 | 60 | 302 | 12 | 5–8 | 240 |
3 | 120 | 604 | 12 | 5–8 | 470 |
4 | 240 | 720 | 20 | 5–8 | 560 |
Exposure Level | No of Pulls per Spray | Release Period | Wiping | Overall Duration | No of Sprays Overall | Total Mass Dispensed |
---|---|---|---|---|---|---|
(-) | (s) | (s) | (min) | (g) | ||
1 | 3 | 30 | 10 | 120 | 240 | 360 |
2 | 3 | 30 | 10 | 240 | 480 | 720 |
Treatment | Expected Penetration | One-Sided 95% Confidence Interval |
---|---|---|
Before treatment | 0.0010 | [0, 0.011) |
After hand sanitizer treatment | 0.0013 | [0, 0.014) |
After spray sanitizing treatment | 0.0010 | [0, 0.011) |
After mask sanitization treatment | 0.0031 | [0, 0.017) |
After saturated IPA vapor treatment | 0.56 | [0, 0.85) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütz, J.A.; Pierlot, A.P.; Alexander, D.L.J. The Effect of Sanitizing Treatments on Respirator Filtration Performance. Int. J. Environ. Res. Public Health 2022, 19, 641. https://doi.org/10.3390/ijerph19020641
Schütz JA, Pierlot AP, Alexander DLJ. The Effect of Sanitizing Treatments on Respirator Filtration Performance. International Journal of Environmental Research and Public Health. 2022; 19(2):641. https://doi.org/10.3390/ijerph19020641
Chicago/Turabian StyleSchütz, Jürg A., Anthony P. Pierlot, and David L. J. Alexander. 2022. "The Effect of Sanitizing Treatments on Respirator Filtration Performance" International Journal of Environmental Research and Public Health 19, no. 2: 641. https://doi.org/10.3390/ijerph19020641
APA StyleSchütz, J. A., Pierlot, A. P., & Alexander, D. L. J. (2022). The Effect of Sanitizing Treatments on Respirator Filtration Performance. International Journal of Environmental Research and Public Health, 19(2), 641. https://doi.org/10.3390/ijerph19020641