Effects of Cha-Cha Dance Training on the Balance Ability of the Healthy Elderly
Abstract
:1. Introduction
2. Method
2.1. Subjects
2.2. Intervention
2.3. Measurements
2.4. Statistical Methods
3. Results
3.1. Dynamic Balance Test Results
3.2. Satic Balance Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Falls. Available online: https://www.who.int/en/news-room/fact-sheets/detail/falls (accessed on 26 April 2021).
- Thomas, E.; Battaglia, G.; Patti, A.; Brusa, J.; Leonardi, V.; Palma, A.; Bellafiore, M. Physical activity programs for balance and fall prevention in elderly: A systematic review. Medicine 2019, 98, e16218. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamed, A.; Bohm, S.; Mersmann, F.; Arampatzis, A. Exercises of dynamic stability under unstable conditions increase muscle strength and balance ability in the elderly. Scand. J. Med. Sci. Sports 2018, 28, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Aniansson, A.; Hedberg, M.; Henning, G.; Gunnar, G. Muscle morphology, enzymatic activity, and muscle strength in elderly men: A follow-up study. Muscle Nerve 1986, 9, 585–591. [Google Scholar] [CrossRef]
- Huo, H.; Lin, J.; Zhao, L.; Zhao, H. The characteristics and evaluation of balance ability of the elderly. China Tissue Eng. Res. Clin. Rehabil. 2007, 51, 10331–10334, (In Chinese, English Abstract). [Google Scholar]
- Zhang, Z. Research on the Influence of Rumba Dance Training on the Balance Ability of the Elderly. Master’s Thesis, Hunan Normal University, Changsha, China, 2020. [Google Scholar]
- Merom, D.; Mathieu, E.; Cerin, E.; Morton, R.L.; Simpson, J.M.; Rissel, C.; Anstey, K.; Sherrington, C.; Lord, S.R.; Cumming, R. Social Dancing and Incidence of Falls in Older Adults: A Cluster Randomised Controlled Trial. PLoS Med. 2016, 13, e1002112. [Google Scholar] [CrossRef] [Green Version]
- Keogh, J.W.L.; Kilding, A.; Pidgeon, P.; Ashley, L.; Gillis, D. Physical benefits of dancing for healthy older adults: A review. J. Aging Phys. Act. 2009, 17, 479–500. [Google Scholar] [CrossRef] [Green Version]
- Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will my patient fall? JAMA 2007, 297, 77–85. [Google Scholar] [CrossRef]
- Federici, A.; Bellagamba, S.; Rocchi, M.B. Does dance-based training improve balance in adult and young old subjects? A pilot randomized controlled trial. Aging Clin. Exp. Res. 2005, 17, 385–389. [Google Scholar] [CrossRef]
- McKinley, P.; Jacobson, A.; Leroux, A.; Bednarczyk, V.; Rossignol, M.; Fung, J. Effect of a community-based Argentine tango dance program on functional balance and confidence in older adults. J. Aging Phys. Act. 2008, 16, 435–453. [Google Scholar] [CrossRef]
- Eyigor, S.; Karapolat, H.; Durmaz, B.; Ibisoglu, U.; Cakir, S. A randomized controlled trial of Turkish folklore dance on the physical performance, balance, depression and quality of life in older women. Arch. Gerontol. Geriatr. 2009, 48, 84–88. [Google Scholar] [CrossRef]
