Perioperative Management of Dental Surgery Patients Chronically Taking Antithrombotic Medications
Abstract
:1. Introduction
2. Drugs Used in Antiplatelet Therapy
3. Anticoagulants
4. Perioperative Antithrombotic Therapy Management
5. Patients on Combination Therapy: VKA/NOAC, VKA/ASA, VKA/Clopidogrel
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pruszczyk, P.; Ciurzyński, M.; Opolski, G.; Stępińska, J.; Wożakowska-Kapłon, B.; Kalarus, Z.; Kaźmierczak, J.; Górska, R.; Mierzwińska-Nastalska, E.; Wojtowicz, A.; et al. Dental cardio common position for dealing anticoagulation in patients undergoing dental procedures. Kardiol. Pol. 2016, 74, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafur, A.; Douketis, J. Perioperative management of anticoagulant and antiplatelet therapy. Heart 2018, 104, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.T.; Patel, M.; Douketis, J.D. Perioperative management of antithrombotic therapy: A case-based narrative review. Intern. Emerg. Med. 2022, 17, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Ferrari Cagidiaco, E.; Carboncini, F.; Parrini, S.; Doldo, T.; Nagni, M.; Uti, N.; Ferrari, M. Functional implant prosthodontic score of a one-year prospective study on three different connections for single-implant restorations. J. Osseointegration 2018, 10, 130–135. [Google Scholar] [CrossRef]
- Lee, C.A.; Kessler, C.M.; Varon, D.; Martinowitz, U.; Heim, M.; Roberts, H.R.; Monroe, D.M.; Oliver, J.A.; Chang, J.-Y.; Hoffman, M. Newer concepts of blood coagulation. Haemophilia 1998, 4, 331–334. [Google Scholar] [CrossRef]
- Wu, C.-T.; Lien, T.-H.; Chen, I.-L.; Wang, J.-W.; Ko, J.-Y.; Lee, M.S. The risk of bleeding and adverse events with clopidogrel in elective hip and knee arthroplasty patients. J. Clin. Med. 2022, 11, 1754. [Google Scholar] [CrossRef]
- Tubek, S.; Kuliczkowski, W.; Gąsior, M.; Gierlotka, M.; Kubica, J.; Budaj, A.; Witkowski, A.; Reczuch, K.; Ponikowski, P. Antiplatelets in acute coronary syndrome in Poland—From guidelines to clinical practice. Pwki 2021, 17, 141–154. [Google Scholar] [CrossRef]
- Jourdi, G.; Lordkipanidzé, M.; Philippe, A.; Bachelot-Loza, C.; Gaussem, P. Current and novel antiplatelet therapies for the treatment of cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 13079. [Google Scholar] [CrossRef]
- Fabris, E.; Korjian, S.; Coller, B.S.; Ten Berg, J.M.; Granger, C.B.; Gibson, C.M.; van ’t Hof, A.W.J. Pre-hospital antiplatelet therapy for STEMI patients undergoing primary percutaneous coronary intervention: What we know and what lies ahead. Thromb. Haemost. 2021, 121, 1562–1573. [Google Scholar] [CrossRef]
- Bentur, O.S.; Li, J.; Jiang, C.S.; Martin, L.H.; Kereiakes, D.J.; Coller, B.S. Application of auxiliary verifynow point-of-care assays to assess the pharmacodynamics of RUC-4, a novel AIIbβ3 receptor antagonist. TH Open 2021, 05, e449–e460. [Google Scholar] [CrossRef]
- Wiśniewski, A.; Kozera, G. Antiplatelet agents in acute phase and prophylaxis of ischemic stroke. Forum Med. Rodz. 2019, 13, 159–169. [Google Scholar]
- Manfredini, M.; Poli, P.P.; Creminelli, L.; Porro, A.; Maiorana, C.; Beretta, M. Comparative risk of bleeding of anticoagulant therapy with vitamin K antagonists (VKAs) and with non-vitamin K antagonists in patients undergoing dental surgery. J. Clin. Med. 2021, 10, 5526. [Google Scholar] [CrossRef] [PubMed]
- Woźnicka-Leśkiewicz, L.; Wolska-Bułach, A.; Tykarski, A. Interactions between anticoagulants, other drugs and food—Advicefor medical practitioners. Chor. Serca Naczyń 2014, 11, 78–90. [Google Scholar]
- McRae, H.L.; Militello, L.; Refaai, M.A. Updates in anticoagulation therapy monitoring. Biomedicines 2021, 9, 262. [Google Scholar] [CrossRef]
- Douketis, J.D.; Spyropoulos, A.C.; Duncan, J.; Carrier, M.; Le Gal, G.; Tafur, A.J.; Vanassche, T.; Verhamme, P.; Shivakumar, S.; Gross, P.L.; et al. Perioperative management of patients with atrial fibrillation receiving a direct oral anticoagulant. JAMA Intern. Med. 2019, 179, 1469–1478. [Google Scholar] [CrossRef]
- Kawabata, M.; Goya, M.; Maeda, S.; Yagishita, A.; Takahashi, Y.; Sasano, T.; Hirao, K. A survey of direct oral anticoagulant cessation in general surgery and outcomes in patients with nonvalvular atrial fibrillation. Int. Heart J. 2020, 61, 905–912. [Google Scholar] [CrossRef]
