The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Straw-Artificial Soil Mixtures and Humification Conditions
2.2. Evaluation of EEM Functionality Using an EEM Material-Dependent Pentachlorophenol (PCP) Dechlorinating Anaerobic Consortium
2.3. Chemical and Electrochemical Characterization
2.4. Statistical Analysis
3. Results
3.1. Degradation of Rice Straw in Artificial Soil over One Year of Humification
3.2. Changes in EEM Functionality during the Humification of Rice Straw
3.3. Changes in Chemical Structures during the Humification
3.4. Changes in Electrochemical Properties during the Humification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnitzer, M.; Monreal, C.M. Quo vadis soil organic matter research? A biological link to the chemistry of humification. Adv. Agron. 2011, 113, 143–217. [Google Scholar]
- Huang, P.M.; Hardie, A.G. Formation mechanisms of humic substances in the environment. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environment Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 41–110. [Google Scholar]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Fuentes, M.; Gonzalez-Gaitano, G.; García-Mina, J.M. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Org. Geochem. 2006, 37, 1949–1959. [Google Scholar] [CrossRef]
- Barančíková, G.; Senesi, N.; Brunetti, G. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 1997, 78, 251–266. [Google Scholar] [CrossRef]
- Chai, X.; Shimaoka, T.; Cao, X.; Guo, Q.; Zhao, Y. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere 2007, 69, 1446–1453. [Google Scholar] [CrossRef]
- Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445–448. [Google Scholar] [CrossRef]
- Roden, E.E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H.F. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 2010, 3, 417–421. [Google Scholar] [CrossRef]
- Zhang, C.; Katayama, A. Humin as an electron mediator for microbial reductive dehalogenation. Environ. Sci. Technol. 2012, 46, 6575–6583. [Google Scholar] [CrossRef]
- Bradley, P.M.; Chapelle, F.H.; Lovley, D.R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 1998, 64, 3102–3105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Z.; Suzuki, D.; Ye, L.; Yoshida, N.; Katayama, A. A humin dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 2013, 92, 1343–1348. [Google Scholar] [CrossRef]
- Gu, B.; Chen, J. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim. Cosmochim. Acta 2003, 67, 3575–3582. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Xiao, Z.; Suzuki, D.; Katayama, A. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium. J. Biosci. Bioeng. 2015, 119, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Awata, T.; Mitsushita, J.; Zhang, D.; Kasai, T.; Matsuura, N.; Katayama, A. Promotion of biological nitrogen fixation activity of an anaerobic consortium using humin as an extracellular electron mediator. Sci. Rep. 2021, 11, 6567. [Google Scholar] [CrossRef] [PubMed]
- Laskar, M.; Kasai, T.; Awata, T.; Katayama, A. Humin assists reductive acetogenesis in absence of other external electron donor. Int. J. Environ. Res. Public Health 2020, 17, 4211. [Google Scholar] [CrossRef] [PubMed]
- Borch, T.; Inskeep, W.P.; Harwood, J.A.; Gerlach, R. Impact of ferrihydrite and anthraquinone-2, 6-disulfonate on the reductive transformation of 2, 4, 6-trinitrotoluene by a gram-positive fermenting bacterium. Environ. Sci. Technol. 2005, 39, 7126–7133. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F.J.; Gonzalez-Estrella, J.; Márquez, A.; Alvarez, L.H.; Arriaga, S. Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. Bioresour. Technol. 2011, 102, 2097–2100. [Google Scholar] [CrossRef]
- Cruz-Zavala, A.S.; Pat-Espadas, A.M.; Rangel-Mendez, J.R.; Chazaro-Ruiz, L.F.; Ascacio-Valdes, J.A.; Aguilar, C.N.; Cervantes, F.J. Immobilization of metal–humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors. Bioresour. Technol. 2016, 207, 39–45. [Google Scholar] [CrossRef]
- Pham, D.M.; Kasai, T.; Yamaura, M.; Katayama, A. Humin: No longer inactive natural organic matter. Chemosphere 2021, 269, 128697. [Google Scholar] [CrossRef]
- Valenzuela, E.I.; Prieto-Davó, A.; López-Lozano, N.E.; Hernández-Eligio, A.; Vega-Alvarado, L.; Juárez, K.; García-González, A.S.; López, M.G.; Cervantes, F.J. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl. Environ. Microbiol. 2017, 83, e00645-17. [Google Scholar] [CrossRef] [Green Version]