- Young, C.M.; Weeks, B.K.; Beck, B.R. Simple, novel physical activty maintains proximal femur bone mineral density, and improves muscle strength and balance in sedentary, postmenopausal Caucasian women. Osteoporos. Int. 2007, 18, 1379–1387. [Google Scholar] [CrossRef]
- Sofianidis, G.; Hatzitaki, V.; Douka, S.; Grouios, G. Effect of a 10-week traditional dance program on static and dynamic balance control in elderly adults. J. Aging Phys. Act. 2009, 17, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Cao, J. Functional training rehabilitation in a latin dance injury. Rev. Bras. Med. Esporte 2022, 28, 543–545. [Google Scholar] [CrossRef]
- Sohn, J.; Park, S.-H.; Kim, S. Effects of Dance Sport on walking balance and standing balance among the elderly. Technol. Health Care 2018, 26, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Lee, M.-G.; Hong, K.-S. Effects of 9 Weeks of Dance Sports Training on Variables Related to Falling Injury in the Elderly Women. Korean J. Sport Sci. 2009, 20, 778–790. [Google Scholar]
- Lee, K.; Lee, Y.W. Efficacy of ankle control balance training on postural balance and gait ability in community-dwelling older adults: A single-blinded, randomized clinical trial. J. Phys. Ther. Sci. 2017, 29, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lockhart, T.E. Age-related joint moment characteristics during normal gait and successful reactive-recovery from unexpected slip perturbations. Gait Posture 2009, 30, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Kilic, M.; Nalbant, S.S. The effect of latin dance on dynamic balance. Gait Posture 2022, 92, 264–270. [Google Scholar] [CrossRef]
- Conradsson, D.; Löfgren, N.; Nero, H.; Hagströmer, M.; Ståhle, A.; Lökk, J.; Franzén, E. The effects of highly challenging balance training in elderly with parkinson’s disease: A randomized controlled trial. Neurorehabilit. Neural Repair 2015, 29, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Sitthiracha, P.; Eungpinichpong, W.; Chatchawan, U. Effect of progressive step marching exercise on balance ability in the elderly: A cluster randomized clinical trial. Int. J. Environ. Res. Public Health 2021, 18, 3146. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional movement screening: The use of fundamental movements as an assessment of function-part 2. Int. J. Sport. Phys. Ther. 2014, 9, 549–563. [Google Scholar]
- Kim, S.; Lockhart, T. Lower limb control and mobility following exercise training. J. Neuroeng. Rehabil. 2012, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lockhart, T.E. Aging effect on initial postural responses of unperturbed foot to unexpected slips. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Francisco, CA, USA, 16–20 October 2020; SAGE Publications: Los Angeles, CA, USA, 2006; Volume 50, pp. 1341–1345. [Google Scholar]
