Protective Effect of Thyme and Chestnut Honeys Enriched with Bee Products against Benzo(a)pyrene-Induced DNA Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Raw Materials
2.3. HepG2 Cells
2.4. Cytotoxicity
2.5. Analysis of DNA Damage (DNA Strand Breaks Induced by Honey Samples, Royal Jelly, and Propolis in the Alkaline Comet Assay)
2.6. Analysis of DNA Damage Induced by a Simultaneous Treatment with BaP and Honey Samples, Royal Jelly, Propolis, and Their Mixtures in the Alkaline Comet Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Cytotoxicity of Samples
3.2. Analysis of DNA Damage (DNA Strand Breaks) Induced by Thyme and Chestnut Honeys, Royal Jelly, and Propolis in the Alkaline Comet Assay
3.3. Analysis of DNA Damage (DNA Strand Breaks) Induced by a Simultaneous Treatment of BaP and Thyme and Chestnut Honey Samples and Honey Enriched with Royal Jelly and Propolis in the Alkaline Comet Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The European Commission. Honey. Available online: https://agriculture.ec.europa.eu/farming/animal-products/honey_en#documents (accessed on 24 October 2022).
- Ministerio de Agricultura, Pesca y Alimentacion. Sector Apícola. Available online: https://www.mapa.gob.es/es/ganaderia/temas/produccion-y-mercados-ganaderos/sectores-ganaderos/apicola/ (accessed on 24 October 2022).
- The European Commission. EU Imported €405.9 Million Worth in Honey in 2021. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20220819-2 (accessed on 20 October 2022).
- Perrett, M. Ukraine war set to impact UK honey sourcing and global prices. Food Manufacture, 22 June 2022. [Google Scholar]
- Hossain, K.S.; Hossain, M.G.; Moni, A.; Rahman, M.M.; Rahman, U.H.; Alam, M.; Kundu, S.; Rahman, M.M.; Hannan, M.A.; Uddin, M.J. Prospects of honey in fighting against COVID-19: Pharmacological insights and therapeutic promises. Heliyon 2020, 6, e05798. [Google Scholar] [CrossRef] [PubMed]
- Yllmaz, K.; Ceylan, E.; Derelioǧlu, G. Determination of Chestnut Honey Consumption Characteristics as a Traditional Treatment Method and Its Effect on Protection from COVID-19. Complement. Med. Res. 2022, 29, 205–212. [Google Scholar] [CrossRef]
- Jose Vazhacharickal, P. A review on health benefits and biological action of honey, propolis and royal jelly. J. Med. Plants Stud. 2021, 9, 1–13. [Google Scholar]
- Luo, X.; Dong, Y.; Gu, C.; Zhang, X.; Ma, H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front. Nutr. 2021, 8, 727181. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touzani, S.; Imtara, H.; Katekhaye, S.; Mechchate, H.; Ouassou, H.; Alqahtani, A.S.; Noman, O.M.; Nasr, F.A.; Fearnley, H.; Fearnley, J.; et al. Determination of phenolic compounds in various propolis samples collected from an african and an asian region and their impact on antioxidant and antibacterial activities. Molecules 2021, 26, 4589. [Google Scholar] [CrossRef]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pabl, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Bagameri, L.; Baci, G.M.; Dezmirean, D.S. Royal Jelly as a Nutraceutical Natural Product with a Focus on Its Antibacterial Activity. Pharmaceutics 2022, 14, 1142. [Google Scholar] [CrossRef]
- Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J. New insights into the biological and pharmaceutical properties of royal jelly. Int. J. Mol. Sci. 2020, 21, 382. [Google Scholar] [CrossRef] [Green Version]
- Zena Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Li, Y.; Xi, H.; Niu, Z.; Chen, N.; Wang, R.; Yan, Y.; Gan, X.; Wang, M.; Zhang, W.; et al. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Front. Nutr. 2022, 9, 978475. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Benzo[a]pyrene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Benzo_a_pyrene (accessed on 24 October 2022).
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.; Dogliotti, E.; Di Domenico, A.; Fernández-cruz, M.L.; Fink-gremmels, J.; Fürst, P.; Galli, C.; et al. Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 1–114. [Google Scholar] [CrossRef]
- Groups, I.W. Benzo(a)pyrene. In IARC Monographs; Elsevier: Amsterdam, The Netherlands, 2014; Volume 100F, pp. 111–144. ISBN 9780123864543. [Google Scholar]
- Bukowska, B.; Sicińska, P. Influence of Benzo(A)pyrene on different epigenetic processes. Int. J. Mol. Sci. 2021, 22, 13453. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). IRIS Toxicological Review of Benzo[a]pyrene (Final Report); EPA: Washington, DC, USA, 2017.
