Trends in Lakeshore Zone Development: A Comparison of Polish and Hungarian Lakes over 30-Year Period
Abstract
:1. Introduction
2. Study Area
2.1. Poland
2.2. Hungary
3. Materials and Methods
4. Results
5. Discussion
6. Recommendations
7. Conclusions
- Significant increases in the area of tourist development and forests in the lakeshore zone were noted in both countries studied.
- The conversion of agricultural land to forest and built-up areas is beneficial for the lakes.
- Settlement expansion is not a real threat to the shores of Mazurian Great Lakes. Appropriate legislation effectively constraints this negative process.
- Tourism development on the Great Mazurian Lakes is concentrated in towns and villages in correlation with their settlement function.
- Increasing built-up area at the expense of the semi-natural land seems to be the main threat to the shores of Hungarian lakes.
- Growth in the area occupied by tourism and settlement development in Hungarian lakes’ shore zone is independent and occurs at different rates.
- The intensive use of recreational land and the continuous development of entertainment offers (such as water recreation and yacht tourism) in the Hungarian lakes’ shore zone have brought great pressure to the lakes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, R.A. The worldwide extent of land-use change. BioScience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.; Sahajpal, R.; Frolking, S.; Bodirsky, B.L.; Calvin, K.; Doelman, J.C.; Fisk, J.; Fujimori, S.; Klein Goldewijk, K.; et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020, 13, 5425–5464. [Google Scholar] [CrossRef]
- Mendoza, M.E.; López Granados, E.; Geneletti, D.; Pérez-Salicrup, D.R.; Salinas, V. Analysing land cover and land use change processes at watershed level: A multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Appl. Geogr. 2011, 31, 237–250. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Schirpke, U.; Tscholl, S.; Tasser, E. Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (1860–2100). J. Environ. Manag. 2020, 272, 111068. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Wang, B.; Zhang, Q.; Tang, H.; DeMaeyer, P.; Hamdi, R.; Dai, L. Climate change versus land-use change. What affects the ecosystem services more in the forest-steppe ecotone? Sci. Total Environ. 2021, 759, 143525. [Google Scholar] [CrossRef] [PubMed]
- Yee, S.H.; Paulukonis, E.; Simmons, C.; Russell, M.; Fulford, R.; Harwell, L.; Smith, L.M. Projecting effects of land use change on human well-being through changes in ecosystem services. Ecol. Model. 2021, 440, 109358. [Google Scholar] [CrossRef]
- Ojima, D.S.; Galvin, K.A.; Turner, B.L. The global impact of land-use change. BioScience 1994, 44, 300–304. [Google Scholar] [CrossRef]
- Dannenberg, P.; Kuemmerle, T. Farm size and land use pattern changes in postsocialist Poland. Prof. Geogr. 2010, 62, 197–210. [Google Scholar] [CrossRef]
- Czepczyński, M. Identity and nation building in everyday post-socialist life. Eurasian Geogr. Econ. 2021, 62, 234–236. [Google Scholar] [CrossRef]
- Biró, M.; Czúcz, B.; Horváth, F.; Révész, A.; Csatári, B.; Molnár, Z. Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999). Landsc. Ecol. 2013, 28, 789–803. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Brandão, A., Jr.; Buchnera, J.; Helmersa, D.; Iulianoc, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Łowicki, D. Land use changes in Poland during transformation. Case study of Wielkopolska region. Landsc. Urban Plan. 2008, 87, 279–288. [Google Scholar] [CrossRef]
- National Landscape Strategy 2017–2026, Hungary; Department of National Parks and Landscape Protection, Ministry of Agriculture: Budapest, Hungary, 2017.