- Beauchet, O.; Dubost, V.; Herrmann, F.; Rabilloud, M.; Gonthier, R.; Kressig, R.W. Relationship between dual-task related gait changes and intrinsic risk factors for falls among transitional frail older adults. Aging Clin. Exp. Res. 2005, 17, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.D.; Heusel-Gillig, L. Balance rehabilitation and dual-task ability in older adults. J. Clin. Gerontol. Geriatr. 2010, 1, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Nagamatsu, L.S.; Chan, A.; Davis, J.C.; Beattie, B.L.; Graf, P.; Voss, M.W.; Sharma, D.; Liu-Ambrose, T. Physical Activity Improves Verbal and Spatial Memory in Older Adults with Probable Mild Cognitive Impairment: A 6-Month Randomized Controlled Trial. J. Aging Res. 2013, 2013, 861893. [Google Scholar] [CrossRef] [Green Version]
- Makizako, H.; Furuna, T.; Ihira, H.; Shimada, H. Age-related Differences in the Influence of Cognitive Task Performance on Postural Control Under Unstable Balance Conditions. Int. J. Gerontol. 2013, 7, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Lundin-Olsson, L.; Nyberg, L.; Gustafson, Y. Stops walking when talking as a predictor of falls in elderly people. Lancet 1997, 349, 617. [Google Scholar] [CrossRef]
- Kafri, M.; Hutzler, Y.; Korsensky, O.; Laufer, Y. Functional performance and balance in the oldest-old. J. Geriatr. Phys. Ther. 2019, 42, 183–188. [Google Scholar] [CrossRef]
- Wu, H.; Wei, Y.; Miao, X.; Li, X.; Feng, Y.; Yuan, Z.; Zhou, P.; Ye, X.; Zhu, J.; Jiang, Y.; et al. Characteristics of balance performance in the chinese elderly by age and gender. BMC Geriatr. 2021, 21, 596. [Google Scholar] [CrossRef]
- Lockhart, T.E.; Woldstad, J.C.; Smith, J.L. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 2003, 46, 1136–1160. [Google Scholar] [CrossRef] [Green Version]
- Sohn, J.; Kim, S. Falls study: Proprioception, postural stability, and slips. Bio-Med. Mater. Eng. 2015, 26, S693–S703. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, T.E.; Woldstad, J.C.; Smith, J.L. Assessment of Slip Severity Among Different Age Groups; Marpet, M.I., Sapienza, M.A., Eds.; ASTM International: West Conshohocken, PA, USA, 2003; pp. 17–32. [Google Scholar]
- Jung, M.; Kim, J. A study on the improvement of physical strength and cardiorespiratory function in male contemporary dancers and Latin dance sports players. J. Korean Acad. Danc. Sci. 2009, 19, 1–13, (In Korean, English Abstract). [Google Scholar]
- Peng, Y.Q.; Fan, F.X.; Weng, X.Q. The effect of 12-week table tennis exercise on the dynamic balance ability of the elderly. J. Guangzhou Inst. Phys. Educ. 2018, 38, 103–105, (In Chinese, English Abstract). [Google Scholar]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Du Pasquier, R.A.; Blanc, Y.; Sinnreich, M.; Landis, T.; Burkhard, P.; Vingerhoets, F.J.G. The effect of aging on postural stability: A cross sectional and longitudinal study. Neurophysiol. Clin. Clin. Neurophysiol. 2003, 33, 213–218. [Google Scholar] [CrossRef]
- Seo, J.; Kim, S. Prevention of potential falls of elderly healthy women: Gait asymmetry. Educ. Gerontol. 2014, 40, 123–137. [Google Scholar] [CrossRef]
- Mador, M.J.; Bozkanat, E.; Aggarwal, A.; Shaffer, M.; Kufel, T.J. Endurance and strength training in patients with COPD. Chest 2004, 125, 2036–2045. [Google Scholar] [CrossRef]
- Ploutz, L.L.; Tesch, P.A.; Biro, R.L.; Dudley, G.A. Effect of resistance training on muscle use during exercise. J. Appl. Physiol. 1994, 76, 1675–1681. [Google Scholar] [CrossRef]