- Lindhoff-Last, E.; Birschmann, I.; Kuhn, J.; Lindau, S.; Konstantinides, S.; Grottke, O.; Nowak-Göttl, U.; Lucks, J.; Zydek, B.; von Heymann, C.; et al. Pharmacokinetics of direct oral anticoagulants in emergency situations: Results of the prospective observational RADOA-registry. Thromb. Haemost. 2022, 122, 552–559. [Google Scholar] [CrossRef]
- Toorop, M.M.A.; Rein, N.; Nierman, M.C.; Vermaas, H.W.; Huisman, M.V.; Meer, F.J.M.; Cannegieter, S.C.; Lijfering, W.M. Inter- and intra-individual concentrations of direct oral anticoagulants: The KIDOAC study. J. Thromb. Haemost. 2022, 20, 92–103. [Google Scholar] [CrossRef]
- Tao, E.; Luo, Y.L.; Tao, Z.; Wan, L. A meta-analysis of bridging anticoagulation between low molecular weight heparin and heparin. Medicine 2020, 99, e18729. [Google Scholar] [CrossRef]
- Qneibi, D.; Ramacciotti, E.; Macedo, A.S.; Caffaro, R.A.; Agati, L.B.; Siddiqui, F.; Kouta, A.; Hoppensteadt, D.; Fareed, J.; Carter, C.A. Comparative studies on the anticoagulant profile of branded enoxaparin and a new biosimilar version. Clin. Appl. Thromb. Hemost. 2020, 26, 107602962096082. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Khan, N.; Lindenbauer, A.; Nguyen, T.-H. When will fondaparinux induce thrombocytopenia? Bioconjugate Chem. 2022, 33, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, B.; Myszka, A.; Migut, M.; Czenczek-Lewandowska, E.; Brodowski, R. Analysing the Effectiveness of topical bleeding care following tooth extraction in patients receiving dual antiplatelet therapy-retrospective observational study. BMC Oral Health 2021, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European heart rhythm association practical guide on the use of non-vitamin k antagonist oral anticoagulants in patients with atrial fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the european association for cardio-thoracic surgery (EACTS): The task force for the diagnosis and management of atrial fibrillation of the european society of cardiology (ESC) developed with the special contribution of the european heart rhythm association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Calcia, T.B.B.; Oballe, H.J.R.; de Oliveira Silva, A.M.; Friedrich, S.A.; Muniz, F.W.M.G. Is alteration in single drug anticoagulant/antiplatelet regimen necessary in patients who need minor oral surgery? A systematic review with meta-analysis. Clin. Oral Investig. 2021, 25, 3369–3381. [Google Scholar] [CrossRef]
- AlSheef, M.; Gray, J.; AlShammari, A. Risk of postoperative bleeding following dental extractions in patients on antithrombotic treatment. Saudi Dent. J. 2021, 33, 511–517. [Google Scholar] [CrossRef]
- Costa-Tort, J.; Schiavo-Di Flaviano, V.; González-Navarro, B.; Jané-Salas, E.; Estrugo-Devesa, A.; López-López, J. Update on the management of anticoagulated and antiaggregated patients in dental practice: Literature review. J. Clin. Exp. Dent. 2021, 13, e948–e956. [Google Scholar] [CrossRef]
Anticoagulant Drugs | Drug Group | Approximate Metabolism Time |
---|---|---|
Antiplatelet drugs | Acetylsalicylic acid | 7 days |
P2Y12 receptor blockers (Clopidogrel, Prasugrel, Ticagrelor) | 5 days | |
Glycoprotein IIb/IIa inhibitors | 36 h | |
TxA2 synthetase inhibitors | no data | |
prostacyclin PG12 | 2–4 h | |
Anticoagulants | Vitamin K antagonists (VKA) | 3–5 days |
Non-vitamin K antagonists (NOACs) | 1–2 days | |
Heparins | 1.5–24 h | |
Pentasaccharides | 15 h |
Intraoperative Bleeding Risk | Risk of Thrombosis | |
---|---|---|
Low Risk/Moderate Risk | High Risk | |
Low risk | Do not interrupt ASA or P2Y12 receptor blockers Treatment. | |
Moderate risk | Do not interrupt ASA or P2Y12 receptor blockers Treatment, increase postoperative hemostasis. | |
High risk | Do not interrupt ASA treatment, discontinue P2Y12 receptor blockers 5 days before the procedure after consultation with a cardiologist. Resume treatment 24–72 h postoperatively by administering a saturating dose of the discontinued drug. | Postpone scheduled procedures. In urgent cases do not interrupt ASA treatment, discontinue P2Y12 receptor blockers 5 days before the procedure after consultation with a cardiologist, resume treatment 24–72 h postoperatively by administering a saturating dose of the discontinued drug. Alternatively apply bringing therapy using Glycoprotein IIb/IIa inhibitors which should be discontinued 4 h before surgery. |