- Wahyuni, E.A.; Chen, C.Y.; Wu, H.N.; Chien, C.C.; Chen, S.C. Propolis alleviates 4-aminobiphenyl-induced oxidative DNA damage by inhibition of CYP2E1 expression in human liver cells. Environ. Toxicol. 2021, 36, 1504–1513. [Google Scholar] [CrossRef]
- Ooi, T.C.; Yaacob, M.; Rajab, N.F.; Shahar, S.; Sharif, R. The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi J. Biol. Sci. 2021, 28, 2987–2994. [Google Scholar] [CrossRef]
- Damiani, A.P.; Magenis, M.L.; Dagostin, L.S.; da Lus Beretta, Â.C.; Sarter, R.J.; Longaretti, L.M.; Monteiro, I.d.O.; de Andrade, V.M. Royal jelly reduce DNA damage induced by alkylating agent in mice. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2022, 825, 111796. [Google Scholar] [CrossRef]
- Sánchez-Martín, V.; Morales, P.; González-Porto, A.V.; Iriondo-DeHond, A.; López-Parra, M.B.; Del Castillo, M.D.; Hospital, X.F.; Fernández, M.; Hierro, E.; Haza, A.I. Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods 2022, 11, 3118. [Google Scholar] [CrossRef]
- González María, E.; Madueño-Luna, A.; Ruiz-Canales, A.; Luna, J.M.M. Classification of Monofloral Honeys by Measuring Electrical Impedance Based on Neural Networks. Agronomy 2022, 12, 1929. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Olive, P.L.; Wlodek, D.; Durand, R.E.; Banáth, J.P. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp. Cell Res. 1992, 198, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Al Refaey, H.R.; Newairy, A.S.A.; Wahby, M.M.; Albanese, C.; Elkewedi, M.; Choudhry, M.U.; Sultan, A.S. Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2. Biol. Res. 2021, 54, 16. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.L.; Kasapis, S.; Mantri, N. Physicochemical properties and effects of honeys on key biomarkers of oxidative stress and cholesterol homeostasis in hepg2 cells. Nutrients 2021, 13, 151. [Google Scholar] [CrossRef]
- Halawani, E.M. Potential effects of Saudi Shaoka (Fagonia bruguieri) honey against multi-drug-resistant bacteria and cancer cells in comparison to Manuka honey. Saudi J. Biol. Sci. 2021, 28, 7379–7389. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008, 73, 117–124. [Google Scholar] [CrossRef]
- Badria, F.; Fathy, H.; Fatehe, A.; Ahmed, M.; Ghazy, M. Chemical and biological diversity of propolis samples from Bulgaria, Libya and Egypt. J. Apitherapy 2018, 4, 17. [Google Scholar] [CrossRef]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The curious case of the HepG2 cell line: 40 years of expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef]
- Cheng, N.; Zhao, H.; Chen, S.; He, Q.; Cao, W. Jujube honey induces apoptosis in human hepatocellular carcinoma HepG2 cell via DNA damage, p53 expression, and caspase activation. J. Food Biochem. 2019, 43, e12998. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Haza, A.I.; Ávalos, A.; del Castillo, M.D.M.D.; Morales, P.; Avalos, A.; del Castillo, M.D.M.D.; Morales, P. Validation of coffee silverskin extract as a food ingredient by the analysis of cytotoxicity and genotoxicity. Food Res. Int. 2017, 100, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.E.; Haza, A.I.; Arranz, N.; Garcia, A.; Morales, P. Dietary polyphenols protect against N-nitrosamines and benzo(a)pyrene-induced DNA damage (strand breaks and oxidized purines/pyrimidines) in HepG2 human hepatoma cells. Eur. J. Nutr. 2008, 47, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cui, Y.; Niedernhofer, L.J.; Wang, Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem. Res. Toxicol. 2016, 29, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008, 27, 589–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Scientific Committee. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 2011, 9, 2379. [Google Scholar] [CrossRef]