- Rios-Del Toro, E.E.; Valenzuela, E.I.; Ramírez, J.E.; López-Lozano, N.E.; Cervantes, F.J. Anaerobic ammonium oxidation linked to microbial reduction of natural organic matter in marine sediments. Environ. Sci. Technol. Lett. 2018, 5, 571–577. [Google Scholar] [CrossRef]
- Valenzuela, E.I.; Bryce, C.; Forberg, J.; Planer-Friedrich, B.; Kappler, A.; Cervantes, F.J. Unraveling the role of sulfide-natural organic matter interplay on methane cycling in anoxic environments. Biogeochemistry 2022, 161, 193–206. [Google Scholar] [CrossRef]
- Dey, S.; Kasai, T.; Katayama, A. Promotion of nitrogen fixation of diverse heterotrophs by solid-phase humin. Front. Microbiol. 2022, 13, 853411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, C.; Li, Z.; Suzuki, D.; Komatsu, D.; Tsunogai, U.; Katayama, A. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. Bioresour. Technol. 2014, 164, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Awata, T.; Zhang, D.; Zhang, C.; Li, Z.; Katayama, A. Enhanced denitrification of Pseudomonas stutzeri by a bioelectrochemical system assisted with solid-phase humin. J. Biosci. Bioeng. 2016, 122, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Kluepfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2014, 48, 5601–5611. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hu, Y.; Tang, L.; Xie, Q.; Liu, Q.; Zhong, L.; Fu, L.; Fan, C. Effects and mechanisms of modified biochars on microbial iron reduction of Geobacter sulfurreducens. Chemosphere 2021, 283, 130983. [Google Scholar] [CrossRef]
- Ratasuk, N.; Nanny, M.A. Characterization and quantification of reversible redox sites in humic substances. Environ. Sci. Technol. 2007, 41, 7844–7850. [Google Scholar] [CrossRef]
- Hernández-Montoya, V.; Alvarez, L.H.; Montes-Morán, M.A.; Cervantes, F.J. Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens. Geoderma 2012, 183, 25–31. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Wu, S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, W.; Peng, J.; Dang, Q.; Zhang, H.; Xi, B. Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environ. Int. 2020, 135, 105380. [Google Scholar] [CrossRef]
- Dell’agnola, G.; Ferrari, G. Characterization of laboratory-prepared humified organic matter as affected by the composition of starting materials. Soil Sci. 1979, 128, 105–109. [Google Scholar] [CrossRef]
- Larionova, A.A.; Maltseva, A.N.; Lopes de Gerenyu, V.O.; Kvitkina, A.K.; Bykhovets, S.S.; Zolotareva, B.N.; Kudeyarov, V.N. Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment. Eurasian Soil Sci. 2017, 50, 422–431. [Google Scholar] [CrossRef]
- Adani, F.; Spagnol, M. Humic acid formation in artificial soils amended with compost at different stages of organic matter evolution. J. Environ. Qual. 2008, 37, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Kätterer, T.; Reichstein, M.; Andrén, O.; Lomander, A. Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models. Biol. Fertil. Soils 1998, 27, 258–262. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J.; Xu, Y.; Xiao, H.; An, W.; Xi, H.; Xue, Z.; Huang, H.; Chen, X.; Shen, A. Fungal community dynamics and driving factors during agricultural waste composting. Environ. Sci. Pollut. Res. 2015, 22, 19879–19886. [Google Scholar] [CrossRef]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Pronk, G.J.; Heister, K.; Ding, G.C.; Smalla, K.; Kögel-Knabner, I. Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations. Geoderma 2012, 189–190, 585–594. [Google Scholar] [CrossRef]
- Wei, H.; Guenet, B.; Vicca, S.; Nunan, N.; Asard, H.; AbdElgawad, H.; Shen, W.; Janssens, I.A. High clay content accelerates the decomposition of fresh organic matter in artificial soils. Soil Biol. Biochem. 2014, 77, 100–108. [Google Scholar] [CrossRef]
- Murray, H. Applied clay mineralogy today and tomorrow. Clay Miner. 1999, 34, 39–49. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, J.; Hu, S.; Polizzotto, M.T.; Zhao, F.; McGrath, S.P.; Li, H.; Ran, W.; Shen, Q. Mineral availability as a key regulator of soil carbon storage. Environ. Sci. Technol. 2017, 51, 4960–4969. [Google Scholar] [CrossRef]
- Hardie, A.G. Pathway of Abiotic Humification as Catalyzed by Mineral Colloids. Ph.D. Dissertation, University of Saskatchewan, Saskatoon, SK, Canada, August 2008. [Google Scholar]