Intraoperative Bleeding Risk | Risk of Thrombosis | |
---|---|---|
Low Risk/Moderate Risk | High Risk | |
Low risk | Do not interrupt VKA treatment, 24 h before the procedure assess the INR value which should not exceed 3, if above the given value postpone the procedure until INR value normalizes. | |
Moderate risk | ||
High risk | Decrease the perioperative INR value to 2.0–2.5. | Discontinue VKA treatment, Apply bridging therapy. In urgent cases administer FFP or prothrombin complex concentrate together with low doses of vitamin K (2.5–5.0 mg) intravenously or orally. |
Bleeding Risk | Renal Function | Perioperative Antithrombotic Therapy Management |
---|---|---|
Low to moderate risk | Normal kidney function or mild kidney function impairment—GFR ≥ 50 mL/min | Interrupt NOAC treatment 12–24 h before surgery, resume ≥6 h postoperatively |
Moderate to severe kidney function impairment—GFR 49–30 mL/min | Interrupt NOAC treatment 24–48 h before surgery | |
High risk | Normal renal function or mild renal function impairment—GFR ≥ 50 mL/min | Interrupt NOAC treatment 48 h before surgery, resume treatment 2–3 days post-surgery, consider a different antithrombotic therapy for 2–3 days |
Moderate to severe kidney function impairment–GFR 49–30 mL/min | Interrupt NOAC treatment 72 h before surgery |
Intraoperative Bleeding Risk | Risk of Thrombosis | |
---|---|---|
Low Risk/Moderate Risk | High Risk | |
Low risk | Discontinue NOAC treatment accordingly to the guidelines presented in Table 4. Do not interrupt VKA treatment, 24 h before the procedure assess the INR value which should not exceed 3, if above the given value postpone the procedure until INR value normalizes. | |
Moderate risk | ||
High risk | Discontinue NOAC treatment accordingly to the guidelines presented in Table 4. Decrease the perioperative INR value to 2.0–2.5. | Discontinue NOAC treatment accordingly to the guidelines presented in Table 4. Discontinue VKA treatment, Apply bridging therapy. In urgent cases administer FFP or prothrombin complex concentrate together with low doses of vitamin K (2.5–5.0 mg) intravenously or orally. |
Intraoperative Bleeding Risk | Risk of Thrombosis | |
---|---|---|
Low Risk/Moderate Risk | High Risk | |
Low risk | Do not interrupt ASA or P2Y12 receptor blockers treatment. Do not interrupt VKA treatment, 24 h before the procedure assess the INR value and proceed accordingly to the guidelines presented in Table 3. | |
Moderate risk | ||
High risk | Consultation with the attending physician. Do not interrupt ASA or P2Y12 receptor blockers treatment. | |
24 h before the procedure assess the INR value and decrease the perioperative INR value to 2.0–2.5. | Discontinue VKA treatment, apply bridging therapy. In urgent cases proceed accordingly to the guidelines presented in Table 3. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, S.; Mocny-Pachońska, K.; Bisch-Wójcik, S.; Balicz, A.; Morawiec, T. Perioperative Management of Dental Surgery Patients Chronically Taking Antithrombotic Medications. Int. J. Environ. Res. Public Health 2022, 19, 16151. https://doi.org/10.3390/ijerph192316151
Wójcik S, Mocny-Pachońska K, Bisch-Wójcik S, Balicz A, Morawiec T. Perioperative Management of Dental Surgery Patients Chronically Taking Antithrombotic Medications. International Journal of Environmental Research and Public Health. 2022; 19(23):16151. https://doi.org/10.3390/ijerph192316151
Chicago/Turabian StyleWójcik, Sylwia, Katarzyna Mocny-Pachońska, Sophie Bisch-Wójcik, Agnieszka Balicz, and Tadeusz Morawiec. 2022. "Perioperative Management of Dental Surgery Patients Chronically Taking Antithrombotic Medications" International Journal of Environmental Research and Public Health 19, no. 23: 16151. https://doi.org/10.3390/ijerph192316151
APA StyleWójcik, S., Mocny-Pachońska, K., Bisch-Wójcik, S., Balicz, A., & Morawiec, T. (2022). Perioperative Management of Dental Surgery Patients Chronically Taking Antithrombotic Medications. International Journal of Environmental Research and Public Health, 19(23), 16151. https://doi.org/10.3390/ijerph192316151