- Bushey, S.R. Relationship of modern dance performance to agility, balance, flexibility, power, and strength. Research Quarterly. Am. Assoc. Health Phys. Educ. Recreat. 1966, 37, 313–316. [Google Scholar]
- Lukić, A.; Bijelić, S.; Zagorc, M.; Zuhrić-Šebić, L. The importance of strength in sport dance performance technique. SportLogia 2011, 7, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Yoon-Jeong, S. Comparison of exercise intensity of obese and normal weight women during dance sports exercise. Korea Sport. Res. 2005, 16, 81–88, (In Korean, English Abstract). [Google Scholar]
- Zhang, T. Study on the Effect of Dual Cognitive Tasks on the Static Balance Ability of the Dominant Side and Non-Dominant Side of the Lower Limbs of Ordinary College Students. Master’s Thesis, Capital Institute of Physical Education, Beijing, China, 2021. [Google Scholar]
- Dornan, J.; Fernie, G.R.; Holliday, P.J. Visual input: Its importance in the control of postural sway. Arch. Phys. Med. Rehabil. 1978, 59, 586–591. [Google Scholar] [PubMed]
- Rahal, M.A.; Alonso, A.C.; Andrusaitis, F.R.; Rodrigues, T.S.; Speciali, D.S.; Greve, J.M.D.; Leme, L.E.G. Analysis of static and dynamic balance in healthy elderly practitioners of Tai Chi Chuan versus ballroom dancing. Clinics 2015, 70, 157–161. [Google Scholar] [CrossRef]
- Kattenstroth, J.C.; Kolankowska, I.; Kalisch, T.; Dinse, H.R. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front. Aging Neurosci. 2010, 2, 31. [Google Scholar] [CrossRef]
Group | Age | Height (cm) | Weight (kg) | BMI (kg/m2) | FMS (Score) |
---|---|---|---|---|---|
CTG (N = 20) | 61.75 ± 1.11 | 160.25 ± 6.25 | 63.40 ± 6.83 | 25.08 ± 2.62 | 10.45 ± 1.79 |
CONG (N = 20) | 61.80 ± 1.23 | 160.20 ± 8.83 | 59.54 ± 5.95 | 24.36 ± 3.80 | 10.15 ± 1.90 |
p-value | 0.89 | 0.98 | 0.06 | 0.49 | 0.61 |
Time | First Class | Second Class | Third Class |
---|---|---|---|
Week 1 | Basic steps learning: (1) Basic movement (2) Forward Lock (3) Back Lock | 1. Review of basic steps 2. Basic steps learning: (1) Hockey stick (2) New York (3) Underarm turn to Left | 1. Review of basic steps 2. Basic steps learning: (1) Time step (2) Hand to Hand (3) Natural top |
Week 2 | 1. Review of Basic steps 2. Basic steps learning: (1) Basic movement with 1/4 Turn (2) 1–5 Close Basic movement 3. Spot Turn | 1. Review of basic steps 2. Basic steps learning: (1) Open hip twist (2) Natural Top | 1. Review of basic steps 2. Basic steps learning: (1) Cuba rocks (2) Syncopate New York |
Week 3–6 | Single basic step combination exercise | Music rhythm single basic step combination practice | Male and female double exercise |
Week 7–12 | Music rhythm male and female double exercise | Male and female double ready for competition stage exercise | Male and female doubles competition stage |
Stage | Content | Period | HR (Times/Min) |
---|---|---|---|
Basic stage | Learn action | Weeks 1–2 | 68.48 ± 13.79 |
Reinforcement stage | Consolidation action | Weeks 3–6 | 78.78 ± 15.79 |