- Kumaravel, T.S.; Vilhar, B.; Faux, S.P.; Jha, A.N. Comet Assay measurements: A perspective. Cell Biol. Toxicol. 2009, 25, 53–64. [Google Scholar] [CrossRef]
- Afrin, S.; Haneefa, S.M.; Fernandez-Cabezudo, M.J.; Giampieri, F.; Al-Ramadi, B.K.; Battino, M. Therapeutic and preventive properties of honey and its bioactive compounds in cancer: An evidence-based review. Nutr. Res. Rev. 2020, 33, 50–76. [Google Scholar] [CrossRef]
- Haza, A.I.; Morales, P. Spanish honeys protect against food mutagen-induced DNA damage. J. Sci. Food Agric. 2013, 93, 2995–3000. [Google Scholar] [CrossRef]
- Abd El-Monem, D.D. The Ameliorative Effect of Royal Jelly against Malathion Genotoxicity in Bone Marrow and Liver of Rat. J. Am. Sci. 2011, 7, 1251–1256. [Google Scholar]
- Silva, J.B.; Paiva, K.A.R.; Costa, K.M.F.M.; Viana, G.A.; Araújo, H.N.; Bezerra, L.S.; Freitas, C.I.A.; Batista, J.S. Hepatoprotective and antineoplastic potencial of red propolis produced by the bees Apis mellifera in the semiarid of Rio Grande do Norte, Brazil. Pesqui. Vet. Bras. 2019, 39, 744–756. [Google Scholar] [CrossRef]
- Draganova-Filipova, M.N.; Georgieva, M.G.; Peycheva, E.N.; Miloshev, G.A.; Sarafian, V.S.; Peychev, L.P. Effects of propolis and CAPE on proliferation and apoptosis of McCoy-Plovdiv cell line. Folia Med. 2008, 50, 53–59. [Google Scholar]
- Gajek, G.; Marciniak, B.; Lewkowski, J.; Kontek, R. Antagonistic effects of CAPE (a component of propolis) on the cytotoxicity and genotoxicity of irinotecan and SN38 in human gastrointestinal cancer cells in vitro. Molecules 2020, 25, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Marić, A.; Jovanov, P.; Sakač, M.; Novaković, A.; Hadnađev, M.; Pezo, L.; Mandić, A.; Milićević, N.; Đurović, A.; Gadžurić, S. A comprehensive study of parameters correlated with honey health benefits. RSC Adv. 2021, 11, 12434–12441. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Haza, A.I. Antiproliferative and apoptotic effects of spanish honeys. Pharmacogn. Mag. 2013, 9, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koulis, G.A.; Tsagkaris, A.S.; Katsianou, P.A.; Gialouris, P.L.P.; Martakos, I.; Stergiou, F.; Fiore, A.; Panagopoulou, E.I.; Karabournioti, S.; Baessmann, C.; et al. Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry. Molecules 2022, 27, 4444. [Google Scholar] [CrossRef]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Fortuna, T. Antioxidant activity and phenolic composition of herbhoneys. Food Chem. 2009, 113, 568–574. [Google Scholar] [CrossRef]
- Νousias, P.; Karabagias, I.; Riganakos, K. Deep Inside Polyphenols of Hellenic Thyme Honey. Austin J. Nutr. Food Sci. 2018, 6, 1098. [Google Scholar]
- Güneş, M.E.; Şahin, S.; Demir, C.; Borum, E.; Tosunoğlu, A. Determination of phenolic compounds profile in chestnut and floral honeys and their antioxidant and antimicrobial activities. J. Food Biochem. 2017, 41, e12345. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Lucini, L.; Aromolo, R.; Martinelli, E.; Souto, E.B.; Santini, A.; Pignatti, G. Bee products: A representation of biodiversity, sustainability, and health. Life 2021, 11, 970. [Google Scholar] [CrossRef]
- Özkök, A.; Keskin, M.; Tanuğur Samancı, A.E.; Yorulmaz Önder, E.; Takma, Ç. Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis. Appl. Biol. Chem. 2021, 64, 37. [Google Scholar] [CrossRef]
- Ishida, Y.; Gao, R.; Shah, N.; Bhargava, P.; Furune, T.; Kaul, S.C.; Terao, K.; Wadhwa, R. Anticancer Activity in Honeybee Propolis: Functional Insights to the Role of Caffeic Acid Phenethyl Ester and Its Complex With γ-Cyclodextrin. Integr. Cancer Ther. 2018, 17, 867–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, B.; Mao, L.; Tang, M.; Yan, Z.Y.; Shao, J.; Huang, C.H.; Sheng, Z.G.; Zhu, B.Z. Caffeic acid phenyl ester (Cape) protects against iron-mediated cellular dna damage through its strong iron-binding ability and high lipophilicity. Antioxidants 2021, 10, 798. [Google Scholar] [CrossRef] [PubMed]