- Neue, H.U.; Scharpenseel, H.W. Decomposition pattern of 14C-labeled rice straw in aerobic and submerged rice soils of the Philippines. Sci. Total Environ. 1987, 62, 431–434. [Google Scholar] [CrossRef]
- Murthy, N.B.K.; Kale, S.P.; Raghu, K. Mineralization of 14C-labelled rice straw in aerobic and anaerobic clay soils as influenced by insecticide treatments. Soil Biol. Biochem. 1991, 23, 857–859. [Google Scholar] [CrossRef]
- Ren, L.; Lin, D.; Yang, K. Correlations and nonlinear partition of nonionic organic compounds by humus-like substances humificated from rice straw. Sci. Rep. 2019, 9, 15131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Yan, B.; Awasthi, M.K.; Zhang, J.; Huang, H.; Zhang, L.; Luo, L. Accelerated humification and alteration of microbial communities by distillers’ grains addition during rice straw composting. Bioresour. Technol. 2021, 342, 125937. [Google Scholar] [CrossRef]
- Devêvre, O.C.; Horwáth, W.R. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Pal, D.; Broadbent, F.E.; Mikkelsen, D.S. Influence of temperature on the kinetics of rice straw decomposition in soils. Soil Sci. 1975, 120, 442–449. [Google Scholar] [CrossRef]
- Nakajima, M.; Cheng, W.G.; Tang, S.R.; Hori, Y.; Yaginuma, E.; Hattori, S.; Hanayama, S.; Tawaraya, K.; Xu, X.K. Modeling aerobic decomposition of rice straw during the off-rice season in an Andisol paddy soil in a cold temperate region of Japan: Effects of soil temperature and moisture. J. Soil Sci. Plant Nutr. 2016, 62, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.W. Microbial Utilization of Straw (a Review). In Advances in Applied Microbiology; Perlman, D., Ed.; Elsevier: Amsterdam, The Netherlands, 1978; Volume 23, pp. 119–153. [Google Scholar]
- OECD. OECD Guidelines for the Testing of Chemicals 207; OECD: Paris, France, 1984. [Google Scholar]
- Buringh, P. Chapter 3 Organic carbon in soils of the world. In The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing; Woodwell, G.M., Ed.; John Wiley & Sons: Chichester, UK, 1984; pp. 91–109. [Google Scholar]
- Laskar, M.; Awata, T.; Kasai, T.; Katayama, A. Anaerobic dechlorination by a humin-dependent pentachlorophenol-dechlorinating consortium under autotrophic conditions induced by homoacetogenesis. Int. J. Environ. Res. Public Health 2019, 16, 2873. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Yoshida, Y.; Handa, Y.; Kim, H.K.; Ichihara, S.; Katayama, A. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Sci. Total Environ. 2007, 381, 233–242. [Google Scholar] [CrossRef]
- Pham, D.M.; Katayama, A. Humin as an external electron mediator for Microbial pentachlorophenol dechlorination: Exploration of redox active structures influenced by isolation methods. Int. J. Environ. Res. Public Health 2018, 15, 2753. [Google Scholar] [CrossRef] [Green Version]
- Elfantroussi, S.; Naveau, H.; Agathos, S.N. Anaerobic dechlorinating bacteria. Biotechnol. Prog. 1998, 14, 167–188. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.M.; Oji, H.; Yagi, S.; Ogawa, S.; Katayama, A. Sulfur in humin as a redox-active element for extracellular electron transfer. Geoderma 2022, 408, 115580. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Huang, Y.N.; Ali Kubar, K.; Li, X.K.; Lu, J.W. Straw management influences the stabilization of organic carbon by Fe(oxyhydr)oxides in soil aggregates. Geoderma 2020, 358, 113987. [Google Scholar] [CrossRef]
- Ninomiya, K.; Kamide, K.; Takahashi, K.; Shimizu, N. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour. Technol. 2012, 103, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Asriza, R.O.; Indriawati, A.; Julianti, E.; Fabiani, V.A. Synthesis and characterization of Fe3O4/SiO2 nanocomposite from Kaolin Bangka Island. IOP Conf. Ser. Earth Environ. Sci. 2020, 599, 012063. [Google Scholar] [CrossRef]
- Georges-Ivo, E.E. Fourier transform infrared spectrophotometry and X-ray powder diffractometry as complementary techniques in characterizing clay size fraction of kaolin. J. Appl. Sci. Environ. Manag. 2005, 9, 43–48. [Google Scholar]