Improve stage | Improve action | Weeks 7–12 | 84.42 ± 17.54 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
Score | CTG | 12,907.24 ± 739.88 | 16,345.75 ± 1835.32 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 12,784.46 ± 812.85 | 12,698.36 ± 1461.65 | ||||
Rot.Speed Max (rad/s) | CTG | 9.13 ± 1.96 | 4.39 ± 1.73 | 0.0003 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 9.31 ± 1.98 | 9.78 ± 1.56 | ||||
Rot.Speed Φ (rad/s) | CTG | 3.69 ± 0.71 | 2.98 ± 0.59 | 0.0448 * | ≤0.0001 *** | 0.0024 ** |
CONG | 3.88 ± 0.63 | 4.22 ± 0.62 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
C90 Area (mm2) | CTG | 585.34 ± 251.62 | 418.44 ± 187.59 | 0.2404 | 0.2187 | 0.0349 * |
CONG | 550.6 ± 239.6 | 581.1 ± 161.4 | ||||
Trace Length (mm) | CTG | 640.4 ± 199.3 | 485.1 ± 234.1 | 0.0993 | 0.1737 | 0.0838 |
CONG | 628.1 ± 173.3 | 632.9 ± 185.8 | ||||
Std Velocity (mm/s) | CTG | 35.91 ± 9.553 | 29.5 ± 9.033 | 0.2419 | 0.3739 | 0.0633 |
CONG | 33.30 ± 6.877 | 35.13 ± 8.136 | ||||
Std X Deviation (mm/s) | CTG | 9.500 ± 2.456 | 7.827 ± 0.907 | 0.6687 | ≤0.0001 *** | 0.0045 ** |
CONG | 10.68 ± 1.653 | 11.99 ± 2.031 | ||||
Std Y Deviation (mm/s) | CTG | 11.51 ± 2.138 | 10.50 ± 1.920 | 0.2022 | 0.0002 *** | 0.1857 |
CONG | 12.76 ± 1.631 | 12.76 ± 2.097 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
C90 Area (mm2) | CTG | 873.9 ± 301.5 | 671.6 ± 260.0 | 0.3840 | 0.0809 | 0.0561 |
CONG | 885.8 ± 293.1 | 967.6 ± 391.9 | ||||
Trace Length (mm) | CTG | 815.8 ± 238.0 | 533.8 ± 277.2 | 0.0501 | 0.0006 *** | 0.0208 * |
CONG | 843.1 ± 282.6 | 866.7 ± 139.0 | ||||
Std Velocity (mm/s) | CTG | 61.89 ± 12.69 | 53.03 ± 9.724 | 0.2347 | 0.0738 | 0.0455 * |
CONG | 60.31 ± 9.563 | 63.06 ± 7.996 | ||||
Std X Deviation (mm/s) | CTG | 12.08 ± 3.225 | 8.650 ± 2.338 | 0.1425 | ≤0.0001 *** | ≤0.0001 *** |
CONG | 12.53 ± 3.113 | 14.05 ± 0.8823 | ||||
Std Y Deviation (mm/s) | CTG | 14.66 ± 1.474 | 10.90 ± 1.176 | ≤0.0001 *** | 0.0002 *** | ≤0.0001 *** |
CONG | 13.96 ± 1.509 | 14.38 ± 1.369 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
C90 Area (mm2) | CTG | 378,059 ± 8033 | 343,699 ± 5954 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 377,730 ± 9671 | 375,492 ± 6663 | ||||
Trace Length (mm) | CTG | 215,853 ± 743.8 | 172,885 ± 644.3 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 215,845 ± 589.1 | 216,146 ± 519.5 | ||||
Std Velocity (mm/s) | CTG | 654.6 ± 226.7 | 466.6 ± 163.3 | 0.5055 | 0.0033 ** | 0.0031 ** |
CONG | 645.8 ± 234.2 | 757.9 ± 228.3 | ||||
Std X Deviation (mm/s) | CTG | 33.28 ± 8.470 | 22.57 ± 7.444 | 0.0357 * | 0.0023 *** | 0.0005 *** |
CONG | 31.35 ± 7.063 | 34.87 ± 8.276 | ||||
Std Y Deviation (mm/s) | CTG | 35.56 ± 7.709 | 28.04 ± 10.41 | 0.0686 | 0.1454 | 0.0569 |
CONG | 34.55 ± 7.112 | 35.52 ± 8.143 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
C90 Area (mm2) | CTG | 863,683 ± 4866 | 806,097 ± 8379 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 865,058 ± 6327 | 867,001 ± 7952 | ||||
Trace Length (mm) | CTG | 259,509 ± 703.2 | 221,689 ± 534.5 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 259,344 ± 615.0 | 258,744 ± 1589 | ||||