- López-Gutiérrez, N.; del Mar Aguilera-Luiz, M.; Romero-González, R.; Vidal, J.L.M.; Garrido Frenich, A. Fast analysis of polyphenols in royal jelly products using automated TurboFlowTM-liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 973, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Kim, B.Y.; Deng, Y.; Park, H.G.; Choi, Y.S.; Lee, K.S.; Jin, B.R. Antioxidant capacity of major royal jelly proteins of honeybee (Apis mellifera) royal jelly. J. Asia. Pac. Entomol. 2020, 23, 445–448. [Google Scholar] [CrossRef]
- Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Das, S.; Patra, S.K.; Efferth, T.; Jena, M.; Bhutia, S.K. Dietary polyphenols in chemoprevention and synergistic effect in cancer: Clinical evidences and molecular mechanisms of action. Phytomedicine 2021, 90, 153554. [Google Scholar] [CrossRef]
- Mademtzoglou, D.; Haza, A.I.; Coto, A.L.; Morales, P. Rosemary, heather and heterofloral honeys protect towards cytotoxicity of acrylamide in human hepatoma cells. Rev. Complut. Cienc. Vet. 2010, 4, 12–32. [Google Scholar]
- Beretta, G.; Moretti, R.M.; Nasti, R.; Cincinelli, R.; Dallavalle, S.; Montagnani Marelli, M. Apoptosis-mediated anticancer activity in prostate cancer cells of a chestnut honey (Castanea sativa L.) quinoline–pyrrolidine gamma-lactam alkaloid. Amino Acids 2021, 53, 869–880. [Google Scholar] [CrossRef]
Samples | Scientific and Common Names | Family | Geographic Region | Type |
---|---|---|---|---|
Chestnut honey | Castanea sativa Chestnut | Fagaceae | Spain (Toledo) | Monofloral |
Thyme honey | Thymus spp. Thyme | Lamiaceae | Spain (Zamora) | Monofloral |
Royal jelly | - | - | France | - |
Propolis tincture * | - | - | Spain (Zamora) | - |
Code | Description | Sample nº |
---|---|---|
TH | Thyme honey | 1 |
TH + 2PR | Thyme honey + 2% propolis | 4 |
TH + 10PR | Thyme honey + 10% propolis | 5 |
CH | Chestnut honey | 6 |
CH + 10PR | Chestnut honey + 10% propolis | 10 |
TH + 10RJ + 10PR | Thyme honey + 10% royal jelly + 10% propolis | 12 |
CH + 10RJ + 10PR | Chestnut honey + 10% royal jelly + 10% propolis | 14 |
RJ | Royal jelly | 15 |
PR | Propolis | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Martín, V.; Haza, A.I.; Iriondo-DeHond, A.; del Castillo, M.D.; Hospital, X.F.; Fernández, M.; Hierro, E.; Morales, P. Protective Effect of Thyme and Chestnut Honeys Enriched with Bee Products against Benzo(a)pyrene-Induced DNA Damage. Int. J. Environ. Res. Public Health 2022, 19, 16969. https://doi.org/10.3390/ijerph192416969
Sánchez-Martín V, Haza AI, Iriondo-DeHond A, del Castillo MD, Hospital XF, Fernández M, Hierro E, Morales P. Protective Effect of Thyme and Chestnut Honeys Enriched with Bee Products against Benzo(a)pyrene-Induced DNA Damage. International Journal of Environmental Research and Public Health. 2022; 19(24):16969. https://doi.org/10.3390/ijerph192416969
Chicago/Turabian StyleSánchez-Martín, Vanesa, Ana I. Haza, Amaia Iriondo-DeHond, María Dolores del Castillo, Xavier F. Hospital, Manuela Fernández, Eva Hierro, and Paloma Morales. 2022. "Protective Effect of Thyme and Chestnut Honeys Enriched with Bee Products against Benzo(a)pyrene-Induced DNA Damage" International Journal of Environmental Research and Public Health 19, no. 24: 16969. https://doi.org/10.3390/ijerph192416969
APA StyleSánchez-Martín, V., Haza, A. I., Iriondo-DeHond, A., del Castillo, M. D., Hospital, X. F., Fernández, M., Hierro, E., & Morales, P. (2022). Protective Effect of Thyme and Chestnut Honeys Enriched with Bee Products against Benzo(a)pyrene-Induced DNA Damage. International Journal of Environmental Research and Public Health, 19(24), 16969. https://doi.org/10.3390/ijerph192416969