- Maurel, M.C.; Lacquement, G. Od gospodarstwa wielkoobszarowego do agrobiznesu: W stronę nowego kapitalizmu rolnego w Europie Środkowej? Wieś Rolnictwo 2020, 2, 7–34. [Google Scholar] [CrossRef]
- Zipper, S.C.; Keune, J.; Kollet, S.J. Land use change impacts on European heat and drought: Remote land-atmosphere feedbacks mitigated locally by shallow groundwater. Environ. Res. Lett. 2019, 14, 044012. [Google Scholar] [CrossRef]
- Wacnik, A.; Kupryjanowicz, M.; Mueller-Bieniek, A.; Karczewski, M.; Cywa, K. The environmental and cultural contexts of the late Iron Age and medieval settlement in the Mazurian Lake District, NE Poland: Combined palaeobotanical and archaeological data. Veg. Hist. Archaeobot. 2014, 23, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.M.; Härkönen, T. (Eds.) Lake Tourism. An integrated Approach to Lacustrine Tourism Systems; Aspects of Tourism 32; Channel View Publications: Clevedon, UK; Buffalo, NY, USA; Toronto, ON, Canada, 2006. [Google Scholar]
- Furgała-Selezniow, G.; Skrzypczak, A.; Kajko, A.; Wiszniewska, K.; Mamcarz, A. Touristic and recreational use of the shore zone of Ukiel Lake (Olsztyn, Poland). Pol. J. Nat. Sci. 2012, 27, 41–51. [Google Scholar]
- Dynowski, P.; Senetra, A.; Źróbek-Sokolnik, A.; Kozłowski, J. The impact of recreational activities on aquatic vegetation in Alpine Lakes. Water 2019, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Latinopoulos, D.; Koulouri, M.; Kagalou, I. How historical land use/land cover changes affected ecosystem services in lake Pamvotis, Greece. Hum. Ecol. Risk Assess. 2020, 27, 1472–1491. [Google Scholar] [CrossRef]
- Beck, M.; Vondracek, B.; Hatch, L.K.; Vinje, J. Semi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes. ISPRS J. Photogramm. Remote Sens. 2013, 81, 60–69. [Google Scholar] [CrossRef]
- Li, Z.; Ren, Y.; Li, J.; Li, Y.; Rykov, P.; Chen, F.; Zhang, W. Land-use/cover change and driving mechanism on the west bank of lake Baikal from 2005 to 2015—a case study of Irkutsk City. Sustainability 2018, 10, 2904. [Google Scholar] [CrossRef] [Green Version]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Woźniak, E.; Kulczyk, S.; Derek, M. From intrinsic to service potential: An approach to assess tourism landscape potential. Landsc. Urban Plan. 2018, 170, 209–220. [Google Scholar] [CrossRef]
- Papp, F. Velencei-Tavi Partvédőművek Felülvizsgálata (Re-Examination of the Shore Fortification Works at Lake Velence); Víz-Inter Mérnökiroda KFT: Székesfehérvár, Hungary, 1995. [Google Scholar]
- Bernát, G.; Boross, N.; Somogyi, B.; Vörös, L.; G-Tóth, L.; Boros, G. Oligotrophication of Lake Balaton over a 20-year period and its implications for the relationship between phytoplankton and zooplankton biomass. Hydrobiologia 2020, 847, 3999–4013. [Google Scholar] [CrossRef]
- Bioaqua Pro KFT. A Balatonpart Közterületei Partvédő Műveinek és Közvetlen Háttérterületeinek Rendezésére Vonatkozó Környezeti Hatástanulmány; Viziterv Environ KFT: Nyíregyháza, Hungary, 2020. [Google Scholar]
- Szilágyi, F.; Szabó, S.; Mándoki, M. R estoration of Lake Velence. In Conservation and Management of Lakes; Saláni, J., Heródek, S., Eds.; Symposia Biologica Hungarica; Akadémiai Kiadó: Budapest, Hungary, 1989; Volume 38, pp. 529–545. [Google Scholar]
- CORINE Land Cover. Version 2020_20u1. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 4 May 2020).