Std Velocity (mm/s) | CTG | 1587 ± 388.1 | 1214 ± 381.2 | 0.1390 | 0.0257 * | 0.0086 ** |
CONG | 1489 ± 382.7 | 1608 ± 361.3 | ||||
Std X Deviation (mm/s) | CTG | 59.33 ± 6.788 | 49.38 ± 5.886 | 0.0049 ** | 0.0823 | 0.0163 * |
CONG | 57.86 ± 7.252 | 56.56 ± 8.038 | ||||
Std Y Deviation (mm/s) | CTG | 56.98 ± 9.177 | 51.09 ± 7.465 | 0.0579 | 0.1790 | 0.1499 |
CONG | 57.02 ± 8.955 | 56.57 ± 7.658 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
C90 Area (mm2) | CTG | 912.2 ± 362.4 | 690.6 ± 165.0 | 0.0218 * | 0.3220 | 0.1323 |
CONG | 888.1 ± 304.2 | 876.8 ± 295.1 | ||||
Trace Length (mm) | CTG | 849.0 ± 245.7 | 598.6 ± 280.2 | 0.8388 | 0.0180 * | 0.0191 * |
CONG | 816.7 ± 286.1 | 1040 ± 492.5 | ||||
Std Velocity (mm/s) | CTG | 212.6 ± 79.72 | 148.2 ± 72.07 | 0.0100 * | 0.0346 * | 0.3247 |
CONG | 234.2 ± 69.08 | 202.6 ± 63.94 | ||||
Std X Deviation (mm/s) | CTG | 26.12 ± 8.561 | 18.24 ± 6.320 | 0.1071 | 0.1330 | 0.0563 |
CONG | 24.95 ± 7.946 | 26.01 ± 12.77 | ||||
Std Y Deviation (mm/s) | CTG | 30.09 ± 7.707 | 24.71 ± 8.830 | 0.1904 | 0.1455 | 0.1004 |
CONG | 30.06 ± 9.135 | 31.49 ± 8.701 |
Variables | Groups | Pre-Test | Post-Test | Time | Group | Interaction |
---|---|---|---|---|---|---|
C90 Area (mm2) | CTG | 1816 ± 452.7 | 1526 ± 402.4 | 0.2178 | 0.6578 | 0.0390 * |
CONG | 1683 ± 578.1 | 1786 ± 358.9 | ||||
Trace Length (mm) | CTG | 147,211 ± 245.7 | 112,556 ± 357.3 | ≤0.0001 *** | ≤0.0001 *** | ≤0.0001 *** |
CONG | 147,102 ± 483.4 | 147,236 ± 363.6 | ||||
Std Velocity (mm/s) | CTG | 462.5 ± 194.1 | 339.9 ± 172.8 | 0.1294 | 0.1011 | 0.0768 |
CONG | 454.6 ± 169.2 | 484.5 ± 142.4 | ||||
Std X Deviation (mm/s) | CTG | 44.84 ± 9.201 | 36.66 ± 8.220 | 0.0365 * | 0.1812 | 0.0549 |
CONG | 42.65 ± 7.662 | 42.78 ± 6.474 | ||||
Std Y Deviation (mm/s) | CTG | 45.91 ± 9.070 | 39.86 ± 8.682 | 0.6058 | 0.0052 ** | 0.0603 |
CONG | 47.43 ± 10.51 | 50.83 ± 10.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Qiu, X.; Yang, Z.; Zhang, Z.; Wang, G.; Kim, Y.; Kim, S. Effects of Cha-Cha Dance Training on the Balance Ability of the Healthy Elderly. Int. J. Environ. Res. Public Health 2022, 19, 13535. https://doi.org/10.3390/ijerph192013535
Li H, Qiu X, Yang Z, Zhang Z, Wang G, Kim Y, Kim S. Effects of Cha-Cha Dance Training on the Balance Ability of the Healthy Elderly. International Journal of Environmental Research and Public Health. 2022; 19(20):13535. https://doi.org/10.3390/ijerph192013535
Chicago/Turabian StyleLi, Han, Xuan Qiu, Zhitao Yang, Zhengxiao Zhang, Gang Wang, Youngsuk Kim, and Sukwon Kim. 2022. "Effects of Cha-Cha Dance Training on the Balance Ability of the Healthy Elderly" International Journal of Environmental Research and Public Health 19, no. 20: 13535. https://doi.org/10.3390/ijerph192013535
APA StyleLi, H., Qiu, X., Yang, Z., Zhang, Z., Wang, G., Kim, Y., & Kim, S. (2022). Effects of Cha-Cha Dance Training on the Balance Ability of the Healthy Elderly. International Journal of Environmental Research and Public Health, 19(20), 13535. https://doi.org/10.3390/ijerph192013535