- Gan, C.; Hu, H.; Meng, Z.; Zhu, X.; Gu, R.; Wu, Z.; Wang, H.; Wang, D.; Gan, H.; Wang, J.; et al. Characterization and hemostatic potential of two kaolins from southern China. Molecules 2019, 24, 3160. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.D.; Smith, T.J.; Li, N.; Zong, M.H. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol. Bioeng. 2012, 109, 2484–2493. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of methylene blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Brahmi, D.; Megabat, D.; Belkacemi, H.; Mostefaoui, T.A.; Ait Ouakli, N. Preparation of amorphous silica gel from Algerian siliceous by-product of kaolin and its physico chemical properties. Ceram. Int. 2014, 40, 10499–10503. [Google Scholar] [CrossRef]
- Lou, R.; Liu, G.J.; Wu, S.B.; Zhang, B.; Zhao, H.X.; Lucia, L.A. Mechanistic Investigation of Rice Straw Lignin Subunit Bond Cleavages and Subsequent Formation of Monophenols. ACS Sustain. Chem. Eng. 2018, 6, 430–437. [Google Scholar] [CrossRef]
- Han, P.J.; Zhang, Y.F.; Chen, F.Y.; Bai, X.H. Interpretation of electrochemical impedance spectroscopy (EIS) circuit model for soils. J. Cent. South Univ. 2015, 22, 4318–4328. [Google Scholar] [CrossRef]
- Silva, S.; Dick, L.F.P. EIS Study of Soil Corrosivity. ECS Trans. 2008, 11, 35. [Google Scholar] [CrossRef]
- Chang, B.Y. Conversion of a Constant Phase Element to an Equivalent Capacitor. J. Electrochem. Sci. Technol. 2020, 11, 318–321. [Google Scholar] [CrossRef]
- Olk, D.C.; Bloom, P.R.; Perdue, R.M.; McKnight, D.M.; Chen, Y.; Farehorst, A.; Senesi, N.; Chin, Y.-P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef]
- Wang, M.C.; Huang, P.M. Catalytic power of nontronite, kaolinite and quartz and their reaction sites in the formation of hydroquinone-derived polymers. Appl. Clay Sci. 1989, 4, 43–57. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, C.; Dang, Q.; Xi, B. Insights into phenol monomers in response to electron transfer capacity of humic acid during corn straw composting process. Environ. Pollut. 2022, 307, 119548. [Google Scholar] [CrossRef]
- Sun, X.; Bai, R.; Zhang, Y.; Wang, Q.; Fan, X.; Yuan, J.; Cui, L.; Wang, P. Laccase-Catalyzed Oxidative Polymerization of Phenolic Compounds. Appl. Biochem. Biotechnol. 2013, 171, 1673–1680. [Google Scholar] [CrossRef]
- Pham, D.M.; Dey, S.; Katayama, A. Activation of extracellular electron network in non-electroactive bacteria by Bombyx mori silk. Int. J. Biol. Macromol. 2022, 195, 1–11. [Google Scholar] [CrossRef]
- Tomaszewski, J.E.; Schwarzenbach, R.P.; Sander, M. Protein encapsulation by humic substances. Environ. Sci. Technol. 2011, 45, 6003–6010. [Google Scholar] [CrossRef]
Incubation Time | Elemental Composition [% w/w] | Ash [% w/w] | Elemental Ratio | pH | EC [μS/cm] | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | C/N | H/C | O/C | ||||
0 month | 4.03 (0.28) | 0.71 (0.04) | 0.05 (0.01) | 5.62 (0.47) | 89.60 (0.80) | 94.4 (7.2) | 2.10 (0.02) | 1.04 (0.01) | 6.24 (0.03) | 1766 (63) |
1 month | 3.14 (0.13) | 0.61 (0.02) | 0.07 (0.01) | 4.43 (0.18) | 91.75 (0.34) | 52.5 (1.8) | 2.32 (0.01) | 1.06 (0.00) | 8.58 (0.12) | 1516 (40) |
3 months | 2.68 (0.18) | 0.53 (0.04) | 0.08 (0.00) | 3.93 (0.32) | 92.79 (0.54) | 39.0 (2.7) | 2.36 (0.03) | 1.10 (0.02) | 8.82 (0.31) | 1432 (10) |
6 months | 2.06 (0.03) | 0.44 (0.01) | 0.07 (0.00) | 3.13 (0.10) | 94.31 (0.14) | 36.2 (1.7) | 2.54 (0.03) | 1.14 (0.02) | 8.84 (0.10) | 1377 (23) |
One year | 1.66 (0.23) | 0.44 (0.05) | 0.09 (0.01) | 3.03 (0.29) | 94.78 (0.58) | 21.1 (2.4) | 3.18 (0.27) | 1.38 (0.06) | 8.23 (0.16) | 1562 (43) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Pham, D.M.; Kasai, T.; Katayama, A. The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification. Int. J. Environ. Res. Public Health 2022, 19, 15173. https://doi.org/10.3390/ijerph192215173
Hu T, Pham DM, Kasai T, Katayama A. The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification. International Journal of Environmental Research and Public Health. 2022; 19(22):15173. https://doi.org/10.3390/ijerph192215173
Chicago/Turabian StyleHu, Tingting, Duyen Minh Pham, Takuya Kasai, and Arata Katayama. 2022. "The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification" International Journal of Environmental Research and Public Health 19, no. 22: 15173. https://doi.org/10.3390/ijerph192215173
APA StyleHu, T., Pham, D. M., Kasai, T., & Katayama, A. (2022). The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification. International Journal of Environmental Research and Public Health, 19(22), 15173. https://doi.org/10.3390/ijerph192215173