- Puyravaud, J.P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Cegielska, K.; Noszczyk, T.; Kukulska, A.; Szylar, M.; Hernik, J.; Dixon-Gough, R.; Jombach, S.; Valánszki, I.; Kovács, K.F. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 2018, 78, 1–18. [Google Scholar] [CrossRef]
- Bičík, I.; Jeleček, L.; Štěpánek, V. Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy 2001, 18, 65–73. [Google Scholar] [CrossRef]
- Buday-Sántha, A. Development issues of the Balaton Region. Discus. Pap. 2007, 61, 7–142. [Google Scholar] [CrossRef]
- Marton, I. A Balaton régió fejlődése. A regionális gondolkodás és a turizmus fejlődésének összefüggései a Balaton térségében Acta Scientiarum Socialium 2013, 3, 161–179. [Google Scholar]
- Swinnen, J.F.M. (Ed.) The Political Economy of the 2014–2020 Common Agricultural Policy. An Imperfect Storm; Centre for European Policy Studies (CEPS): Brussels, Belgium; Rowman and Littlefield International: London, UK, 2015; p. 596. ISBN 978-1-78348-484-3. [Google Scholar]
- Meyer, M.A.; Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in Southern Germany. Land Use Policy 2020, 99, 104959. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Levers, C.; Erb, K.; Estel, S.; Jepsen, M.R.; Müller, D.; Plutzar, C.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016, 11, 064020. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Koch, B.; Zimmermann, N.E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agric. Ecosyst. Environ. 2007, 118, 93–108. [Google Scholar] [CrossRef]
- Acharya, S. Land use and land cover changes in the catchments impact the ecosystem in Phewa, Begnas, and Rupa lakes, Nepal. J. Nepal Geol. Soc. 2020, 60, 195–205. [Google Scholar] [CrossRef]
- Kasak, K.; Kill, K.; Pärn, J.; Mander, Ü. Efficiency of a newly established in-stream constructed wetland treating diffuse agricultural pollution. Ecol. Eng. 2018, 119, 1–7. [Google Scholar] [CrossRef]
- Grochowska, J.; Augustyniak, R.; Łopata, M.; Parszuto, K.; Tandyrak, R.; Płachta, A. From Saprotrophic to Clear Water Status: The Restoration Path of a Degraded Urban Lake. Water Air Soil Pollut. 2019, 230, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kertész, A.; Nagy, L.A.; Balázs, B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy 2019, 80, 430–438. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogana, M.; Radeloff, V.C.; Keulerc, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Liao, C.; Yue, Y.; Wang, K.; Fensholt, R.; Tong, X.; Brandt, M. Ecological restoration enhances ecosystem health in the karst regions of southwest China. Ecol. Indic. 2018, 90, 416–425. [Google Scholar] [CrossRef]
- Grochowska, J.; Tandyrak, R. The influence of the modernization of the city sewage system on the external load and trophic state of the Kartuzy Lake complex. Appl. Sci. 2021, 11, 974. [Google Scholar] [CrossRef]
- Schneider, S.C.; Biberdžić, V.; Braho, V.; Budzakoska Gjoreska, B.; Cara, M.; Dana, Z.; Durašković, P.; Eriksen, T.E.; Hjermanna, D.; Imeri, A.; et al. Littoral eutrophication indicators are more closely related to nearshore land use than to water nutrient concentrations: A critical evaluation of stressor-response relationships. Sci. Total Environ. 2020, 748, 141193. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.L.; Schiaffino, M.R.; Graziano, M.; Huber, P.; Lagomarsino, L.; Minotti, P.; Zagarese, H.; Izaguirre, I. Effect of land use on the phytoplankton community of Pampean shallow lakes of the Salado River basin (Buenos Aires Province, Argentina). Aquat. Ecol. 2021, 55, 417–435. [Google Scholar] [CrossRef]
- Furgała-Selezniow, G.; Jankun-Woźnicka, M.; Mika, M. Lake regions under human pressure in the context of socio-economic transition in Central-Eastern Europe: The case study of Olsztyn Lakeland, Poland. Land Use Policy 2020, 90, 104350. [Google Scholar] [CrossRef]
- Statistical Yearbook of Warmińsko-Mazurskie Voivodship. Available online: https://olsztyn.stat.gov.pl/en/publications/statistical-yearbook/statistical-yearbook-of-warminsko-mazurskie-voivodship-2008,1,1.html (accessed on 19 November 2020).
- Statistical Yearbook of Warmińsko-Mazurskie Voivodship. Available online: https://olsztyn.stat.gov.pl/en/publications/statistical-yearbook/statistical-yearbook-of-warminsko-mazurskie-voivodship-2019,1,12.html (accessed on 19 November 2020).
- Łapko, A. Problems of yacht charter companies in Poland. EJSM 2018, 25, 165–172. [Google Scholar] [CrossRef]
- Cai, X.; Boromisza, Z. Public perception and aesthetic preferences of lakeshore landscape: The example of Lake Velence (Hungary). Landsc. Environ. 2020, 14, 31–42. [Google Scholar] [CrossRef]
- Board of the Warmińsko-Mazurskie Voivodeship. Strategia Rozwoju Społeczno-Gospodarczego Województwa Warmińsko-Mazurskiego do Roku 2030. Warmińsko-Mazurskie 2030—Socio-Economic Development Strategy. 2020. Available online: https://strategia2030.warmia.mazury.pl/strategia-2030/ (accessed on 2 February 2022).
Class | Corine Code | |
---|---|---|
Settlement development | 111, 112, 121, 122, 133 | developed |
Tourism development | 141, 142 (and 111, 112 after verification) | |
Forests | 311, 312, 313 | undeveloped |
Agricultural land | 211, 231, 241, 242, | |
Semi-natural land | 243, 244, 321, 322, 324, 411, 512 |
Class | Magnitude of Changes [ha] | Magnitude of Changes [%] | q [%] | |||
---|---|---|---|---|---|---|
Poland | Hungary | Poland | Hungary | Poland | Hungary | |
Settlement development | −39.3 | 67.2 | −8.3 | 9.6 | −0.29 | 0.31 |
Tourism development | 285.5 | 149.5 | 152.9 | 27.0 | 3.14 | 0.80 |
Forests | 313.5 | 148.4 | 12.0 | 61.1 | 0.38 | 1.60 |
Agricultural land | −626.7 | −63.8 | −42.6 | −64.2 | −1.72 | −3.16 |
Semi-natural land | 64.2 | −294.2 | 3.8 | −30.5 | 0.12 | −1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furgała-Selezniow, G.; Jankun-Woźnicka, M.; Woźnicki, P.; Cai, X.; Erdei, T.; Boromisza, Z. Trends in Lakeshore Zone Development: A Comparison of Polish and Hungarian Lakes over 30-Year Period. Int. J. Environ. Res. Public Health 2022, 19, 2141. https://doi.org/10.3390/ijerph19042141
Furgała-Selezniow G, Jankun-Woźnicka M, Woźnicki P, Cai X, Erdei T, Boromisza Z. Trends in Lakeshore Zone Development: A Comparison of Polish and Hungarian Lakes over 30-Year Period. International Journal of Environmental Research and Public Health. 2022; 19(4):2141. https://doi.org/10.3390/ijerph19042141
Chicago/Turabian StyleFurgała-Selezniow, Grażyna, Małgorzata Jankun-Woźnicka, Paweł Woźnicki, Xuecheng Cai, Timea Erdei, and Zsombor Boromisza. 2022. "Trends in Lakeshore Zone Development: A Comparison of Polish and Hungarian Lakes over 30-Year Period" International Journal of Environmental Research and Public Health 19, no. 4: 2141. https://doi.org/10.3390/ijerph19042141
APA StyleFurgała-Selezniow, G., Jankun-Woźnicka, M., Woźnicki, P., Cai, X., Erdei, T., & Boromisza, Z. (2022). Trends in Lakeshore Zone Development: A Comparison of Polish and Hungarian Lakes over 30-Year Period. International Journal of Environmental Research and Public Health, 19(4), 2141. https://doi.org/10.3390/ijerph19042141